Helly graphs and groups Masterclass "Topics in Geometric Group Theory"

Damian Osajda

Københavns Universitet

13-17 November 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Jérémie Chalopin, Victor Chepoi, Hiroshi Hirai, Damian Osajda, **Weakly** modular graphs and nonpositive curvature, *Mem. Amer. Math. Soc.* 268 (2020), no. 1309.

Jérémie Chalopin, Victor Chepoi, Hiroshi Hirai, Anthony Genevois, Damian Osajda, **Helly groups**, *Geom. Topol.*, to appear (2023).

Jingyin Huang, Damian Osajda, **Helly meets Garside and Artin**, *Invent. Math.* 225 (2021), no. 2, 395-426.

Damian Osajda, Motiejus Valiunas, **Helly groups, coarsely Helly groups,** and relative hyperbolicity, *Trans. Amer. Math. Soc.*, (2022), doi:10.1090/tran/8727.

イロト 不得 トイヨト イヨト 二日

Victor Chepoi's course notes for 2019 Simons Semester in Warsaw, available at:

https://www.impan.pl/en/activities/banach-center/conferences/19simons-xi-courses/notes

Thomas Heattel's course notes for 2023 CRM Semester in Montreal, available at:

arXiv:2307.00414

John R. Isbell, **Six theorems about injective metric spaces**, *Comment. Math. Helv.* 39 (1964), 65–76

Andreas W. M. Dress, **Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces**, *Adv. Math.* 53 (1984) 321–402.

Hans-Jürgen Bandelt, Victor Chepoi, **Metric graph theory and geometry: a survey**, Surveys on discrete and computational geometry, *Contemp. Math.*, vol. 453, Amer. Math. Soc., Providence, RI, 2008, pp. 49–86

Urs Lang, **Injective hulls of certain discrete metric spaces and** groups, *J. Topol. Anal.* 5 (2013), no. 3, 297–331.

Dominic Descombes, Urs Lang, **Flats in spaces with convex geodesic bicombings**, *Anal. Geom. Metr. Spaces* 4 (2016), no. 1, 68–84.

イロト 不得下 イヨト イヨト 二日

Thomas Haettel, **Injective metrics on buildings and symmetric spaces**, *Bull. London Math. Soc.* (2022), doi:10.1112/blms.12694.

Thomas Haettel, Nima Hoda, Harry Petyt, **Coarse injectivity**, **hierarchical hyperbolicity and semihyperbolicity**, *Geom. Topol.* 27 (2023), 1587-1633.

Nima Hoda, **Crystallographic Helly Groups**, *Bull. London Math. Soc.* (2023), doi:10.1112/blms.12906.

Thomas Haettel, Damian Osajda **Locally elliptic actions, torsion groups, and nonpositively curved spaces**, (2021), available at: arXiv:2110.12431.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Helly groups

Examples of groups acting geometrically on Helly graphs:

(Gromov) hyperbolic groups, (cocompact) CAT(0) cubical groups, uniform lattices in many Euclidean buildings, FC-type Artin groups, finite-type Garside groups, fin. pres. graphical C(4)-T(4) small cancellation groups,...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Helly groups

Examples of groups acting geometrically on Helly graphs:

(Gromov) hyperbolic groups, (cocompact) CAT(0) cubical groups, uniform lattices in many Euclidean buildings, FC-type Artin groups, finite-type Garside groups, fin. pres. graphical C(4)-T(4) small cancellation groups,...

Group theoretic constructions preserving Hellyness:

direct product, graph product, free product (and HNN extension) with amalgamation over finite subgroups, some graphs of groups, relative hyperbolicity, quotient by finite normal subgroup, ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Helly groups

Examples of groups acting geometrically on Helly graphs:

(Gromov) hyperbolic groups, (cocompact) CAT(0) cubical groups, uniform lattices in many Euclidean buildings, FC-type Artin groups, finite-type Garside groups, fin. pres. graphical C(4)-T(4) small cancellation groups,...

