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1. Recollections on ∞–categories

We begin these notes by gathering some basics from the theory of higher categories.
As far as possible, our presentation will be done in a model–independent way. The
purpose of this section is merely to provide a convenient reference point for the reader
not so familiar with ∞–categories. As such, it will mostly be just a list of standard
results and informal definitions that we need in the main body of this document,
with precise references where possible, without it being woven into a cogent story.
Our recommendation is for the reader to begin reading other parts and come back
to this section as needed in order to find references and precise statements for ∞–
categorical manoeuvres that are mentioned only in passing in the later sections.

Finally, a word of warning: since these results are so embedded in the canon, it is
a bit difficult to make the correct attribution as to where the result first appeared. As
such, many of these references will be pointing to a place where it appeared without
the implicit claim about origins. Of course, the most biblically comprehensive sources
for all things ∞–categorical are Lurie’s pair of tomes [Lur09; Lur17], but some good
(and shorter) one–stop locations for many of the basic results are the excellent set of
lecture notes by Fabian Hebestreit, as expanded by Ferdinand Wagner [HW21], as
well as the survey by David Gepner [Gep19].

The section is shaped with the following list of subsections:

• Basic setup
• Presentability
• Stability
• General multiplicative matters
• Duality and dualisability

Basic setup

Definition 1.1. A Bousfield localisation is an adjunction L ⊣ R whose right adjoint R
is fully faithful. This is equivalent to the assertion that the counit LR ⇒ idD is an
equivalence. Dually, a Bousfield colocalisation is an adjunction whose left adjoint is
fully faithful.

Notation 1.2. In this document, we always write left adjoints on top of its right ad-
joint. In other words, when we write L : C ⇌ D : R or

C D
L

R
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we mean that L is the left adjoint to R.

Observation 1.3. It is sometimes useful to observe that a Bousfield localisation is an
equivalence if and only if the left adjoint L is conservative. Proving this is a simple
and instructive exercise.

Fact 1.4. Let f : I → J be a functor and C an ∞–category with all small (co)limits.
The left adjoint f! (resp. right adjoint f∗) of the restriction functor f ∗ : Fun(J, C) →
Fun(I, C) are called the left Kan extension (resp. right Kan extension) along f . If f is fully
faithful, then f! and f∗ are fully faithful too.

Notation 1.5. We write S for the ∞–category of spaces/∞–
groupoids/anima/homotopy types. It is the ∞–category freely generated by
the point under small (∞–)colimits. We write Cat∞ for the ∞–category of small
∞–categories. We also write Cat1 for the ∞–category of 1–categories. It turns out that
Cat1 is itself a 2–category.

Fact 1.6 (Cosmic adjunctions). By virtue the so–called Grothendieck homotopy hypoth-
esis, any valid theory of higher categories should in particular admit the result that
spaces are equivalent to ∞–groupoids (ie. ∞–categories where all morphisms are
equivalences); moreover, 1–categories (ie. ordinary, classical, pre–grad–school cate-
gories) should be an instance of an ∞–category. From this, we have the adjunctions

Cat1 Cat∞ S
N

Ho |−|

(−)≃

where Ho is taking the homotopy 1–category of an ∞–category (ie. taking the
connected components of mapping spaces in an ∞–category); N is viewing a 1–
category as an ∞–category, where the notation N is supposed to remind the quasi–
categorically–minded reader of taking the nerve simplicial set of a 1–category; | − | is
the functor which inverts all morphisms in an ∞–category; the inclusion S ↪→ Cat∞ is
viewing spaces as ∞–groupoids; and finally (−)≃ is taking the so–called core groupoid
of an ∞–category, ie. remembering only the morphisms which are equivalences.

Importantly from these adjunctions, we see that the inclusion Cat1 ⊆ Cat∞ pre-
serves limits, and the inclusion S ⊆ Cat∞ preserves both limits and colimits. In
other words, taking limits of 1–categories in Cat∞ still yields a 1–category; and taking
(co)limits of spaces in Cat∞ still yields a space.

Fact 1.7. In S , filtered colimits commute with finite limits. Moreover, geometric reali-
sations (ie. colimits indexed by the 1–category ∆op), commute with finite products.

Construction 1.8 (Mapping spaces). For objects x, y in an ∞–category C, the mapping
space MapC(x, y) ∈ S is defined as the pullback
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MapC(x, y) C∆1

∗ C × C

⌟
(s,t)

(x,y)

Fact 1.9. For X ∈ S , there is a formula for the mapping space of Fun(X, C) given by
the following: for φ, ψ ∈ Fun(X, C), we have

MapFun(X,C)(φ, ψ) ≃ lim
x∈X

MapC(φ(x), ψ(x))

This will be proved in Exercise 4.11 Item 3.

