Helly graphs and groups
Masterclass “Topics in Geometric Group Theory”

Damian Osajda

Københavns Universitet

13-17 November 2023
Sources

Sources

Victor Chepoi’s course notes for 2019 Simons Semester in Warsaw, available at:

Thomas Heattel’s course notes for 2023 CRM Semester in Montreal, available at:
arXiv:2307.00414
Sources

Sources

Thomas Haettel, Nima Hoda, Harry Petyt, **Coarse injectivity, hierarchical hyperbolicity and semihyperbolicity**, *Geom. Topol.* 27 (2023), 1587-1633.

Examples of groups acting geometrically on Helly graphs:
(Gromov) hyperbolic groups, (cocompact) $\text{CAT}(0)$ cubical groups,
uniform lattices in many Euclidean buildings, FC-type Artin groups,
finite-type Garside groups, fin. pres. graphical $\text{C}(4)$-$\text{T}(4)$ small cancellation
groups, ...
Helly groups

Examples of groups acting geometrically on Helly graphs:
(Gromov) hyperbolic groups, (cocompact) CAT(0) cubical groups, uniform lattices in many Euclidean buildings, FC-type Artin groups, finite-type Garside groups, fin. pres. graphical C(4)-T(4) small cancellation groups, ...

Group theoretic constructions preserving Hellyness:
direct product, graph product, free product (and HNN extension) with amalgamation over finite subgroups, some graphs of groups, relative hyperbolicity, quotient by finite normal subgroup, ...
Helly groups

Examples of groups acting geometrically on Helly graphs:
(Gromov) hyperbolic groups, (cocompact) CAT(0) cubical groups, uniform lattices in many Euclidean buildings, FC-type Artin groups, finite-type Garside groups, fin. pres. graphical C(4)-T(4) small cancellation groups, . . .

Group theoretic constructions preserving Hellyness:
direct product, graph product, free product (and HNN extension) with amalgamation over finite subgroups, some graphs of groups, relative hyperbolicity, quotient by finite normal subgroup, . . .

Properties of Helly groups:
biautomaticity, finiteness properties, finitely many conjugacy classes of finite subgroups, Farrell-Jones conjecture, coarse Baum-Connes conjecture, EZ-boundary, . . .
Outline of the course:

1. Basics of Geometric Group Theory
2. Helly property, injective metric spaces, Helly graphs
3. Features of Helly graphs
4. Helly groups: examples and properties
5. Further topics
We will consider simplicial graphs, that is, undirected graphs without loops and multiple edges.
We will consider *simplicial graphs*, that is, undirected graphs without loops and multiple edges.

A connected graph Γ will be treated as a metric space $(V(\Gamma), d)$ where d is the path metric.
Graphs

We will consider *simplicial graphs*, that is, undirected graphs without loops and multiple edges.

A connected graph Γ will be treated as a metric space $(V(\Gamma), d)$ where d is the path metric.

A *tree* is a connected graph without cycles.
Definition (Group action)

An action of a group G on a space X is a homomorphism $G \rightarrow \text{Aut}(X)$.
Group action

Definition (Group action)

An action of a group G on a space X is a homomorphism $G \to \text{Aut}(X)$.

Example

An action by isometries on a metric space X, when $\text{Aut}(X)$ is the group of isometries of X.

A trivial action $G \to \{1\}$.
Group action

Definition (Group action)
An *action* of a group G on a space X is a homomorphism $G \to \text{Aut}(X)$.

Example
An *action by isometries* on a metric space X, when $\text{Aut}(X)$ is the group of isometries of X.
An *action by automorphisms* on a graph X, when $\text{Aut}(X)$ is the group of (simplicial) automorphisms of X.
Definition (Group action)

An action of a group G on a space X is a homomorphism $G \to \text{Aut}(X)$.

Example

An action by isometries on a metric space X, when $\text{Aut}(X)$ is the group of isometries of X.

An action by automorphisms on a graph X, when $\text{Aut}(X)$ is the group of (simplicial) automorphisms of X.

Example

A trivial action $G \to \{1\}$.
Motto: In Geometric Group Theory we study groups via their actions on spaces equipped with some geometry.
...so better the actions be nice.
Geometric action

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.
Geometric action

Definition

An action of G on a metric space X is \textit{cocompact} if the quotient is compact.

An action of G on a metric space X is \textit{proper}, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite.

