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Helly groups

Examples of groups acting geometrically on Helly graphs:
(Gromov) hyperbolic groups, (cocompact) CAT(0) cubical groups,
uniform lattices in many Euclidean buildings, FC-type Artin groups,
finite-type Garside groups, fin. pres. graphical C(4)-T(4) small cancellation
groups,. . .

Group theoretic constructions preserving Hellyness:
direct product, graph product, free product (and HNN extension) with
amalgamation over finite subgroups, some graphs of groups, relative
hyperbolicity, quotient by finite normal subgroup, . . .

Properties of Helly groups:
biautomaticity, finiteness properties, finitely many conjugacy classes of
finite subgroups, Farrell-Jones conjecture, coarse Baum-Connes conjecture,
EZ-boundary, . . .
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Outline of the course:

1 Basics of Geometric Group Theory

2 Helly property, injective metric spaces, Helly graphs

3 Features of Helly graphs

4 Helly groups: examples and properties

5 Further topics
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Graphs

We will consider simplicial graphs, that is, undirected graphs without loops
and multiple edges.

A connected graph Γ will be treated as a metric space (V (Γ), d) where d
is the path metric.

A tree is a connected graph without cycles.
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Group action

Definition (Group action)

An action of a group G on a space X is a homomorphism G → Aut(X ).

Example

An action by isometries on a metric space X , when Aut(X ) is the group of
isometries of X .
An action by automorphisms on a graph X , when Aut(X ) is the group of
(simplicial) automorphisms of X .

Example

A trivial action G → {1}.
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Geometric Group Theory

Motto: In Geometric Group Theory we study

groups via their actions on spaces equipped with

some geometry.
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Geometric Group Theory

...so better the actions be nice.
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Geometric action

Definition

An action of G on a metric space X is cocompact if the quotient is
compact.

An action of G on a metric space X is proper, if for every compact
K ⊆ X , the set {g ∈ G | gK ∩ K 6= ∅} is finite. In other words the orbit
map G → X : g 7→ gx is proper.
An action is geometric when it is cocompact and proper.

Example

1 The action of Z on R by translations is geometric, moreover free
(stabilizers are trivial).

2 The action of Z on R2 by translations along one coordinate is proper,
even free, but not cocompact.

3 The action of Z2 on R via (g , h)x = g + x is cocompact but not
proper.
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Geometric Group Theory

Motto II: A group G and a space acted

geometrically upon G look “alike”.
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Cayley graph

Definition (Cayley graph)

For a group G and its generating set S , the Cayley graph Cay(G ,S) has
the vertex set G and edges of the form {g , gs}, for g ∈ G and s ∈ S .

Example

Cay(Z, {1})

1 1 1 1 1 1 1

A group acts geometrically, and freely by automorphisms (preserving types
of edges) on its Cayley graph via h · g = hg .
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Cayley graph

Example

Cay(Z2, {(0, 1), (1, 0)})

(1, 0)

(0, 1)
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Cayley graph

Example

Free group: Cay(F (a, b), {a, b})

a

a

a

a

a

bb

b

b

b

b

b

b
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Gromov hyperbolicity

A geodesic triangle ABC is δ-thin if every its side lies in the
δ-neighbourhood of the union of the other two sides.

A

B
C
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Hyperbolic space

Definition ((Gromov) hyperbolic)

A geodesic metric space is (Gromov) hyperbolic if for some δ > 0 all
geodesic triangles are δ-thin.

Example

a bounded space;

a line;

a tree;

Hn;

X × Y , for a hyperbolic space X and a bounded Y .

Example

E2 is not hyperbolic.
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Hyperbolic group

Definition (Hyperbolic group)

A finitely generated group is (Gromov) hyperbolic if some (hence any) of
its Cayley graph (for a finite generating set) is hyperbolic.

Example

a finite group;

a free group;

the fundamental group of an oriented surface of genus at least 2;

the fundamental group of a closed manifold of negative sectional
curvature;

G × H, for a hyperbolic group G and a finite group H.

Example

Z2 is not hyperbolic.
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Weakly modular graph

Definition (Triangle condition)

A (simplicial) graph satisfies the
triangle condition at distance k > 0
with respect to a vertex u, denoted
TC(u, k), if for any two vertices v ,w
with 1 = d(v ,w) < d(u, v) =
d(u,w) = k there exists a common
neighbor x of v and w such that
d(u, x) = k − 1.

v w

=⇒

u u

v w

x

TC(u, k)

k k k − 1
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Weakly modular graph

Definition (Quadrangle condition)

A (simplicial) graph satisfies the
quadrangle condition at distance
k > 0 with respect to a vertex u,
denoted QC(u, k), if for any three
vertices v ,w , z with
d(v , z) = d(w , z) = 1 and
2 = d(v ,w) ≤ d(u, v) = d(u,w) =
d(u, z)− 1 = k, there exists a
common neighbor x of v and w such
that d(u, x) = k − 1.

z z

=⇒

v w

u u

v
x

w

QC(u, k)

k k
k − 1
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Weakly modular graph

Definition (Weakly modular graph)

A (simplicial) graph is weakly modular if it satisfies conditions TC(u, k)
and QC(u, k) for all u and k.

z zv w

=⇒

u u

v w

x

=⇒

v w

u u

v
x

w

TC(u, k) QC(u, k)

k k kk k − 1 k − 1
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Median graph

Definition (Median graph)

An interval I (v ,w) between vertices v ,w in a graph Γ is the set of all
vertices on geodesics from v to w (that is, u such that
d(v ,w) = d(v , u) + d(u,w)).

