00-categories: Introduction

y. Alma Vniversity Mūnstar 10. 11. 2025

00-Categories	- Au	Introduction
Literature: Ou	rifical	Dovce
Lurie - 1-	tight ight pectual	Topas Theory Algebra C Geometry Jest gunzicy resource.
Recommendi		
Hebestreit -	Higher Crook to	categories and algebraic K-theory
Cnossen -		Homotopy Theory and Higher Algebra Project)

Motivation	/ Why	ur o	- cats?	2		
· Derl	ved categornological	ovies are	2 &	naturul	pluce R	
Suppo	se R is Tor? (M,	d ving,	M ri L'(M&	ght mol	the. I donive	hnows
Simil	or by by- derived by	Ext you	ps. (Co)	- Homology	also off	n oldinal
· Deriv	red as catego	ories allow exact huct	one topet	o packa	ge all de	rived fination
· Using from	00-categor	cet egry	have c	ncos to	al He	tools
	o)-Cimits onela lemme					
E.g.,	n op-ort	8 - Hom - Lond	adjunct	ioh timp	ly habits	
	All Tor- all Ext	Functors to	sgette a	re 6/1	odjoirt t	•

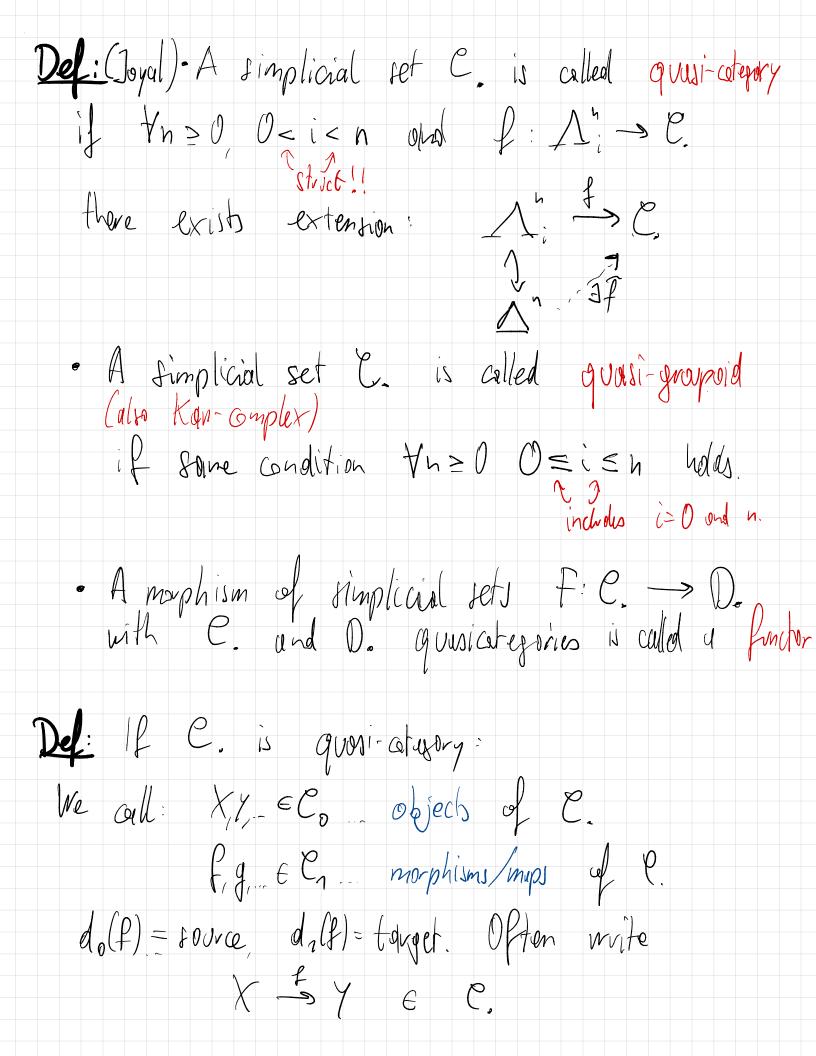
•	We on treat things like ordinary rigs (including a over them).	dy-aljebrus Just like
	Over them).	
9	This has two advantures	
	-) Refults typically bund of higher structure - Sometimes this in intractable oboid	olle a large amount at ona orld be completely
	-) Everything dane is a coherent.	Wtomutically homotopy
	- This realies potent	int for mistaken,
Exp	xperimental forct	
3	· People tend to make mistall simplicial indexing homet	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ŀ	Formul argument tend to	be easier to verify.

