Problem Sheet

Problems on Coxeter groups

Problem 1

Let $W=\operatorname{Sym}_{4}$ be the symmetric group on four letters (i.e., the Coxeter group of type A_{3}.) Find all reduced decompositions of the unique longest element $w_{0}=s_{1} s_{3} s_{2} s_{1} s_{3} s_{2} \in W$.

Problem 2

Show that the direct product $W_{1} \times W_{2}$ of two Coxeter groups W_{1} and W_{2} is a Coxeter group.

Problem 3

Use the deletion condition to prove the following statements (and give geometric interpretations).
(a) Let (W, S) be a Coxeter system and $S^{\prime} \subset S, W^{\prime}:=\left\langle S^{\prime}\right\rangle$. Then the word length of an element of W^{\prime} with respect to S^{\prime} is the same as its length with respect to S.
(b) Let W^{\prime} be as above. Show that every coset $w W^{\prime}$ has a unique representative w_{m} of minimal length in W and that $l_{S}\left(w_{m} w^{\prime}\right)=l_{S}\left(w_{m}\right)+l_{S}\left(w^{\prime}\right)$ for all $w^{\prime} \in W^{\prime}$.
(c) Suppose W is finite. Show that W contains a unique element w_{0} of maximal length and that $l\left(w_{0}\right)=l_{S}(w)+l_{S}\left(w^{-1} w_{0}\right)$.

Problem 4

Draw the Cayley graphs of the triangle groups $(2,3,5)$ and $(2,3,7)$ with respect to the standard generators.

Here a triangle group (a, b, c) is a group generated by three elements s_{1}, s_{2}, s_{3} such that the order of $s_{1} s_{2}$ is a, the order of $s_{2} s_{3}$ is b and the order of $s_{3} s_{1}$ is c.

Problem 5

Show that the following two Coxeter presentations define isomorphic Coxeter groups

$$
\left\langle s_{1}, s_{2} \mid s_{i}^{2}=\left(s_{1}, s_{2}\right)^{6}=1\right\rangle, \quad\left\langle t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{1}, t_{2}\right)^{3}=\left(t_{2}, t_{3}\right)^{2}=\left(t_{1} t_{3}\right)^{2}=1\right\rangle .
$$

Problem 6

Prove that there exist only finitely many Euclidean triangle groups and list all of them.

Problem 7

Write out the Coxeter presentations which correspond to the following tessellations:

Problem 8

Prove that for every Coxeter system (W, S) there exists an epimorphism $\epsilon: W \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ with $\epsilon(s)=[1]$ for all s in S.

Problem 9

Let (W, S) be a Coxeter system. Define the set of reflections R as

$$
R:=\left\{w s w^{-1} \mid s \in S, w \in W\right\} .
$$

Further, let $l_{R}: W \rightarrow \mathbb{N}_{0}$ be the corresponding length function.
(a) Show that $l_{R}(w) \leq l_{S}(w)$ for all $w \in W$.
(b) Show that l_{R} is constant on every conjugacy class in W.
(c) Show that for all $u, v \in W$ we have $l_{R}(u v)=l_{R}(u)+l_{R}(v) \bmod 2$.

Problem 10

Let (W, S) be a Coxeter system and $\Gamma=(V, E)$ be the corresponding Coxeter graph. Define $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ to be the subgraph of Γ with $V^{\prime}=V$ and E^{\prime} the set of edges in E with odd label. Show that the set of connected components of Γ^{\prime} and the set of conjugacy classes of the generators in S are bijective.

Problem 11

Let (W, S) be a Coxeter system. Prove that the shadow of an element $w \in W$ with respect to the trivial positive orientation is the same as the interval $[1, w]$ in Bruhat order.

Problem 12

Play with the shadow-app on the following website:
https://www.mathelabor.ovgu.de/shadows

Problems on buildings

Problem 13

Prove that every complete bipartite graph is a building. Name the underlying Coxeter group.

Problem 14

Prove that the Heawood graph and the $S L_{2}$-tree constructed in the lecture are buildings. Moreover, prove that every tree without leafs is a building of type D_{∞}.

Problem 15

Suppose Γ is a metric realization of a graph with the following properties:

- every vertex is contained in at least two edges, and
- Γ is δ-hyperbolic with respect to every $\delta>0$.

Prove that then Γ is a tree without leafs, i.e. a building.