Construction 1.10 (Straightening–unstraightening). For a functor F : I → Cat∞, there
is a construction producing an ∞–category called the unstraightening Un(F) equipped
with a map to I satisfying the property of being a cocartesian fibration. This is a very
important notion in the general theory, but we will not be needing too much of the
full details in this masterclass, and so we refrain from explaining it here for the sake
of brevity. As with many things, this is a key construction due to Grothendieck. The
point of this construction is that there is then an equivalence of ∞–categories

coCart(I) ≃ Fun(I, Cat∞)

where the left hand side denotes the ∞–category of cocartesian fibrations over I. This
is a difficult theorem first proved by Lurie in the ∞–categorical setting in [Lur09] with
subsequent easier proofs by many other people. Suffice to say, when the functor F is
constant with value C ∈ Cat∞, Un(F)→ I is given simply by the projection I×C → I.

Among other things, we can use this construction to compute limits in Cat∞. Writ-
ing Γ(−) for the ∞—category of sections (and Γcocart(−) for the sections which are
cocartesian, whose explanation we again omit), we have:

Theorem 1.11 (Lurie, [HW21, Prop I.36]). Given a functor F : I → Cat∞, we have the
following formulae for (co)limits:

colim
I

F ≃ Un(F)[{cocart edges}−1] and lim
I

F ≃ Γcocart(Un(F)→ I)

In particular, if F : I → S ⊆ Cat∞, then we have

colim
I

F ≃ |Un(F)| and lim
I

F ≃ Γ(Un(F)→ I)

Definition 1.12. An object X ∈ C is said to be compact if MapC(X,−) : C → S pre-
serves filtered colimits. More generally, for a regular cardinal κ, X is called κ-compact
if MapC(X,−) preserves κ-filtered colimits.
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Definition 1.13. A set of objects S ⊆ C is said to be jointly conservative if any morphism
in C that gets sent to an equivalence under the functor

∏
X∈S

MapC(X,−) : C −→∏
S
S

is already an equivalence in C.

The following is an important standard result due originally in 1–categories to
[MP87, Lem. 1.7.ii]. The ∞–categorical version is well–known and is recorded for
example in [CDH+].

Proposition 1.14. Let C be cocomplete and let S ⊆ C be a jointly conservative set of compact
objects. Then C is generated under small colimits by the full subcategory spanned by S.

This is also true if S is a jointly conservative set of κ-compact objects.

Presentability

A presentable ∞-category is, roughly, a cocomplete ∞-category (thus, usually a large
∞-category) which is controlled by “small” objects, and thus describable with a set’s
worth of data. In more detail:

Definition 1.15. An ∞-category C is presentable if it is cocomplete, and there is a
cardinal κ and a small set of κ-compact objects S ⊂ C that generate C under colimits.

This is, in principle, a very strong restriction, but in practice, most “natural” co-
complete ∞-categories you’ll encounter are presentable1, so that it almost becomes a
mild assumption.

This type of size control affords many pleasant properties, among which the exis-
tence of objects satisfying various universal properties. This is neatly encoded in the
adjoint functor theorem:

Theorem 1.16 (Adjoint Functor Theorem (AFT), [Lur09, Cor. 5.5.2.9]). Let C be a pre-
sentable ∞-category and D be a cocomplete ∞-category.

1. A functor f : C → D is a left adjoint if and only if it preserves colimits.

2. Suppose D is also presentable. In this case, a functor g : D → C is a right adjoint if
and only if it preserves limits and is accessible.

“Recall” that a functor is called accessible if it preserves κ-filtered colimits for some
cardinal κ. As for presentability, this is in principle rather restrictive, but in practice,
most functors you’ve encountered are accessible (it is in fact quite hard to come up
with a non-accessible functor).

1With the caveat that the opposite of a presentable ∞-category is almost never presentable.
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Remark 1.17. Item 2 in the AFT, specialized to C = S is a corepresentability criterion.
Indeed, for D cocomplete, a functor g : D → S is corepresentable if and only if it
admits a left adjoint. Hence, by the AFT, when D is presentable, this is the case if and
only if it is accessible and preserves limits.

Item 1, specialized to D = Sop is a representability criterion2, in the same way.
Thus, for presentable C, a functor f : Cop → S is representable if and only if it pre-
serves limits.