Example 1
The action of \mathbb{Z} on \mathbb{R} by translations is geometric, moreover free (stabilizers are trivial).

Example 2
The action of \mathbb{Z} on \mathbb{R}^2 by translations along one coordinate is proper, even free, but not cocompact.

Example 3
The action of \mathbb{Z}^2 on \mathbb{R} via $(g, h) x = g + x$ is cocompact but not proper.
Geometric action

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite. In other words the orbit map $G \rightarrow X : g \mapsto gx$ is proper.

Example 1

The action of \mathbb{Z} on \mathbb{R} by translations is geometric, moreover free (stabilizers are trivial).

Example 2

The action of \mathbb{Z} on \mathbb{R}^2 by translations along one coordinate is proper, even free, but not cocompact.

Example 3

The action of \mathbb{Z}^2 on \mathbb{R} via $(g, h) \cdot x = g + x$ is cocompact but not proper.
Geometric action

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{ g \in G \mid gK \cap K \neq \emptyset \}$ is finite. In other words the orbit map $G \to X : g \mapsto gx$ is proper.

An action is *geometric* when it is cocompact and proper.
Geometric action

Definition
An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{ g \in G \mid gK \cap K \neq \emptyset \}$ is finite. In other words the *orbit map* $G \to X : g \mapsto gx$ is proper.

An action is *geometric* when it is cocompact and proper.

Example
1. The action of \mathbb{Z} on \mathbb{R} by translations is geometric, moreover *free* (stabilizers are trivial).
Geometric action

Definition
An action of G on a metric space X is *cocompact* if the quotient is compact.
An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{ g \in G \mid gK \cap K \neq \emptyset \}$ is finite. In other words the *orbit map* $G \to X : g \mapsto gx$ is proper.
An action is *geometric* when it is cocompact and proper.

Example
1. The action of \mathbb{Z} on \mathbb{R} by translations is geometric, moreover *free* (stabilizers are trivial).
2. The action of \mathbb{Z} on \mathbb{R}^2 by translations along one coordinate is proper, even free, but not cocompact.
Geometric action

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{ g \in G \mid gK \cap K \neq \emptyset \}$ is finite. In other words the *orbit map* $G \to X : g \mapsto gx$ is proper.

An action is *geometric* when it is cocompact and proper.

Example

1. The action of \mathbb{Z} on \mathbb{R} by translations is geometric, moreover *free* (stabilizers are trivial).
2. The action of \mathbb{Z} on \mathbb{R}^2 by translations along one coordinate is proper, even free, but not cocompact.
3. The action of \mathbb{Z}^2 on \mathbb{R} via $(g, h)x = g + x$ is cocompact but not proper.
Geometric action

Definition
An action of \(G \) on a metric space \(X \) is \textit{cocompact} if the quotient is compact.

An action of \(G \) on a metric space \(X \) is \textit{proper}, if for every compact \(K \subseteq X \), the set \(\{ g \in G \mid gK \cap K \neq \emptyset \} \) is finite. In other words the orbit map \(G \to X : g \mapsto gx \) is proper.

An action is \textit{geometric} when it is cocompact and proper.

Example

1. The action of \(\mathbb{Z} \) on \(\mathbb{R} \) by translations is geometric, moreover \textit{free} (stabilizers are trivial).

2. The action of \(\mathbb{Z} \) on \(\mathbb{R}^2 \) by translations along one coordinate is proper, even free, but not cocompact.

3. The action of \(\mathbb{Z}^2 \) on \(\mathbb{R} \) via \((g, h)x = g + x\) is cocompact but not proper.
Motto II: A group G and a space acted geometrically upon G look “alike”.
Definition (Cayley graph)

For a group G and its generating set S, the Cayley graph $\text{Cay}(G, S)$ has the vertex set G and edges of the form $\{g, gs\}$, for $g \in G$ and $s \in S$.
Definition (Cayley graph)

For a group G and its generating set S, the Cayley graph $\text{Cay}(G, S)$ has the vertex set G and edges of the form $\{g, gs\}$, for $g \in G$ and $s \in S$.

Example

$\text{Cay}(\mathbb{Z}, \{1\})$
Definition (Cayley graph)

For a group G and its generating set S, the Cayley graph $\text{Cay}(G, S)$ has the vertex set G and edges of the form $\{g, gs\}$, for $g \in G$ and $s \in S$.