Group theoretic constructions preserving Hellyness:

direct product, graph product, free product (and HNN extension) with amalgamation over finite subgroups, some graphs of groups, relative hyperbolicity, quotient by finite normal subgroup, ...

Properties of Helly groups:

biautomaticity, finiteness properties, finitely many conjugacy classes of finite subgroups, Farrell-Jones conjecture, coarse Baum-Connes conjecture, EZ-boundary, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Outline of the course:

- Basics of Geometric Group Theory
- 2 Helly property, injective metric spaces, Helly graphs
- Seatures of Helly graphs
- Helly groups: examples and properties
- Surther topics

э

Graphs

We will consider *simplicial graphs*, that is, undirected graphs without loops and multiple edges.

< A

Graphs

We will consider *simplicial graphs*, that is, undirected graphs without loops and multiple edges.

A connected graph Γ will be treated as a metric space ($V(\Gamma)$, d) where d is the path metric.

Graphs

We will consider *simplicial graphs*, that is, undirected graphs without loops and multiple edges.

A connected graph Γ will be treated as a metric space $(V(\Gamma), d)$ where d is the path metric.

A tree is a connected graph without cycles.

Definition (Group action)

An *action* of a group G on a space X is a homomorphism $G \to Aut(X)$.

(4 何) トイヨト イヨト

Definition (Group action)

An *action* of a group G on a space X is a homomorphism $G \to Aut(X)$.

Example

An action by isometries on a metric space X, when Aut(X) is the group of isometries of X.

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition (Group action)

An *action* of a group G on a space X is a homomorphism $G \to Aut(X)$.

Example

An action by isometries on a metric space X, when Aut(X) is the group of isometries of X. An action by automorphisms on a graph X, when Aut(X) is the group of (simplicial) automorphisms of X.

(4 何) トイヨト イヨト

Definition (Group action)

An action of a group G on a space X is a homomorphism $G \to Aut(X)$.

Example

An action by isometries on a metric space X, when Aut(X) is the group of isometries of X. An action by automorphisms on a graph X, when Aut(X) is the group of (simplicial) automorphisms of X.

Example

A *trivial* action $G \rightarrow \{1\}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Geometric Group Theory

Motto: In Geometric Group Theory we study groups via their actions on spaces equipped with some geometry.

E 6 4 E 6

Geometric Group Theory

...so better the actions be nice.

э

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

3

(日) (四) (日) (日) (日)

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite.

4 3 5 4 3 5 5

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of *G* on a metric space *X* is *proper*, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite. In other words the *orbit* map $G \to X : g \mapsto gx$ is proper.

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite. In other words the *orbit* map $G \to X : g \mapsto gx$ is proper.

An action is geometric when it is cocompact and proper.

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite. In other words the *orbit* map $G \to X : g \mapsto gx$ is proper. An action is *geometric* when it is cocompact and proper.

Example

● The action of Z on R by translations is geometric, moreover free (stabilizers are trivial).

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite. In other words the *orbit* map $G \to X : g \mapsto gx$ is proper. An action is *geometric* when it is cocompact and proper.

Example

- The action of Z on R by translations is geometric, moreover free (stabilizers are trivial).
- 0 The action of $\mathbb Z$ on $\mathbb R^2$ by translations along one coordinate is proper, even free, but not cocompact.

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite. In other words the *orbit* map $G \to X : g \mapsto gx$ is proper. An action is *geometric* when it is cocompact and proper.

Example

- The action of Z on R by translations is geometric, moreover free (stabilizers are trivial).
- 0 The action of $\mathbb Z$ on $\mathbb R^2$ by translations along one coordinate is proper, even free, but not cocompact.
- So The action of Z² on R via (g, h)x = g + x is cocompact but not proper.

Definition

An action of G on a metric space X is *cocompact* if the quotient is compact.

An action of G on a metric space X is *proper*, if for every compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite. In other words the *orbit* map $G \to X : g \mapsto gx$ is proper. An action is *geometric* when it is cocompact and proper.