Stability

The condition of stability on a category has been well–recognised for a long time to be
a crucial idea in carrying out homological methods in generalised settings. Tradition-
ally, its manifestations include the notion of chain complexes, triangulated categories,
and spectra. One of the many key advantages of ∞–category theory over 1–categories
is that this condition is most naturally a higher categorical notion, owing to the fact
that the shift functors Ω and Σ (or [1] and [−1] for chain complexes) necessitate the
notion of mapping spaces as opposed to just mapping sets.

In this subsection, we introduce the basics of the theory of stable ∞–categories and
the various key constructions we need for the main body of these notes.

Notation 1.18. Let C be a pointed ∞–category, ie. it has a zero object. Let X ∈ C.
When they exist, we write ΩX (resp. ΣX) for the pullback (resp. pushout)

ΩX 0 X 0

0 X 0 ΣX

⌟

⌜

Definition 1.19 ([Lur17, Def. 1.1.1.9, Prop. 1.4.2.27]). Let C be a pointed ∞–category.
We say that it is stable if the following equivalent conditions are satisfied:

1. pullbacks and pushouts exist, and a commuting square is a pullback if and only
if it is a pushout;

2. finite colimits exist, and the functor Σ : C → C is an equivalence;

3. finite limits exist, and the functor Ω : C → C is an equivalence.

Remark 1.20. A stable ∞-category is in particular additive.

Terminology 1.21. One can check that a functor φ : C → D between stable ∞–
categories preserve finite colimits if and only if it preserves finite limits. We will
say that it is an exact functor if it satisfies either one (and so both) of the equivalent
conditions.

2Here, it’s important that this part of the statement does not require D to be presentable, as Sop is not
presentable.
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Construction 1.22 (Stabilisations and mapping spectra, [Lur17, Cor. 1.4.2.23]). Write
Catlex

∞ for the ∞–category of small ∞–categories that have finite limits and morphisms
the left exact functors (ie. those that preserve finite limits), and write Catex

∞ for the
∞–category of small stable ∞–categories and morphisms the exact functors. By the
preceding paragraphs, we see that there is a fully faithful embedding Catex

∞ ⊆ Catlex
∞ .

The result now is that there is a right adjoint, denoted as Sp(−), to this inclusion.
Concretely, this is given as follows: writing D∗ for the ∞–category of pointed objects

in a D ∈ Catlex
∞ , the ∞–category Sp(D) is defined as lim(· · · Ω−→ D∗

Ω−→ D∗).
In fact, this is even an (∞, 2)–adjunction in that if we have C ∈ Catex

∞ andD ∈ Catlex
∞ ,

then the adjunction counit – which is usually denoted Ω∞ : Sp(D) → D – induces an
equivalence of ∞–categories

Funlex(C, Sp(D)) ≃−−→ Funlex(C,D)

One can check from the concrete model for Sp(−) that this universal property is
true even when D is large. From this, we may obtain that the mapping spaces in
stable ∞–categories canonically lift to mapping spectra. To wit, the mapping space
functor can also be written as

MapC(−,−) : Cop × C −→ S

and it is easy to see that it preserves limits. Hence by the universal property above,
this functor lifts to yield

Sp(S) ≃ Sp

Cop × C S
Ω∞

MapC

mapC

In other words, in a stable ∞–category C, we may deloop its mapping space to get a
mapping spectrum, ie. MapC(−,−) ≃ Ω∞ mapC(−,−).

Definition 1.23. A stable subcategory of a stable ∞–category C is a full subcategory
D ⊆ C which is stable under finite limits and colimits.

It is called thick if it is furthermore closed under retracts in C (and a “thick subcate-
gory” is implicitly assumed to be a stable subcategory). If C is idempotent-complete,
this latter condition is equivalent to D being idempotent-complete.

One of the reasons to consider thick subcategories is that they are precisely the ker-
nels of exact functors. One direction (that kernels of exact functors are thick subcate-
gories) is an easy observation, and the other direction comes from Verdier quotients,
which we describe in the following omnibus theorem (good sources for which include
[NS18, Thm. I.3.3] and [CDH+20, § A.2]):
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Theorem 1.24 (Omnibus Verdier quotients). Given a thick subcategory D of a stable ∞–
category C, there is a stable ∞–category C/D, called the Verdier quotient of C by D, with a
projection functor p : C → C/D and the following properties:

1. C/D is the cofiber of the inclusionD → C in Catex
∞ and as such induces, for every stable

∞–category E , a fully faithful functor Funex(C/D, E) p∗−→ Funex(C, E) with essential
image those exact functors C → E that vanish on D.