Example

$\text{Cay}(\mathbb{Z}, \{1\})$

A group acts geometrically, and freely by automorphisms (preserving types of edges) on its Cayley graph via $h \cdot g = hg$.
Cayley graph

Example

$\text{Cay}(\mathbb{Z}^2, \{(0, 1), (1, 0)\})$
Cayley graph

Example

Free group: Cay\((F(a, b), \{a, b\}) \)
Gromov hyperbolicity

A geodesic triangle ABC is δ-thin if every its side lies in the δ-neighbourhood of the union of the other two sides.
Gromov hyperbolicity

A geodesic triangle ABC is δ-thin if every its side lies in the δ-neighbourhood of the union of the other two sides.
Hyperbolic space

Definition ((Gromov) hyperbolic)

A geodesic metric space is *(Gromov) hyperbolic* if for some $\delta \geq 0$ all geodesic triangles are δ-thin.
Hyperbolic space

Definition ((Gromov) hyperbolic)

A geodesic metric space is (Gromov) *hyperbolic* if for some $\delta \geq 0$ all geodesic triangles are δ-thin.

Example

- a bounded space;
Hyperbolic space

Definition ((Gromov) hyperbolic)

A geodesic metric space is (Gromov) hyperbolic if for some $\delta \geq 0$ all geodesic triangles are δ-thin.

Example

- a bounded space;
- a line;

H_n, $X \times Y$, for a hyperbolic space X and a bounded Y.

E_2 is not hyperbolic.
Hyperbolic space

Definition ((Gromov) hyperbolic)

A geodesic metric space is (Gromov) hyperbolic if for some $\delta \geq 0$ all geodesic triangles are δ-thin.

Example

- a bounded space;
- a line;
- a tree;

H^n; $X \times Y$, for a hyperbolic space X and a bounded Y.

Example E^2 is not hyperbolic.
Hyperbolic space

Definition (Gromov hyperbolic)

A geodesic metric space is (Gromov) **hyperbolic** if for some $\delta \geq 0$ all geodesic triangles are δ-thin.

Example

- a bounded space;
- a line;
- a tree;
- \mathbb{H}^n.
Hyperbolic space

Definition ((Gromov) hyperbolic)
A geodesic metric space is (Gromov) hyperbolic if for some $\delta \geq 0$ all geodesic triangles are δ-thin.

Example
- a bounded space;
- a line;
- a tree;
- \mathbb{H}^n;
- $X \times Y$, for a hyperbolic space X and a bounded Y.
Hyperbolic space

Definition ((Gromov) hyperbolic)

A geodesic metric space is *Gromov* hyperbolic if for some $\delta \geq 0$ all geodesic triangles are δ-thin.

Example

- a bounded space;
- a line;
- a tree;
- \mathbb{H}^n;
- $X \times Y$, for a hyperbolic space X and a bounded Y.

Example

\mathbb{E}^2 is not hyperbolic.
Definition (Hyperbolic group)

A finitely generated group is \textit{(Gromov) hyperbolic} if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.
Hyperbolic group

Definition (Hyperbolic group)

A finitely generated group is (Gromov) hyperbolic if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example

- a finite group;
Hyperbolic group

Definition (Hyperbolic group)

A finitely generated group is (Gromov) **hyperbolic** if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example

- a finite group;
- a free group;
Hyperbolic group

Definition (Hyperbolic group)

A finitely generated group is (Gromov) hyperbolic if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example

- a finite group;
- a free group;
- the fundamental group of an oriented surface of genus at least 2;
A finitely generated group is (Gromov) hyperbolic if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example

- a finite group;
- a free group;
- the fundamental group of an oriented surface of genus at least 2;
- the fundamental group of a closed manifold of negative sectional curvature;
Hyperbolic group

Definition (Hyperbolic group)
A finitely generated group is *(Gromov) hyperbolic* if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example
- a finite group;
- a free group;
- the fundamental group of an oriented surface of genus at least 2;
- the fundamental group of a closed manifold of negative sectional curvature;
- $G \times H$, for a hyperbolic group G and a finite group H.
Hyperbolic group

Definition (Hyperbolic group)
A finitely generated group is (Gromov) hyperbolic if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example
- a finite group;
- a free group;
- the fundamental group of an oriented surface of genus at least 2;
- the fundamental group of a closed manifold of negative sectional curvature;
- $G \times H$, for a hyperbolic group G and a finite group H.