Example

- The action of Z on R by translations is geometric, moreover free (stabilizers are trivial).
- 0 The action of $\mathbb Z$ on $\mathbb R^2$ by translations along one coordinate is proper, even free, but not cocompact.
- So The action of Z² on R via (g, h)x = g + x is cocompact but not proper.

Geometric Group Theory

Motto II: A group G and a space acted geometrically upon G look "alike".

Damian Osajda (Københavns Universitet)

Helly graphs and groups

13-17 November 2023 13 / 43

4 3 5 4 3 5 5

Definition (Cayley graph)

For a group G and its generating set S, the Cayley graph Cay(G, S) has the vertex set G and edges of the form $\{g, gs\}$, for $g \in G$ and $s \in S$.

A B + A B +

Definition (Cayley graph)

For a group G and its generating set S, the Cayley graph Cay(G, S) has the vertex set G and edges of the form $\{g, gs\}$, for $g \in G$ and $s \in S$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definition (Cayley graph)

For a group G and its generating set S, the Cayley graph Cay(G, S) has the vertex set G and edges of the form $\{g, gs\}$, for $g \in G$ and $s \in S$.

A group acts geometrically, and freely by automorphisms (preserving types of edges) on its Cayley graph via $h \cdot g = hg$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

 $\operatorname{Cay}(\mathbb{Z}^2,\{(0,1),(1,0)\})$

Example

Free group: $Cay(F(a, b), \{a, b\})$

Damian Osajda (Københavns Universitet)

Helly graphs and groups

Gromov hyperbolicity

A geodesic triangle *ABC* is δ -*thin* if every its side lies in the δ -neighbourhood of the union of the other two sides.

Gromov hyperbolicity

A geodesic triangle *ABC* is δ -*thin* if every its side lies in the δ -neighbourhood of the union of the other two sides.

Hyperbolic space

Definition ((Gromov) hyperbolic)

A geodesic metric space is (*Gromov*) hyperbolic if for some $\delta \ge 0$ all geodesic triangles are δ -thin.

э

A B b A B b

- ∢ /⊐ >

Hyperbolic space

Definition ((Gromov) hyperbolic)

A geodesic metric space is (*Gromov*) hyperbolic if for some $\delta \ge 0$ all geodesic triangles are δ -thin.

Example

• a bounded space;

★ ∃ ► < ∃ ►</p>
Definition ((Gromov) hyperbolic)

A geodesic metric space is (*Gromov*) hyperbolic if for some $\delta \ge 0$ all geodesic triangles are δ -thin.

Example

- a bounded space;
- a line;

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 47 ▶

Definition ((Gromov) hyperbolic)

A geodesic metric space is (*Gromov*) hyperbolic if for some $\delta \ge 0$ all geodesic triangles are δ -thin.

Example

- a bounded space;
- a line;
- a tree;

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definition ((Gromov) hyperbolic)

A geodesic metric space is (*Gromov*) hyperbolic if for some $\delta \ge 0$ all geodesic triangles are δ -thin.

Example

- a bounded space;
- a line;
- a tree;
- \mathbb{H}^n ;

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 47 ▶

Definition ((Gromov) hyperbolic)

A geodesic metric space is (*Gromov*) hyperbolic if for some $\delta \ge 0$ all geodesic triangles are δ -thin.

Example a bounded space; a line; a tree; ℍⁿ; X × Y, for a hyperbolic space X and a bounded Y.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definition ((Gromov) hyperbolic)

A geodesic metric space is (*Gromov*) hyperbolic if for some $\delta \ge 0$ all geodesic triangles are δ -thin.

Example • a bounded space; • a line; • a tree; • \mathbb{H}^n ; • $X \times Y$, for a hyperbolic space X and a bounded Y.