2. The kernel of p is exactly D.

3. p : C → C/D witnesses the latter as the localization of C at “mod-D equivalences”,
i.e. maps f : x → y whose cofiber (or equivalently, fiber) is in D. In particular p is
essentially surjective.

4. For any pair of objects x, y ∈ C, the canonical map colim f∈D/y MapC(x, cofib( f )) →
MapC/D(p(x), p(y)) is an equivalence, and D/y is a filtered ∞-category. Dually, the
canonical map colimg∈Dx/ MapC(fib(g), y) → MapC/D(p(x), p(y)) is an equiva-
lence.

Finally, if D is only a stable subcategory, then the theorem remains true except for Item 2
which is replaced by “the kernel of p is exactly the closure of D under retracts in C”.

Remark 1.25. It is an instructive exercise to get used to ∞-categories to work out ex-
actly what “the canonical map” is in Item 4.

It is also an instructive exercise to deduce that the formula for mapping spaces in
Item 4 also holds for mapping spectra.

In the “big world”, that is, when C has all small colimits, there is a better suited
notion of subcategory, namely:

Definition 1.26. Let C be a cocomplete stable ∞–category. A stable subcategory D of
C is called localizing if it is closed under all colimits.

In this situation, we have:

Proposition 1.27. Suppose C is a cocomplete stable ∞–category and D is a localizing sub-
category of C. In this case, C/D is also cocomplete, and p : C → C/D preserves colimits.

If C,D are furthermore presentable, then C/D is an accessible localization of C, i.e. it is also
presentable and p : C → C/D admits a fully faithful right adjoint with essential image the c’s
in C such that for all d ∈ D, MapC(d, c) = 0, or equivalently, for all d ∈ D, mapC(d, c) = 0.

Lastly, here is a bridge between the “small” and the “big” worlds of stable ∞–
categories:

Theorem 1.28 ([Lur09, Prop. 5.5.7.8]). The Ind–completion and compact objects functor
participate in the following equivalence of ∞–categories

Ind : Catperf
∞ ⇄ PrL,st,ω : (−)ω
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where Catperf
∞ denotes the ∞–category of small idempotent–complete stable ∞–categories and

PrL,st,ω denote the ∞–category of ω–compactly generated presentable stable ∞–categories and
morphisms given by functors which preserve colimits and compact objects.

General multiplicative matters

Symmetric monoidal structures in the ∞–categorical setting are much more intricate
than their 1–categorical counterparts, the reason being that we have to specify a lot
more coherence structures. While this can be done very neatly by a key insight of
Graeme Segal in [Seg74], we will nevertheless forego precise discussions of these
matters in the interest of brevity. As such, we will content ourselves with informal
“definitions” in this subsection, and refer the reader to [Lur17, §2.1] for more details
on the basic precise notions.

“Definition” 1.29. A symmetric monoidal ∞–category C⊗ is roughly speaking an ∞–
category equipped with symmetric monoidal structures which include a tensor map

−⊗− : C × C −→ C

which is coherently associative and commutative, as well as a unit object 1 ∈ C such
that 1⊗ (−) ≃ idC . Given this, we will often also denote C⊗ with (C,⊗, 1).

A symmetric monoidal functor f⊗ : C⊗ → D⊗ between symmetric monoidal ∞–
categories is an underlying functor f : C → D together with structures witnessing
the compatibility of f with ⊗C and ⊗D. For example, it includes the datum of an
equivalence

1D
≃−→ f (1C)

and it will also include the data of equivalences

f (X)⊗D f (Y) ≃−→ f (X⊗C Y)

for every X, Y ∈ C etc. If one knows what E∞–monoids CMon(D) in an ∞–category
D having finite products, then the ∞–category of symmetric monoidal ∞–categories
can be defined simply as CMon(Cat∞).

A lax symmetric monoidal functor f⊗ : C⊗ → D⊗ has the same structures as a sym-
metric monoidal functor, except that the maps

1D → f (1C) f (X)⊗D f (Y)→ f (X⊗C Y)

are no longer required to be equivalences.

The following is a bread–and-butter result, and a convenient source for a very gen-
eral discussion of it is [HHL+21].

