

Problem Sheet

Problems on Coxeter groups

Problem 1

Let $W = \text{Sym}_4$ be the symmetric group on four letters (i.e., the Coxeter group of type A_3 .) Find all reduced decompositions of the unique longest element $w_0 = s_1 s_3 s_2 s_1 s_3 s_2 \in W$.

Problem 2

Show that the direct product $W_1 \times W_2$ of two Coxeter groups W_1 and W_2 is a Coxeter group.

Problem 3

Use the deletion condition to prove the following statements (and give geometric interpretations).

- (a) Let (W, S) be a Coxeter system and $S' \subset S$, $W' := \langle S' \rangle$. Then the word length of an element of W' with respect to S' is the same as its length with respect to S.
- (b) Let W' be as above. Show that every coset wW' has a unique representative w_m of minimal length in W and that $l_S(w_mw') = l_S(w_m) + l_S(w')$ for all $w' \in W'$.
- (c) Suppose W is finite. Show that W contains a unique element w_0 of maximal length and that $l(w_0) = l_S(w) + l_S(w^{-1}w_0)$.

Problem 4

Draw the Cayley graphs of the triangle groups (2, 3, 5) and (2, 3, 7) with respect to the standard generators.

Here a triangle group (a, b, c) is a group generated by three elements s_1, s_2, s_3 such that the order of s_1s_2 is a, the order of s_2s_3 is b and the order of s_3s_1 is c.

Problem 5

Show that the following two Coxeter presentations define isomorphic Coxeter groups

$$\langle s_1, s_2 \mid s_i^2 = (s_1, s_2)^6 = 1 \rangle, \quad \langle t_1, t_2, t_3 \mid t_i^2 = (t_1, t_2)^3 = (t_2, t_3)^2 = (t_1 t_3)^2 = 1 \rangle.$$

Problem 6

Prove that there exist only finitely many Euclidean triangle groups and list all of them.

Problem 7

Write out the Coxeter presentations which correspond to the following tessellations:

Problem 8

Prove that for every Coxeter system (W, S) there exists an epimorphism $\epsilon : W \to \mathbb{Z}/2\mathbb{Z}$ with $\epsilon(s) = [1]$ for all s in S.

Problem 9

Let (W, S) be a Coxeter system. Define the set of reflections R as

$$R := \{ w s w^{-1} \mid s \in S, w \in W \}.$$

Further, let $l_R: W \to \mathbb{N}_0$ be the corresponding length function.

- (a) Show that $l_R(w) \leq l_S(w)$ for all $w \in W$.
- (b) Show that l_R is constant on every conjugacy class in W.
- (c) Show that for all $u, v \in W$ we have $l_R(uv) = l_R(u) + l_R(v) \mod 2$.

Problem 10

Let (W, S) be a Coxeter system and $\Gamma = (V, E)$ be the corresponding Coxeter graph. Define $\Gamma' = (V', E')$ to be the subgraph of Γ with V' = V and E' the set of edges in E with odd label. Show that the set of connected components of Γ' and the set of conjugacy classes of the generators in S are bijective.

Problem 11

Let (W, S) be a Coxeter system. Prove that the shadow of an element $w \in W$ with respect to the trivial positive orientation is the same as the interval [1, w] in Bruhat order.

Problem 12

Play with the shadow-app on the following website: https://www.mathelabor.ovgu.de/shadows

Problems on buildings

Problem 13

Prove that every complete bipartite graph is a building. Name the underlying Coxeter group.

Problem 14

Prove that the Heawood graph and the SL_2 -tree constructed in the lecture are buildings. Moreover, prove that every tree without leafs is a building of type D_{∞} .

Problem 15

Suppose Γ is a metric realization of a graph with the following properties:

- every vertex is contained in at least two edges, and
- Γ is δ -hyperbolic with respect to every $\delta > 0$.

Prove that then Γ is a tree without leafs, i.e. a building.

Problem 16

Fix $n \in \mathbb{N}$ and let V be a vector space of dimension (n + 1) over a field K. Let $\Delta(V)$ be the flag-complex of V and let $\phi : GL(V) \to Aut(\Delta(V))$ be the natural action of GL(V) on $\Delta(V)$. (See below for a definition). Prove that the following hold true:

(a) Every chamber, i.e. maximal flag, in $\Delta(V)$ has length n and every flag $\{U_1, \ldots, U_k\}$ is contained in a chamber.