Example
\mathbb{Z}^2 is not hyperbolic.
Weakly modular graph

Definition (Triangle condition)
A (simplicial) graph satisfies the triangle condition at distance $k > 0$ with respect to a vertex u, denoted $\text{TC}(u, k)$, if for any two vertices v, w with $1 = d(v, w) < d(u, v) = d(u, w) = k$ there exists a common neighbor x of v and w such that $d(u, x) = k - 1$.

$\text{TC}(u, k)$
Definition (Quadrangle condition)

A (simplicial) graph satisfies the *quadrangle condition at distance* \(k > 0 \) *with respect to a vertex* \(u \), denoted \(\text{QC}(u, k) \), if for any three vertices \(v, w, z \) with \(d(v, z) = d(w, z) = 1 \) and \(2 = d(v, w) \leq d(u, v) = d(u, w) = d(u, z) - 1 = k \), there exists a common neighbor \(x \) of \(v \) and \(w \) such that \(d(u, x) = k - 1 \).
Weakly modular graph

Definition (Weakly modular graph)

A (simplicial) graph is weakly modular if it satisfies conditions TC\((u, k)\) and QC\((u, k)\) for all \(u\) and \(k\).

\[\begin{align*}
\text{TC}(u, k) & \quad \iff \\
\text{QC}(u, k) & \quad \iff \\
\end{align*}\]
Definition (Median graph)

An interval $I(v, w)$ between vertices v, w in a graph Γ is the set of all vertices on geodesics from v to w (that is, u such that $d(v, w) = d(v, u) + d(u, w)$).
Definition (Median graph)

An *interval* $I(v, w)$ between vertices v, w in a graph Γ is the set of all vertices on geodesics from v to w (that is, u such that $d(v, w) = d(v, u) + d(u, w)$).

A graph is *median* (aka 1-skeleton of a $\text{CAT}(0)$ cubical complex) if for any vertices u, v, w the intersection $I(u, v) \cap I(v, w) \cap I(w, u)$ is a single vertex (called the *median of u, v, w*).
Definition (Median graph)

An *interval* $I(v, w)$ between vertices v, w in a graph Γ is the set of all vertices on geodesics from v to w (that is, u such that $d(v, w) = d(v, u) + d(u, w)$).

A graph is *median* (aka 1-skeleton of a $CAT(0)$ cubical complex) if for any vertices u, v, w the intersection $I(u, v) \cap I(v, w) \cap I(w, u)$ is a single vertex (called the *median of u, v, w*).

Example

Tree
Median graph

Definition (Median graph)
An interval $I(v, w)$ between vertices v, w in a graph Γ is the set of all vertices on geodesics from v to w (that is, u such that $d(v, w) = d(v, u) + d(u, w)$).
A graph is median (aka 1-skeleton of a CAT(0) cubical complex) if for any vertices u, v, w the intersection $I(u, v) \cap I(v, w) \cap I(w, u)$ is a single vertex (called the median of u, v, w).

Example
Tree
1-skeleton of the standard cubulation of \mathbb{E}^n
Definition (Helly property)

A family of subsets of a set has a (finite) Helly property if every (finite) subfamily of pairwise intersecting subsets has a nonempty intersection.
Helly property

Definition (Helly property)

A family of subsets of a set has a *(finite) Helly property* if every *(finite) subfamily of pairwise intersecting subsets has a nonempty intersection.

Example (Helly families)

1. axis-parallel boxes in \mathbb{R}^n
2. finite subtrees of a tree
3. a finite family of half-spaces of a CAT(0) cube complex.
Helly property - examples

Example (Gated subsets)
A subset Y of a metric space (X, d) is \textit{gated} if for every point $x \in X$ there exists a vertex $x' \in Y$, called the \textit{gate} of x, such that $x' \in I(x, y)$, for every $y \in Y$. A finite family of gated subsets has the Helly property.

Example (Intervals in lattices)
A \textit{lattice} is a poset (P, \leq) with g.l.b. (called \textit{meet}) and l.u.b. (\textit{join}) for each pair of elements. An \textit{interval} in a lattice is a subset of the form $\{x | a \leq x \leq b\}$. A finite family of intervals in a lattice has the Helly property.
Injective metric spaces

Let \((X, d)\) be a geodesic metric space

Definition (Injective space)

\(X\) is injective if the family of balls has the Helly property.
Injective metric spaces

Let (X, d) be a geodesic metric space

Definition (Injective space)

X is injective if the family of balls has the Helly property.