Proposition 1.30. Let L⊗ : C⊗ → D⊗ be a symmetric monoidal functor whose underlying
functor L : C → D has a right adjoint R : D → C. In this case, the right adjoint can canoni-
cally be refined with the structure of a lax symmetric monoidal functor R⊗ : D⊗ → C⊗.
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“Definition” 1.31. In a symmetric monoidal ∞–category C⊗, one may speak of an
E∞–algebra object (we will often just call these commutative algebra objects). Writing
CAlg(C⊗) for the ∞–category of commutative algebra objects, roughly speaking with
some justifiable abuse of notations, an object A ∈ CAlg(C⊗) is the datum of an object
A ∈ C equipped with “multiplication maps”

µ : A⊗C A −→ A

which is coherently associative and commutative, as well as a “unit map” 1 : 1 → A
together with the datum of a homotopy to the identity idA for the composite

A ≃ A⊗ 1
id⊗1−−→ A⊗ A

µ−−→ A

Fact 1.32. Lax symmetric monoidal functors preserve commutative algebra objects,
ie. any lax symmetric monoidal functor f⊗ : C⊗ → D⊗ induces a functor

f : CAlg(C⊗) −→ CAlg(D⊗)

Morally, this is because if we started with an A ∈ CAlg(C⊗), then the lax maps pro-
vide us with enough structure to define a multiplication map

f (A)⊗D f (A)
lax−→ f (A⊗C A)

f µ−→ f (A)

and so on.

Fact 1.33 (Presentably symmetric monoidal ∞–categories). There is a symmetric
monoidal structure on PrL, which is usually called the Lurie tensor product, whose
tensor unit is the ∞–category of spaces S . This tensor product is defined by the
following universal property: writing FunL,L(C × D, E) for the full subcategory of
bicocontinuous functors (ie. those which preserve small colimits in each variable),
the Lurie tensor product C ⊗ D is equipped with a bicocontinuous functor C × D →
C ⊗D which induces an equivalence

FunL(C ⊗D, E) ≃−−→ FunL,L(C ×D, E)

Consequently, a commutative algebra object C⊗ ∈ CAlg(Pr⊗L ) is a presentable ∞–
category equipped with a tensor product

−⊗− : C × C −→ C ⊗ C µ−−→ C

which is bicocontinuous. To distinguish this important extra criterion, we will call
an object in CAlg(Pr⊗L ) presentably symmetric monoidal ∞–categories. Crucially, by the
adjoint functor theorem, presentably symmetric monoidal ∞–categories are always
closed symmetric monoidal in that for any X ∈ C, −⊗ X has a right adjoint that we
denote by HomC(X,−) called the internal hom object.
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Moreover, Lurie proved that Sp ∈ PrL is an idempotent object, meaning Sp⊗ Sp⊗
− ≃ Sp⊗−. This endows Sp with a presentably symmetric monoidal functor whose
unit map is written as

S[−] = Σ∞
+ : S −→ Sp

recovering the classical suspension spectrum functor whose right adjoint is Ω∞. Fur-
thermore, writing PrL,st ⊆ PrL for the full subcategory of stable presentable ∞–
categories, one obtains that this inclusion has a left adjoint given by applying Sp⊗−.
This endows PrL,st with a symmetric monoidal structure whose tensor unit is Sp and
such that both adjoints in

PrL PrL,st

Sp⊗−

refine to the structure of symmetric monoidal functors.

While we are mainly interested in E∞–structures, we will often also need to talk
about E1–structures. These are the higher algebraic analogue of associative algebras,
relevant examples of which include group rings R[G] (that we will see later) as well
as the example in the famous result of Schwede–Shipley which says:

Theorem 1.34 (Schwede–Shipley, [Lur17, Thm. 7.1.2.1], [HW21, Thm. II.58]). Let
C be a stable presentable ∞–category. If it has a compact generator X ∈ C, then
mapC(X,−) : C → Sp lifts to an equivalence

mapC(X,−) : C ≃−−→ RModSp(End(X))

where End(X) is the E1–ring spectrum with underlying object mapC(X, X) and multiplica-
tion given by composition.

Duality and dualisability

In the groundbreaking paper [DP84], among other things, Dold and Puppe axioma-
tised the notion of duality, providing a far–reaching generalisation of dual vector
spaces. We summarise this notion now in the modern setting.