Definition (Hyperbolic group)

A finitely generated group is *(Gromov) hyperbolic* if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

< □ > < 同 > < 回 > < 回 > < 回 >

Definition (Hyperbolic group)

A finitely generated group is *(Gromov) hyperbolic* if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Examplea finite group;

A B A A B A

Definition (Hyperbolic group)

A finitely generated group is *(Gromov) hyperbolic* if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example a finite group; a free group;

A B A A B A

Definition (Hyperbolic group)

A finitely generated group is *(Gromov) hyperbolic* if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example

- a finite group;
- a free group;
- the fundamental group of an oriented surface of genus at least 2;

4 1 1 1 4 1 1 1

Definition (Hyperbolic group)

A finitely generated group is *(Gromov) hyperbolic* if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example

- a finite group;
- a free group;
- the fundamental group of an oriented surface of genus at least 2;
- the fundamental group of a closed manifold of negative sectional curvature;

▲ 東 ▶ | ▲ 更 ▶

Definition (Hyperbolic group)

A finitely generated group is *(Gromov) hyperbolic* if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example

- a finite group;
- a free group;
- the fundamental group of an oriented surface of genus at least 2;
- the fundamental group of a closed manifold of negative sectional curvature;
- $G \times H$, for a hyperbolic group G and a finite group H.

A B A A B A

Definition (Hyperbolic group)

A finitely generated group is *(Gromov) hyperbolic* if some (hence any) of its Cayley graph (for a finite generating set) is hyperbolic.

Example

- a finite group;
- a free group;
- the fundamental group of an oriented surface of genus at least 2;
- the fundamental group of a closed manifold of negative sectional curvature;
- $G \times H$, for a hyperbolic group G and a finite group H.

Weakly modular graph

Definition (Triangle condition)

A (simplicial) graph satisfies the triangle condition at distance k > 0 with respect to a vertex u, denoted TC(u, k), if for any two vertices v, w with 1 = d(v, w) < d(u, v) = d(u, w) = k there exists a common neighbor x of v and w such that d(u, x) = k - 1.

Weakly modular graph

Definition (Quadrangle condition)

A (simplicial) graph satisfies the quadrangle condition at distance k > 0 with respect to a vertex u, denoted QC(u, k), if for any three vertices v, w, z with d(v, z) = d(w, z) = 1 and $2 = d(v, w) \le d(u, v) = d(u, w) = d(u, z) - 1 = k$, there exists a common neighbor x of v and w such that d(u, x) = k - 1.

Weakly modular graph

Definition (Weakly modular graph)

A (simplicial) graph is *weakly modular* if it satisfies conditions TC(u, k) and QC(u, k) for all u and k.

Definition (Median graph)

An *interval* I(v, w) between vertices v, w in a graph Γ is the set of all vertices on geodesics from v to w (that is, u such that d(v, w) = d(v, u) + d(u, w)).

4 2 5 4 2 5

Definition (Median graph)

An *interval* I(v, w) between vertices v, w in a graph Γ is the set of all vertices on geodesics from v to w (that is, u such that d(v, w) = d(v, u) + d(u, w)). A graph is *median* (aka 1-*skeleton of a CAT(0) cubical complex*) if for any vertices u, v, w the intersection $I(u, v) \cap I(v, w) \cap I(w, u)$ is a single vertex (called the *median of* u, v, w).

* E > * E >

Definition (Median graph)

An *interval* I(v, w) between vertices v, w in a graph Γ is the set of all vertices on geodesics from v to w (that is, u such that d(v, w) = d(v, u) + d(u, w)). A graph is *median* (aka 1-*skeleton of a CAT(0) cubical complex*) if for any vertices u, v, w the intersection $I(u, v) \cap I(v, w) \cap I(w, u)$ is a single vertex (called the *median of* u, v, w).

Example Tree

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Median graph)

An *interval* I(v, w) between vertices v, w in a graph Γ is the set of all vertices on geodesics from v to w (that is, u such that d(v, w) = d(v, u) + d(u, w)). A graph is *median* (aka 1-*skeleton of a CAT(0) cubical complex*) if for any vertices u, v, w the intersection $I(u, v) \cap I(v, w) \cap I(w, u)$ is a single vertex (called the *median of* u, v, w).