A graph is median (aka 1-skeleton of a CAT(0) cubical complex) if for any
vertices u, v ,w the intersection I (u, v) ∩ I (v ,w) ∩ I (w , u) is a single
vertex (called the median of u, v ,w).

Example

Tree
1-skeleton of the standard cubulation of En
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Helly property

Definition (Helly property)

A family of subsets of a set has a (finite) Helly property if every (finite)
subfamily of pairwise intersecting subsets has a nonempty intersection.

Example (Helly
families)

1 axis-parallel
boxes in Rn

2 finite subtrees of
a tree

3 a finite family of
half-spaces of a
CAT(0) cube
complex.
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Helly property - examples

Example (Gated subsets)

A subset Y of a metric space (X , d) is
gated if for every point x ∈ X there exists
a vertex x ′ ∈ Y , called the gate of x ,
such that x ′ ∈ I (x , y), for every y ∈ Y .
A finite family of gated subsets has the
Helly property.

Example (Intervals in lattices)

A lattice is a poset (P,6) with g.l.b.
(called meet) and l.u.b. (join) for each
pair of elements. An interval in a lattice
is a subset of the form {x |a 6 x 6 b}. A
finite family of intervals in a lattice has
the Helly property.

x

x′

y1

y2

X

Y

Damian Osajda (Københavns Universitet) Helly graphs and groups 13-17 November 2023 26 / 43



Injective metric spaces
Let (X , d) be a geodesic metric space

Definition (Injective space)

X is injective if the family of balls has the Helly property.

Example

1 (Rn, d∞)

2 an R-tree

3 (R2, d2) is not injective!

Remark

Actually, the definition of an injective space above is not so proper...
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Injective spaces

Theorem (Characterizations of injectivity)

Let (X , d) be a geodesic metric space. TFAE:

1 X is injective

2 X is hyperconvex

3 [Aronszajn-Panitchpakdi, 1956] (Y ,X ) has the extension property, for
every metric space Y (for the category of metric spaces with
1-Lipschitz maps)

4 X is an absolute retract (for the category of metric spaces with
1-Lipschitz maps)

X
Y
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Injective hull

Definition (Injective hull)

An injective hull (or tight span, or injective envelope, or hyperconvex hull)
of (X , d) is a pair (e,E (X )) where e : X → E (X ) is an isometric
embedding into an injective metric space E (X ), and such that no injective
proper subspace of E (X ) contains e(X ). Two injective hulls e : X → E (X )
and f : X → E ′(X ) are equivalent if they are related by an isometry
i : E (X )→ E ′(X ).

Theorem (Isbell 1964)

Every metric space (X , d) has an injective hull and all its injective hulls are
equivalent.

Remark

Injective hulls were rediscovered by Dress in 1984, Chrobak-Larmore in
1994...
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Isbell’s construction

Let (X , d) be a metric space. Consider the space RX of real-valued
functions with the supremum metric d(f , g) = supx∈X |f (x)− g(x)|.

The Kuratowski embedding e : X → RX : x 7→ d(x , ·) is an isometric
embedding.

A function f ∈ RX is called a metric form if f (x) + f (y) > d(x , y). It is
extremal if it is point-wise minimal.

We define E (X ) as the space of extremal metric forms.

(e,E (X )) is the injective hull of X .
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Injective hulls - examples
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Injective hulls - examples

(0, a+ b, c+ a)

(a+ b, 0, b+ c)

(c+ a, b+ c, 0)

(a, b, c)

a

b

c
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Geodesic bicombing

Definition (Geodesic bicombing)

A geodesic bicombing on a metric space (X , d) is a map

σ : X × X × [0, 1]→ X ,

such that for every pair (x , y) ∈ X × X the function σxy := σ(x , y , ·) is a
constant speed geodesic from x to y .

We call σ convex if the function t 7→ d(σxy (t), σx ′y ′(t)) is convex for all
x , y , x ′, y ′ ∈ X .
The bicombing σ is consistent if σpq(λ) = σxy ((1− λ)s + λt), for all
x , y ∈ X , 0 ≤ s ≤ t ≤ 1, p := σxy (s), q := σxy (t), and λ ∈ [0, 1].
It is called reversible if σxy (t) = σyx(1− t) for all x , y ∈ X and t ∈ [0, 1].

End of Lecture 1
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