Definition 1.35 ([Lur17, Def. 4.6.1.1]). Let (C,⊗, 1) be a symmetric monoidal ∞–
category. A duality datum in C is a tuple (X, X∨, c, e) where X, X∨ ∈ C and c, e are
morphisms

c : 1→ X⊗ X∨ e : X∨ ⊗ X → 1

such that the composites

X c⊗id−−→ X⊗ X∨ ⊗ X id⊗e−−→ X

X∨ id⊗c−−→ X∨ ⊗ X⊗ X∨ e⊗id−−→ X∨

are homotopic to the identity morphisms. An object X ∈ C which participate in such
a datum is said to be dualisable.
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Observation 1.36. Since duality data are tuples satisfying homotopy conditions, they
are really notions that are controlled in the homotopy category with the induced 1–
symmetric monoidal structure (Ho(C),⊗, 1) . That is, a tuple (X, X∨, c, e) is a duality
datum in (C,⊗, 1) if and only if it is one in (Ho(C),⊗, 1).

There is an alternative characterisation of duality data that is often used inter-
changeably when talking about dualisable objects. The proof is a straightforward
unwinding of definitions which we will omit in this note.

Proposition 1.37 ([Lur17, Lem. 4.6.1.6]). If an object X ∈ C is dualisable with dual X∨,
then the duality datum provides a natural equivalence of functors

MapC(−, X⊗−) ≃ MapC(−⊗ X∨,−) : Cop × C −→ S

Observation 1.38. In particular, when (C,⊗, 1) is presentably symmetric monoidal sta-
ble, we have an equivalence of functors HomC(X,−) ≃ X∨ ⊗ −. This in particular
implies the special property that HomC(X,−) preserves small colimits, which is very
much not true in general.

Finally, we record the following “descent” property of the notion of dualisability.

Proposition 1.39 (Descent for dualisability, [Lur17, Prop. 4.6.1.11]). Let {Ci}i∈I be a
diagram of symmetric monoidal ∞–categories with limit C. In this case, an object in C is
dualisable if and only if its image in each Ca is dualisable.

2. Recollections on classical representation theory

This section will be a brisk recollection of some of classical representation theory of
finite groups. The main emphasis is to touch on the basics of modular representation
theory including Serre’s cde formalism, Brauer characters, and Block theory. A great
reference for most of what we discuss in this section is Serre’s book [Ser+77]. A ref-
erence that (among other things) relates these techniques to Mackey theory is Swan’s
book [Swa06].

Terminology 2.1. Let R be a commutative ring. By a G–representation over R, we
mean an object in Fun(BG, Modfg,proj

R ). That is, in these notes, we will only ever be
concerned with finite–dimensional representations and so we will always omit this
clunky adjective.

This section is shaped with the following list of subsections:

• K–theoretic gadgets in representation theory
• The non–modular case: standard character theory
• The modular case setup: Serre’s cde formalism
• Modular case tool I: Brauer characters
• Modular case tool II: block theory

12



K–theoretic gadgets in representation theory

Construction 2.2. LetA be a small exact category. We define its K–theory group K0(A)
to be the abelian group generated by the isomorphism classes of objects subject to the
relation that [M] = [N] + [Q] whenever we have a short exact sequence 0 → N →
M→ Q→ 0. If A has a symmetric monoidal structure where ⊗ commutes with ⊕ in
each variable, then K0(A) admits a canonical ring structure.

We now introduce two important players of representation theory:

Definition 2.3. Let G be a finite group and A a commutative ring. We define

P(A[G]) := K0

(
Fun(BG, ModA)

fg,proj
)

and RA(G) := K0

(
Fun(BG, Modfg,proj

A )
)

Since Fun(BG, Modfg,proj
A ) has a natural symmetric monoidal structure given by ⊗A,

RA(G) has a natural commutative ring structure.

Remark 2.4. Note that Fun(BG, ModA)
fg,proj ≃ Modfg,proj

A[G]
.

One of the goals of the representation theory for finite groups G is to understand
P(k[G]) and Rk(G) as much as possible. Here is a way to relate them:

Construction 2.5 (Cartan morphisms). There is an inclusion of exact categories
Fun(BG, Modk)

fg,proj ⊆ Fun(BG, Modfg,proj
k ). This induces a group homomorphism

P(k[G])
c−−→ Rk(G)

which is usually called the Cartan morphism.

In the case where |G| ∈ k×, we can get a relatively good understanding of these
groups. The key notion here is that of semi-simplicity:

Definition 2.6. Let k be a field and V be a G–representation over k. We say that it
is simple if it has no non–trivial G–subrepresentations (ue. it has no nontrivial k[G]–
submodules); it is said to be semi–simple if it is a finite direct sum of simple represen-
tations.

Proposition 2.7 (Maschke’s theorem). Let R be a commutative ring in which |G| is in-
vertible, and let M, N be G-representations in R-modules, with an R-linear, equivariant map
f : M → N. If M has an R-linear section (resp. retraction), then it has one which is also
G-equivariant.