What 'are " a - categories? Worning: This is like asking what a real number is - One can obefine a real couchy sequences, and prove elementary focts about them using this definition, but in practice one only even uses toosic proportion We will now give a model. The unlyy is real number Carrhy seguence y vivi) cotestiny 00- Category

Quasi-groupoids and quasi-cat-gories Def: \(\lambda := \text{category of hon-empty, totally ovedered jeb)} \) Write $[n] := \{ 0 \le 1 \le \dots \le n-1 \le n \}$ for $\{ 0 \ne 1 \le \dots \le n-1 \le n \}$ for $\{ 0 \ne 1 \le \dots \le n-1 \le n \}$. Have two types of mayor $G_{i}: \left(n\right] \rightarrow \left[n-1\right] \qquad S_{i}: \left[n-1\right] \rightarrow \left[n\right]$ Ollapses (-1 and i milles i continumion)

A simplicial fet X. is a functor X: A pop Set Write $X_n := X_n([n])$, $S_i := X_n([s_i])$, $d_i := X_n([s_i])$ Equivalently a diagram with certain identities between s; and ob.

SSet = Fun (A of Set). category of simplicial res. Define Δ° = hom (-, [y]): Δ° → set Stanolard n- simplex. By Yarada Commu, Write for the he have $H_{om}(\Delta^n, X) = Nort(hom_{\Delta}(-, \Gamma_n), X) = X, (\Gamma_n) = X_n$ Pictures: $\Delta^{\gamma} = 0 \longrightarrow 1$ $\Delta^2 = 0$ $\nabla_3 = 0$ A has 1 h-cell and n+1 many (n-1)-cells. Def: Fix n > 0. The i-th horn $\Lambda^{*} \subseteq \Lambda^{n}$ for $U \leq i \leq n$ is obtained by removing i-th (h-1)-cell (and everything above it)



For $x \in \mathcal{C}_0$ have $id_x = S_0(x) \in \mathcal{C}_0$. Notion of composition: fome as fome Two maps X = Y, X = Y are called homotopic, forf, f there exists $\Delta^2 \rightarrow C$ st. 29 Vidy alled honotopy Call X => Y & & on equivalena if I: Y +> X

st. id ~ y of ond idy ~ fog Exercise: Cordinary contegory. • Then $N(\mathcal{C})_n := Fun(\mathbb{C}_n \mathbb{Z}, \mathcal{C})$ is quasicaterary. · It is givesi proupoid iff C is a proupoid. . There is a bijection Fun(e, D) = Fun(N(e), N(D).)

Subategries If C is ∞ - αt , and - $C_0 = C_0$ collection of objects $C_1 = C_1$ collection of morphisms We can form E = C smallest subsimplicial set that is a granical earlyway, and contains e and e. This is the proceeding generated from Co. Ci. Functor cats and equivalences of or-categories Given two simplicial set X., Y. con défine $Mep(X.,Y.)_{n} := Mep(X. \times \Delta^{n}, Y.)$ This is again simplicial tot. If C,D gusical, write Fun(C,D) instead Prop: Fule, D) is again grassicat.

(only reads that D is quasicat.) 1-cells y: F=> G in Fun(C,D) called natural transferration If of equivalence in Fun (P,D) the network equivalence.

F.C-D is equivalence if 36:D->C Defi and id => Goot id => FoG Comment. In practice, one often closes to heed to five on explicitely. Easier to check that I is essentially original to filly hither. Central principle of a-category theory. Every statement made about objects
of a given co-category must be invariant
under equivalence. Every statement mede about on a -act-gary must be invariant under equivolence.

If this is not the case you're not studying or-ats, you're studying opening.

DWAT	or n	-014	Lua	lizu	ron					
There Suppose	is c	2 (foneral 90W)	meth cat,	rod 1	0 0	omtrud set	00-C	rts.	M,
Theorem				CEV	N ⁻¹]	and	J	huctor	y: C -	»C[]
t	CTU		hus					jost w		
								equiu m x		3
						Fun 1	(e, D sub cut) af h	m don	F
		Egui	relince				of to	Jends Legyv	morphin Ulaas	۱۲ (۲
Remork	- Up	to Im -	equim Coceliz	lnce,	all of	quis 1-lete	i-ats	drise (even	this,	wuy) (

Examples
The ob-category of spaces of prospoints uniona is
Grand co := N(Quasignospoids) [Equivalences]
Remark: Often referred to us Spc, S, on An.
The 00-category of 00-categories is
Ceto := N (Quasicategories) [Equivalences]
Summeriting: We now have quite a allection of so-as
- Grado, Cetos, N/e) for e a 1-ategory, Fun (x, e) for x pingle fet and e as-al. Subatezories of these.
In the Rollowing possion we will see olg-organies:
If C is differential graded cat. Over some commitative ving k,
D(e) = N/Z°(e) [W-1] 1. derived ∞ - ategory of C.

Remark: There is an onpoing project by Cisinski - Cnosson - Nguyen - Waldle 11 Formalization of Higher Categories" (Link on Cnotlen's Webpege) They list Axiom A - O for "synthetic a- category throng These axioms are meant to be user-friendly and are essentially: "Cotegory theory + Straightening Unstraightening"