Example

1. $(\mathbb{R}^n, d_{\infty})$
2. an \mathbb{R}-tree
3. (\mathbb{R}^2, d_2) is not injective!
Injective metric spaces
Let \((X, d)\) be a geodesic metric space

Definition (Injective space)

\(X\) is injective if the family of balls has the Helly property.

Example

1. \((\mathbb{R}^n, d_\infty)\)
2. an \(\mathbb{R}\)-tree
3. \((\mathbb{R}^2, d_2)\) is not injective!

Remark

Actually, the definition of an injective space above is not so proper...
Injective spaces

Theorem (Characterizations of injectivity)

Let \((X, d)\) be a geodesic metric space. TFAE:

1. \(X\) is injective
2. \(X\) is hyperconvex
3. [Aronszajn-Panitchpakdi, 1956] \((Y, X)\) has the **extension property**, for every metric space \(Y\) (for the category of metric spaces with 1-Lipschitz maps)
4. \(X\) is an absolute retract (for the category of metric spaces with 1-Lipschitz maps)
Definition (Injective hull)

An *injective hull* (or *tight span*, or *injective envelope*, or *hyperconvex hull*) of \((X, d)\) is a pair \((e, E(X))\) where \(e : X \to E(X)\) is an isometric embedding into an injective metric space \(E(X)\), and such that no injective proper subspace of \(E(X)\) contains \(e(X)\). Two injective hulls \(e : X \to E(X)\) and \(f : X \to E'(X)\) are *equivalent* if they are related by an isometry \(i : E(X) \to E'(X)\).
Definition (Injective hull)

An injective hull (or tight span, or injective envelope, or hyperconvex hull) of \((X, d)\) is a pair \((e, E(X))\) where \(e: X \to E(X)\) is an isometric embedding into an injective metric space \(E(X)\), and such that no injective proper subspace of \(E(X)\) contains \(e(X)\). Two injective hulls \(e: X \to E(X)\) and \(f: X \to E'(X)\) are equivalent if they are related by an isometry \(i: E(X) \to E'(X)\).

Theorem (Isbell 1964)

Every metric space \((X, d)\) has an injective hull and all its injective hulls are equivalent.
Injective hull

Definition (Injective hull)

An injective hull (or tight span, or injective envelope, or hyperconvex hull) of \((X, d)\) is a pair \((e, E(X))\) where \(e: X \to E(X)\) is an isometric embedding into an injective metric space \(E(X)\), and such that no injective proper subspace of \(E(X)\) contains \(e(X)\). Two injective hulls \(e: X \to E(X)\) and \(f: X \to E'(X)\) are equivalent if they are related by an isometry \(i: E(X) \to E'(X)\).

Theorem (Isbell 1964)

Every metric space \((X, d)\) has an injective hull and all its injective hulls are equivalent.

Remark

Injective hulls were rediscovered by Dress in 1984, Chrobak-Larmore in 1994...
Isbell’s construction

Let \((X, d)\) be a metric space. Consider the space \(\mathbb{R}^X\) of real-valued functions with the supremum metric \(d(f, g) = \sup_{x \in X} |f(x) - g(x)|\).
Isbell’s construction

Let \((X, d)\) be a metric space. Consider the space \(\mathbb{R}^X\) of real-valued functions with the supremum metric
\[d(f, g) = \sup_{x \in X} |f(x) - g(x)|.\]
The Kuratowski embedding \(e : X \to \mathbb{R}^X : x \mapsto d(x, \cdot)\) is an isometric embedding.

A function \(f \in \mathbb{R}^X\) is called a metric form if
\[f(x) + f(y) \geq d(x, y).\]
It is extremal if it is point-wise minimal.

We define \(E(X)\) as the space of extremal metric forms.
\((e, E(X))\) is the injective hull of \(X\).
Isbell’s construction

Let \((X, d)\) be a metric space. Consider the space \(\mathbb{R}^X\) of real-valued functions with the supremum metric \(d(f, g) = \sup_{x \in X} |f(x) - g(x)|\).

The Kuratowski embedding \(e: X \rightarrow \mathbb{R}^X: x \mapsto d(x, \cdot)\) is an isometric embedding.

A function \(f \in \mathbb{R}^X\) is called a metric form if \(f(x) + f(y) \geq d(x, y)\). It is extremal if it is point-wise minimal.
Isbell’s construction

Let \((X, d)\) be a metric space. Consider the space \(\mathbb{R}^X\) of real-valued functions with the supremum metric \(d(f, g) = \sup_{x \in X} |f(x) - g(x)|\).