In particular, if R = k is a field in which |G| is invertible, then any k[G]-linear injection
(resp. surjection) admits a retraction (resp. section).

Proof. The key point here will be our ability to average over G3. We deal with the case
of a section, but the case of a retraction is completely symmetric.

3This averaging trick also works in the setting of compact topological groups over R, using Haar
measures; but this is out of the scope of these notes.
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Fix an R-linear section s : N → M, i.e. f ◦ s = idN . The map s might not be
G-equivariant, equivalently, we might not have s = gsg−1. We fix this by defining
s̃ := 1

|G| ∑g∈G gsg−1. It is easy to verify the following facts: first, s̃ is R-linear and
G-equivariant, and second, f ◦ s̃ = idN (this latter part is where we use the fact that
we divided by |G|, and that f is itself G-equivariant).

Corollary 2.8. Let k be a field in which |G| is invertible. The category of G-representations in
k-vector spaces is semi-simple: any k[G]-module is a direct sum of irreducible representations,
i.e. simple modules (which are necessarily projective).

The non–modular case: standard character theory

Classifying representations in characteristic prime to |G| thus boils down to classi-
fying irreducible representations, and this is done via character theory. This is a key
concept which makes sense without |G| ∈ k× and will be relevant also when |G| is
not invertible, so we mention it briefly now.

Construction 2.9 (Characters). Let M be a finite–dimensional G–representation over
k. We define its character as the map χM : G → k given by g 7→ tr(g | M), where the
latter is the trace of the k-linear endomorphism of M given by the action of g. Because
traces are cyclically invariant, this factors canonically through the set of conjugacy
classes of G, G/conj → k. Writing C(G/conj, k) for the abelian group of set maps
G/conj→ k, the above construction yields the homomorphism

χ : Rk(G) −→ C(G/conj, k)

called the character map.

Theorem 2.10. Let k be a field in which |G| is invertible. The character map χ : Rk(G) →
C(G/conj, k) is injective. If furthermore k is algebraically closed, this induces an isomor-
phism Rk(G)⊗Z k ∼= C(G/conj, k).

Corollary 2.11. Let k be an algebraically closed field in which |G| is invertible. In this case,
the number of irreducible representations of G over k is equal to the number of conjugacy
classes of elements of G.4

The modular case setup: Serre’s cde formalism

In characteristic dividing |G|, the preceding results break down, as we can no longer
average over G and thus lose semi-simplicity. Consequently, the Cartan morphism
P(k[G])→ Rk(G) is almost never an isomorphism.

We start by discussing an extreme example of this failure, namely the case of p-
groups. In this case, we can completely describe P(k[G]) and Rk(G):

4However, there is no explicit bijection in general.
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Proposition 2.12. Let G be a p-group and k a field of characteristic p.

• The only simple k[G]-module is k with the trivial G-action.

• Any projective k[G]-module is free.

In particular, the Cartan morphism is identified with the map Z
|G|−→ Z, which is not an

isomorphism.

Example 2.13. Let G be a finite group, and let f : G → k a morphism to the additive
group of k. Let Vf be the vector space k2 with the following G-action: g · (x, y) =

( f (g)y + x, y). This is an extension of k by itself, and the assignment f 7→ Vf induces
an isomorphism between hom(G, k) and the set of isomorphism classes of extensions
of k by itself.

More qualitatively, one can ask how complicated the representation theory of G is,
in computational terms. For instance, a theorem of Higman says that if p is odd and
the p–Sylow subgroups of G are not cyclic, then k[G] is of wild representation type5.

This is really a key difference with characteristic 0: representations are way too
complicated, and the simple modules and projective modules only represent a tiny
piece of it. Understanding them is, however, a first step to understanding the whole
thing, and we can actually analyze them. Some tools are available for this thanks in
large parts to the work of Brauer. The general setting for all these machinery is:

Setting 2.14 (Coefficients in modular representation theory). Fix a field k of charac-
teristic p, a complete discrete valuation ring R (with maximal ideal m) with residue
field k and quotient field K of characteristic 0. A typical example would be to start
with k, take R = W(k), the Witt vectors of k, and K the fraction field of R. The goal is
to use the span

K ←− R −→ k

as a bridge to transport knowledge from the left (where non–modular methods are
available) to the right.

The reason this kind of setting can be helpful is that it will help us relate character-
istic p to characteristic 0 is idempotent lifting:

Lemma 2.15 (Idempotent–lifting). Let A be a ring and I a 2-sided ideal for which A is
I-complete. Any idempotent e in A/I has a lift to A.