Problem 16

Fix $n \in \mathbb{N}$ and let V be a vector space of dimension $(n+1)$ over a field K. Let $\Delta(V)$ be the flag-complex of V and let $\phi: G L(V) \rightarrow \operatorname{Aut}(\Delta(V))$ be the natural action of $G L(V)$ on $\Delta(V)$. (See below for a definition). Prove that the following hold true:
(a) Every chamber, i.e. maximal flag, in $\Delta(V)$ has length n and every flag $\left\{U_{1}, \ldots, U_{k}\right\}$ is contained in a chamber.
(b) The complex $\Delta(V)$ is the union of all apartments, i.e.

$$
\Delta(V)=\bigcup_{B \text { basis of } V}\{\Sigma(B)\},
$$

where $\Sigma(B)$ is the set of all flags spanned by the basis B.
(c) The kernel of ϕ consists of all non-trivial scalar multiples of the identity matrix, i.e.

$$
\operatorname{ker}(\phi)=\left\{\lambda E_{n} \mid \lambda \in K^{*}\right\} .
$$

(d) $G L(V)$ acts transitively on the set of all apartments, the set of chambers and the set of vertices in $\Delta(V)$.

Fix $n \in \mathbb{N}$ and let V be a vector space of dimension $(n+1)$ over a field K. A sequence of k ascending proper, non-trivial sub-vector spaces V_{i} in V, i.e. $V_{1} \subset V_{2} \subset \cdots \subset V_{k} \subset V$, is called a flag of length k. A maximal flag is a flag of length n. We typically refer to those as chambers. The flag-complex of V, denoted by $\Delta(V)$, is the set of all flags in V. The group $G L(V)$ naturally acts on the flag complex by left-multiplication on the elements V_{i} of the flags.

Problem 17

Let Δ_{q} denote the projective plane over F_{q}. Prove that
(a) $|\mathcal{L}|=|\mathcal{P}|=q^{2}+q+1$
(b) Each point is contained in $q+1$ distinct lines.
(b) Each line contains $q+1$ distinct points.

Draw a completely labeled picture of D_{2}. (If you are brave also of Δ_{3}.)

Problem 18

Let $V=F_{q}^{3}, G=G L_{3}\left(F_{q}\right), e_{i}$ be the i-th standard basis vector in V and put $P_{1}=$ $\operatorname{stab}_{G}\left(\left\langle e_{1}\right\rangle\right), P_{2}=\operatorname{stab}_{G}\left(\left\langle e_{1}, e_{2}\right\rangle\right)$ and $B=P_{1} \cap P_{2}$. Prove that
(a) \mathcal{L} is in bijection with G / P_{1}.
(b) \mathcal{P} is in bijection with G / P_{2}.
(c) Edges in the projective plane are in bijection with G / B.
(d) Two edges $g B$ and $h B$ share a vertex of type P_{i} (i.e. a coset of P_{i} representing either a line if $i=1$ or a point if $i=2$) if and only if $g P_{i}=h P_{i}$. The condition $g P_{i}=h P_{i}$ is equivalent to saying that $g^{-1} h \in P_{i}$.

Problem 19

Let $G=G L_{3}\left(F_{q}\right)$, denote by N the set of monomial matrices and let T denote the diagonal matrices in G. The groups P_{i} and B are as in Problem 16. Prove that
(a) N is the normalizer of T in G.
(b) $W:=N / T$ is isomorphic to $\operatorname{Sym}(3)$ the symmetric group on three letter.
(c) $P_{i}=B \cup B s_{i} B, \mathrm{i}=1,2$, where $s_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $s_{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.

Problem 20

Let $G=G L_{3}\left(F_{q}\right)$ and let B and W be as in Problem 17. Prove that G admits the Bruhat decomposition, that is

$$
G=\bigsqcup_{w \in W} B w B .
$$

Problem 21

Prove that apartments are convex in the following sense: Suppose A is an apartment in a building Δ. Let x be a chamber in A and σ some other simplex in A. Then every minimal gallery connecting x and σ is contained in A. (Why is it important to have a chamber x and a simplex and not just two arbitrary simplices in A ?)

Problem 22

Let A be an apartment of an affine building Δ of type (W, S). Let ϕ_{c} be an orientation on A determined by an alcove c and let ϕ_{∞} be an orientation determined by a chamber in ∂A. Fix a base-alcove c_{0} in A and let γ be a folded gallery of type w, where \vec{w} is minimal. Prove the following:
(a) if γ is ϕ_{c}-positively folded, there exists a minimal gallery τ in δ starting in c_{0} such that $\rho_{d, A}(\tau)=\gamma$.
(b) if γ is ϕ_{∞}-positively folded, there exists a minimal gallery τ in δ starting in c_{0} such that $\rho_{\infty, A}(\tau)=\gamma$.
(c) for $\phi \in\left\{\phi_{d}, \phi_{\infty}\right\}$, the ϕ-shadow of w is the image of all end-alcoves of minimal galleries in Δ of type \vec{w} starting in c_{0}.