The Kuratowski embedding \(e : X \to \mathbb{R}^X : x \mapsto d(x, \cdot)\) is an isometric embedding.

A function \(f \in \mathbb{R}^X\) is called a metric form if \(f(x) + f(y) \geq d(x, y)\). It is extremal if it is point-wise minimal.

We define \(E(X)\) as the space of extremal metric forms.
Isbell’s construction

Let \((X, d)\) be a metric space. Consider the space \(\mathbb{R}^X\) of real-valued functions with the supremum metric
\[d(f, g) = \sup_{x \in X} |f(x) - g(x)|.\]

The Kuratowski embedding \(e: X \rightarrow \mathbb{R}^X: x \mapsto d(x, \cdot)\) is an isometric embedding.

A function \(f \in \mathbb{R}^X\) is called a metric form if
\[f(x) + f(y) \geq d(x, y).\]

It is extremal if it is point-wise minimal.

We define \(E(X)\) as the space of extremal metric forms.

\((e, E(X))\) is the injective hull of \(X\).
Injective hulls - examples
Injective hulls - examples

\[(0, a + b, c + a)\]

\[(a, b, c)\]

\[(a + b, 0, b + c)\]

\[(c + a, b + c, 0)\]
Injective hulls - examples

\[
(0, a + b, c + a)
\]

\[
(a, b, c)
\]

\[
(c + a, b + c, 0)
\]
Definition (Geodesic bicombing)

A \textit{geodesic bicombing} on a metric space \((X, d)\) is a map

\[\sigma : X \times X \times [0, 1] \to X, \]

such that for every pair \((x, y) \in X \times X\) the function \(\sigma_{xy} := \sigma(x, y, \cdot)\) is a constant speed geodesic from \(x\) to \(y\).
Geodesic bicombing

A **geodesic bicombing** on a metric space \((X, d)\) is a map

\[
\sigma : X \times X \times [0, 1] \to X,
\]

such that for every pair \((x, y) \in X \times X\) the function \(\sigma_{xy} := \sigma(x, y, \cdot)\) is a constant speed geodesic from \(x\) to \(y\).

We call \(\sigma\) **convex** if the function \(t \mapsto d(\sigma_{xy}(t), \sigma_{x'y'}(t))\) is convex for all \(x, y, x', y' \in X\).
Geodesic bicombing

Definition (Geodesic bicombing)

A *geodesic bicombing* on a metric space \((X, d)\) is a map

\[
\sigma: X \times X \times [0, 1] \rightarrow X,
\]

such that for every pair \((x, y) \in X \times X\) the function \(\sigma_{xy} := \sigma(x, y, \cdot)\) is a constant speed geodesic from \(x\) to \(y\).

We call \(\sigma\) convex if the function \(t \mapsto d(\sigma_{xy}(t), \sigma_{x'y'}(t))\) is convex for all \(x, y, x', y' \in X\).

The bicombing \(\sigma\) is consistent if \(\sigma_{pq}(\lambda) = \sigma_{xy}((1 - \lambda)s + \lambda t)\), for all \(x, y \in X, 0 \leq s \leq t \leq 1, p := \sigma_{xy}(s), q := \sigma_{xy}(t),\) and \(\lambda \in [0, 1]\).
A *geodesic bicombing* on a metric space (X, d) is a map
\[
\sigma : X \times X \times [0, 1] \to X,
\]
such that for every pair $(x, y) \in X \times X$ the function $\sigma_{xy} := \sigma(x, y, \cdot)$ is a constant speed geodesic from x to y.

We call σ **convex** if the function $t \mapsto d(\sigma_{xy}(t), \sigma_{x'y'}(t))$ is convex for all $x, y, x', y' \in X$.

The bicombing σ is **consistent** if $\sigma_{pq}(\lambda) = \sigma_{xy}((1 - \lambda)s + \lambda t)$, for all $x, y \in X$, $0 \leq s \leq t \leq 1$, $p := \sigma_{xy}(s)$, $q := \sigma_{xy}(t)$, and $\lambda \in [0, 1]$.

It is called **reversible** if $\sigma_{xy}(t) = \sigma_{yx}(1 - t)$ for all $x, y \in X$ and $t \in [0, 1]$.

End of Lecture 1