Helly graphs and groups Masterclass "Topics in Geometric Group Theory"

Damian Osajda

Københavns Universitet

13-17 November 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Geodesic bicombing

Definition (Geodesic bicombing)

A geodesic bicombing on a metric space (X, d) is a map

$$\sigma\colon X\times X\times [0,1]\to X,$$

such that for every pair $(x, y) \in X \times X$ the function $\sigma_{xy} := \sigma(x, y, \cdot)$ is a constant speed geodesic from x to y.

We call σ convex if the function $t \mapsto d(\sigma_{xy}(t), \sigma_{x'y'}(t))$ is convex for all $x, y, x', y' \in X$.

The bicombing σ is consistent if $\sigma_{pq}(\lambda) = \sigma_{xy}((1-\lambda)s + \lambda t)$, for all $x, y \in X$, $0 \le s \le t \le 1$, $p := \sigma_{xy}(s)$, $q := \sigma_{xy}(t)$, and $\lambda \in [0, 1]$. It is called *reversible* if $\sigma_{xy}(t) = \sigma_{yx}(1-t)$ for all $x, y \in X$ and $t \in [0, 1]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bicombing in (\mathbb{R}^2, d_∞)

Bicombing in (\mathbb{R}^2, d_∞)

э

Bicombing in (\mathbb{R}^2, d_∞)

э

Theorem (Descombes-Lang, 2016)

A proper injective metric space X of finite combinatorial dimension admits a unique convex, consistent, reversible geodesic bicombing.

Theorem (Descombes-Lang, 2016)

A proper injective metric space X of finite combinatorial dimension admits a unique convex, consistent, reversible geodesic bicombing.

Proof.

Take the 'convex combination' bicombing in the space of metric forms.

Theorem (Descombes-Lang, 2016)

A proper injective metric space X of finite combinatorial dimension admits a unique convex, consistent, reversible geodesic bicombing.

Proof.

Take the 'convex combination' bicombing in the space of metric forms. Project it to X = E(X).

Theorem (Descombes-Lang, 2016)

A proper injective metric space X of finite combinatorial dimension admits a unique convex, consistent, reversible geodesic bicombing.

Proof.

Take the 'convex combination' bicombing in the space of metric forms. Project it to X = E(X). Improve the bicombing.

Theorem (Descombes-Lang, 2016)

A proper injective metric space X of finite combinatorial dimension admits a unique convex, consistent, reversible geodesic bicombing.

Proof.

Take the 'convex combination' bicombing in the space of metric forms. Project it to X = E(X). Improve the bicombing.

Remark

In particular, the bicombing above is invariant under automorphisms.

A E N A E N

Properties of injective metric spaces

contractibility

- Iixed point properties for finite group actions
- Iclassification of isometries
- Ist Torus theorem [Descombes-Lang]
- S characterization of hyperbolicity via non-existence of flats

All graphs $\Gamma = (V(\Gamma), E(\Gamma))$ are *simplicial*. We view Γ as a metric space $(V(\Gamma), d)$, where d is a path metric.

э

イロト イヨト イヨト イヨト

All graphs $\Gamma = (V(\Gamma), E(\Gamma))$ are *simplicial*. We view Γ as a metric space $(V(\Gamma), d)$, where d is a path metric.

Definition (Helly graph)

A graph is *Helly* if the family of its (combinatorial) balls has the Helly property.

- 4 回 ト - 4 回 ト

All graphs $\Gamma = (V(\Gamma), E(\Gamma))$ are *simplicial*. We view Γ as a metric space $(V(\Gamma), d)$, where d is a path metric.

Definition (Helly graph)

A graph is *Helly* if the family of its (combinatorial) balls has the Helly property.

A graph is *clique-Helly* if the family of its maximal cliques has the Helly property.

All graphs $\Gamma = (V(\Gamma), E(\Gamma))$ are *simplicial*. We view Γ as a metric space $(V(\Gamma), d)$, where d is a path metric.

Definition (Helly graph)

A graph is *Helly* if the family of its (combinatorial) balls has the Helly property.

A graph is *clique-Helly* if the family of its maximal cliques has the Helly property.

Helly graphs - example

Example (Thickening of a CAT(0) cube complex)

Damian Osajda (Københavns Universitet)

Helly graphs and groups

Helly graphs - example

Example (Thickening of a CAT(0) cube complex)

Damian Osajda (Københavns Universitet)

э

< 47 ▶

< ⊒ >

Helly graphs - example

Example (Thickening of a CAT(0) cube complex)

э

A D N A B N A B N A B N

Theorem

Helly graphs are weakly modular. Moreover, they satisfy a stronger version of the quadrangle condition:

• if there exists
$$z \sim v$$
, w with
 $d(u, z) = n + 1$ then there exists
 $x \sim v$, w with $d(u, x) = n - 1$, and
 $x' \sim z$, v , w , x

э

Theorem

Helly graphs are weakly modular. Moreover, they satisfy a stronger version of the quadrangle condition:

• if there exists
$$z \sim v$$
, w with
 $d(u, z) = n + 1$ then there exists
 $x \sim v$, w with $d(u, x) = n - 1$, and
 $x' \sim z$, v , w , x

u

0

u

0

Theorem

Helly graphs are weakly modular. Moreover, they satisfy a stronger version of the quadrangle condition:

• if there exists
$$z \sim v, w$$
 with
 $d(u, z) = n + 1$ then there exists
 $x \sim v, w$ with $d(u, x) = n - 1$, and
 $x' \sim z, v, w, x$

Corollary

The triangle complex of a Helly graph is simply connected. The isoperimetric function is at most quadratic.

u_o

u

0

Dismantlability

Definition (Dismantlability)

A finite graph Γ is *dismantlable* if its vertices can be enumerated as $v_1, v_2, v_3, ..., v_n$ such that for every $1 < k \leq n$ the vertex v_k is *dominated* in the subgraph induced by v_1, \ldots, v_k .

Dismantlability

Definition (Dismantlability)

A finite graph Γ is *dismantlable* if its vertices can be enumerated as $v_1, v_2, v_3, ..., v_n$ such that for every $1 < k \leq n$ the vertex v_k is *dominated* in the subgraph induced by $v_1, ..., v_k$.

Theorem

Balls in locally finite Helly graphs are dismantlable.

4 3 5 4 3 5 5

Dismantlability

Definition (Dismantlability)

A finite graph Γ is *dismantlable* if its vertices can be enumerated as $v_1, v_2, v_3, ..., v_n$ such that for every $1 < k \leq n$ the vertex v_k is *dominated* in the subgraph induced by $v_1, ..., v_k$.

Theorem

Balls in locally finite Helly graphs are dismantlable.

Corollary

The clique complex $X(\Gamma)$ of a locally finite Helly graph Γ is contractible. Finite groups acting on such Helly graphs fix cliques. Fixed point sets are contractible.

 $\operatorname{span}\{v_1,\ldots,v_{k-1}\}$