(b) The complex $\Delta(V)$ is the union of all apartments, i.e.

$$\Delta(V) = \bigcup_{B \text{ basis of } V} \{ \Sigma(B) \},$$

where $\Sigma(B)$ is the set of all flags spanned by the basis B.

(c) The kernel of ϕ consists of all non-trivial scalar multiples of the identity matrix, i.e.

$$\ker(\phi) = \{\lambda E_n \mid \lambda \in K^*\}.$$

(d) GL(V) acts transitively on the set of all apartments, the set of chambers and the set of vertices in $\Delta(V)$.

Fix $n \in \mathbb{N}$ and let V be a vector space of dimension (n + 1) over a field K. A sequence of k ascending proper, non-trivial sub-vector spaces V_i in V, i.e. $V_1 \subset V_2 \subset \cdots \subset V_k \subset V$, is called a *flag* of length k. A maximal *flag* is a flag of length n. We typically refer to those as *chambers*. The *flag-complex* of V, denoted by $\Delta(V)$, is the set of all flags in V. The group GL(V) naturally acts on the flag complex by left-multiplication on the elements V_i of the flags.

Problem 17

Let Δ_q denote the projective plane over F_q . Prove that

- (a) $|\mathcal{L}| = |\mathcal{P}| = q^2 + q + 1$
- (b) Each point is contained in q + 1 distinct lines.
- (b) Each line contains q + 1 distinct points.

Draw a completely labeled picture of D_2 . (If you are brave also of Δ_3 .)

Problem 18

Let $V = F_q^3$, $G = GL_3(F_q)$, e_i be the *i*-th standard basis vector in V and put $P_1 = \operatorname{stab}_G(\langle e_1 \rangle)$, $P_2 = \operatorname{stab}_G(\langle e_1, e_2 \rangle)$ and $B = P_1 \cap P_2$. Prove that

- (a) \mathcal{L} is in bijection with G/P_1 .
- (b) \mathcal{P} is in bijection with G/P_2 .
- (c) Edges in the projective plane are in bijection with G/B.
- (d) Two edges gB and hB share a vertex of type P_i (i.e. a coset of P_i representing either a line if i = 1 or a point if i = 2) if and only if $gP_i = hP_i$. The condition $gP_i = hP_i$ is equivalent to saying that $g^{-1}h \in P_i$.

Problem 19

Let $G = GL_3(F_q)$, denote by N the set of monomial matrices and let T denote the diagonal matrices in G. The groups P_i and B are as in Problem 16. Prove that

- (a) N is the normalizer of T in G.
- (b) W := N/T is isomorphic to Sym(3) the symmetric group on three letter.
- (c) $P_i = B \cup Bs_iB$, i=1,2, where $s_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $s_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

Problem 20

Let $G = GL_3(F_q)$ and let B and W be as in Problem 17. Prove that G admits the Bruhat decomposition, that is

$$G = \bigsqcup_{w \in W} BwB.$$

Problem 21

Prove that apartments are convex in the following sense: Suppose A is an apartment in a building Δ . Let x be a chamber in A and σ some other simplex in A. Then every minimal gallery connecting x and σ is contained in A. (Why is it important to have a chamber x and a simplex and not just two arbitrary simplices in A?)

Problem 22

Let A be an apartment of an affine building Δ of type (W, S). Let ϕ_c be an orientation on A determined by an alcove c and let ϕ_{∞} be an orientation determined by a chamber in ∂A . Fix a base-alcove c_0 in A and let γ be a folded gallery of type w, where \vec{w} is minimal. Prove the following:

- (a) if γ is ϕ_c -positively folded, there exists a minimal gallery τ in δ starting in c_0 such that $\rho_{d,A}(\tau) = \gamma$.
- (b) if γ is ϕ_{∞} -positively folded, there exists a minimal gallery τ in δ starting in c_0 such that $\rho_{\infty,A}(\tau) = \gamma$.
- (c) for $\phi \in {\phi_d, \phi_\infty}$, the ϕ -shadow of w is the image of all end-alcoves of minimal galleries in Δ of type \vec{w} starting in c_0 .