Example

Tree

1-skeleton of the standard cubulation of \mathbb{E}^n

Helly property

Definition (Helly property)

A family of subsets of a set has a *(finite) Helly property* if every (finite) subfamily of pairwise intersecting subsets has a nonempty intersection.

< □ > < 同 > < 回 > < 回 > < 回 >

Helly property

Definition (Helly property)

A family of subsets of a set has a *(finite) Helly property* if every (finite) subfamily of pairwise intersecting subsets has a nonempty intersection.

Helly property - examples

Example (Gated subsets)

A subset Y of a metric space (X, d) is gated if for every point $x \in X$ there exists a vertex $x' \in Y$, called the gate of x, such that $x' \in I(x, y)$, for every $y \in Y$. A finite family of gated subsets has the Helly property.

Example (Intervals in lattices)

A *lattice* is a poset (P, \leq) with g.l.b. (called *meet*) and l.u.b. (*join*) for each pair of elements. An *interval* in a lattice is a subset of the form $\{x | a \leq x \leq b\}$. A finite family of intervals in a lattice has the Helly property.

A D M A A A A M M

Injective metric spaces

Let (X, d) be a geodesic metric space

Definition (Injective space)

X is injective if the family of balls has the Helly property.

Injective metric spaces

Let (X, d) be a geodesic metric space

Definition (Injective space)

X is injective if the family of balls has the Helly property.

Injective metric spaces

Let (X, d) be a geodesic metric space

Definition (Injective space)

X is injective if the family of balls has the Helly property.

Remark

Actually, the definition of an injective space above is not so proper...

Damian Osajda (Københavns Universitet)

Helly graphs and groups

< □ > < /□ >

Injective spaces

Theorem (Characterizations of injectivity)

Let (X, d) be a geodesic metric space. TFAE:

- X is injective
- 2 X is hyperconvex
- [Aronszajn-Panitchpakdi, 1956] (Y, X) has the extension property, for every metric space Y (for the category of metric spaces with 1-Lipschitz maps)
- X is an absolute retract (for the category of metric spaces with 1-Lipschitz maps)

Injective hull

Definition (Injective hull)

An injective hull (or tight span, or injective envelope, or hyperconvex hull) of (X, d) is a pair (e, E(X)) where $e: X \to E(X)$ is an isometric embedding into an injective metric space E(X), and such that no injective proper subspace of E(X) contains e(X). Two injective hulls $e: X \to E(X)$ and $f: X \to E'(X)$ are equivalent if they are related by an isometry $i: E(X) \to E'(X)$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Injective hull

Definition (Injective hull)

An injective hull (or tight span, or injective envelope, or hyperconvex hull) of (X, d) is a pair (e, E(X)) where $e: X \to E(X)$ is an isometric embedding into an injective metric space E(X), and such that no injective proper subspace of E(X) contains e(X). Two injective hulls $e: X \to E(X)$ and $f: X \to E'(X)$ are equivalent if they are related by an isometry $i: E(X) \to E'(X)$.

Theorem (Isbell 1964)

Every metric space (X, d) has an injective hull and all its injective hulls are equivalent.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Injective hull

Definition (Injective hull)

An injective hull (or tight span, or injective envelope, or hyperconvex hull) of (X, d) is a pair (e, E(X)) where $e: X \to E(X)$ is an isometric embedding into an injective metric space E(X), and such that no injective proper subspace of E(X) contains e(X). Two injective hulls $e: X \to E(X)$ and $f: X \to E'(X)$ are equivalent if they are related by an isometry $i: E(X) \to E'(X)$.

Theorem (Isbell 1964)

Every metric space (X, d) has an injective hull and all its injective hulls are equivalent.

Remark

Injective hulls were rediscovered by Dress in 1984, Chrobak-Larmore in 1994...

3

(日)

Let (X, d) be a metric space. Consider the space \mathbb{R}^X of real-valued functions with the supremum metric $d(f, g) = \sup_{x \in X} |f(x) - g(x)|$.

Let (X, d) be a metric space. Consider the space \mathbb{R}^X of real-valued functions with the supremum metric $d(f, g) = \sup_{x \in X} |f(x) - g(x)|$. The *Kuratowski embedding* $e \colon X \to \mathbb{R}^X \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

Let (X, d) be a metric space. Consider the space \mathbb{R}^X of real-valued functions with the supremum metric $d(f, g) = \sup_{x \in X} |f(x) - g(x)|$. The *Kuratowski embedding* $e \colon X \to \mathbb{R}^X \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{R}^X$ is called a *metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal.

Let (X, d) be a metric space. Consider the space \mathbb{R}^X of real-valued functions with the supremum metric $d(f, g) = \sup_{x \in X} |f(x) - g(x)|$. The *Kuratowski embedding* $e \colon X \to \mathbb{R}^X \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{R}^X$ is called a *metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal.

We define E(X) as the space of extremal metric forms.

Let (X, d) be a metric space. Consider the space \mathbb{R}^X of real-valued functions with the supremum metric $d(f, g) = \sup_{x \in X} |f(x) - g(x)|$. The Kuratowski embedding $e \colon X \to \mathbb{R}^X \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{R}^X$ is called a *metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal.

We define E(X) as the space of extremal metric forms.

(e, E(X)) is the injective hull of X.

Injective hulls - examples

э

Injective hulls - examples

э
Injective hulls - examples

Helly graphs and groups

Definition (Geodesic bicombing)

A geodesic bicombing on a metric space (X, d) is a map

$$\sigma\colon X\times X\times [0,1]\to X,$$

such that for every pair $(x, y) \in X \times X$ the function $\sigma_{xy} := \sigma(x, y, \cdot)$ is a constant speed geodesic from x to y.

4 1 1 1 4 1 1 1

Definition (Geodesic bicombing)

A geodesic bicombing on a metric space (X, d) is a map

$$\sigma\colon X\times X\times [0,1]\to X,$$

such that for every pair $(x, y) \in X \times X$ the function $\sigma_{xy} := \sigma(x, y, \cdot)$ is a constant speed geodesic from x to y. We call σ convex if the function $t \mapsto d(\sigma_{xy}(t), \sigma_{x'y'}(t))$ is convex for all $x, y, x', y' \in X$.

A B F A B F

Definition (Geodesic bicombing)

A geodesic bicombing on a metric space (X, d) is a map

$$\sigma\colon X\times X\times [0,1]\to X,$$

such that for every pair $(x, y) \in X \times X$ the function $\sigma_{xy} := \sigma(x, y, \cdot)$ is a constant speed geodesic from x to y.

We call σ convex if the function $t \mapsto d(\sigma_{xy}(t), \sigma_{x'y'}(t))$ is convex for all $x, y, x', y' \in X$.

The bicombing σ is consistent if $\sigma_{pq}(\lambda) = \sigma_{xy}((1-\lambda)s + \lambda t)$, for all $x, y \in X$, $0 \le s \le t \le 1$, $p := \sigma_{xy}(s)$, $q := \sigma_{xy}(t)$, and $\lambda \in [0, 1]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Geodesic bicombing)

A geodesic bicombing on a metric space (X, d) is a map

$$\sigma\colon X\times X\times [0,1]\to X,$$

such that for every pair $(x, y) \in X \times X$ the function $\sigma_{xy} := \sigma(x, y, \cdot)$ is a constant speed geodesic from x to y.

We call σ convex if the function $t \mapsto d(\sigma_{xy}(t), \sigma_{x'y'}(t))$ is convex for all $x, y, x', y' \in X$.

The bicombing σ is consistent if $\sigma_{pq}(\lambda) = \sigma_{xy}((1-\lambda)s + \lambda t)$, for all $x, y \in X$, $0 \le s \le t \le 1$, $p := \sigma_{xy}(s)$, $q := \sigma_{xy}(t)$, and $\lambda \in [0, 1]$. It is called *reversible* if $\sigma_{xy}(t) = \sigma_{yx}(1-t)$ for all $x, y \in X$ and $t \in [0, 1]$.

End of Lecture 1

イロト 不得 トイヨト イヨト 二日