Applying this to Mn(A) with the ideal Mn(I) also gives lifts for projective modules,
and one can prove that they are in fact unique up to isomorphism, thus getting an
isomorphism K0(A)→ K0(A/I).

5This term essentially means that for any finite dimensional k-algebra B, the category of finite dimen-
sional representations of B embeds into the category of finite dimensional representations of k[G].
This has interpretations in terms of computability theory and essentially means: computationally
intractable.
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Proof. A being I-complete means that A ∼= limn A/In, so if we can lift e at any stage
A/In, we can lift it to A. Furthermore, each A/In+1 → A/In is a quotient by a square
zero ideal, so we may in fact assume I2 = 0.

In this case, given an arbitrary lift r of e, we find that ẽ := 3r2 − 2r3 is still a lift of e,
and it is in fact idempotent.6

We will now describe Serre’s cde triangle, which is going to look as follows:

P(k[G]) Rk(G)

RK(G)

e d

c

(1)

Here, c is the Cartan morphism which we have already described. The philosophical
point of this is that this factors the map c in the modular world via the non–modular
object RK(G), and the hope is then that we can use this to transport insights from the
easier non–modular setting to the modular one. We now define d, e. The simplest is e:

Construction 2.16 (The idempotent–lifting map e). By idempotent-lifting
Lemma 2.15, and the fact that R is m-complete, basechange along R → k induces an
isomorphism P(R[G])

∼=−→ P(k[G]).
So we may define e : P(k[G]) → RK(G) as the composite P(k[G])

≃←− P(R[G]) →
P(K[G]) ∼= RK(G). Concretely, given a projective k[G]-module P, e lifts it to the unique
(up to non-unique isomorphism) projective R[G]-module P̃ lifting it, and then takes
K ⊗R P̃. Presumably the letter e was used because it is the standard notation for
idempotents.

Construction 2.17 (The decomposition map d). Now for d, first recall we make the
following observation: if P is a K-module with a G-action and L ⊂ P is an R-lattice
therein, i.e. a sub-R-module with K ⊗R L ∼= P along the canonical map, then we
can “average” L over G to get a lattice which is stable under G, namely, one can take
L′ := ∑g∈G gL. This is stable under G , and it is still a lattice, thus it is an R[G]-module,
which is R-projective. The claim is then that the class of L′ ⊗R k ∼= L′/mL′ in Rk(G)

is independent of the choice of L, L′, and this thus gives a definition of d : RK(G) →
Rk(G), the “decomposition” morphism.

Here is a result summarising the basic points about the cde triangle.

Proposition 2.18 (Omnibus cde). Let (R, k, K) be as in Setting 2.14.

1. The cde triangle diagram (1) commutes;

6This magical “3r2 − 2r3” does not come out of nowhere, see https://sites.google.com/view/

maxime-ramzi-en/notes/idempotent-lifting for a slightly more enlightening proof, and a deriva-
tion of this formula.
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2. The cde triangle is compatible with inductions and restrictions along subgroup inclu-
sions. In the language of §9, this is a commuting diagram of Mackey functors;

3. The map d : RK(G)→ Rk(G) is a ring homomorphism.

Proof. We will only prove point (3). To do this, simply note that if Li ⊂ Pi are R-
lattices, stable under G for i ∈ {0, 1}, then L0 ⊗R L1 ⊂ P0 ⊗K P1 is an R-lattice, stable
under G, and k⊗R − is symmetric monoidal.

We now sketch a situation that illustrates how the cde triangle can successfully
import characteristic 0 knowledge into the characteristic p setting.

Corollary 2.19. Let G be a finite group, k a field of characteristic p, and pn the highest power
of p dividing |G|. The cokernel of the Cartan map Construction 2.5 is pn-torsion.

Sketch of proof. The proof consists of three main steps.

1. For simplicity, we assume K is large enough for the theorem of Brauer to apply.
One can deduce the general case from this one.

2. We may reduce the question to the case when G is a so–called elementary group.
We defer the details of this step to Exercise 2.25 Item 4. The key point is that
we will transport a Dress induction theorem (cf. Theorem 9.6) on RK(G) onto
Rk(G) via the d morphism in cde.

3. In the case of elementary groups, we may work out explicitly that the Cartan

map looks like Zk pn

−→ Zk, whose cokernel is then pn–torsion as required. This
is analogous Proposition 2.12.

This completes the proof sketch.

The point of this corollary was not to state a particular result but to showcase sev-
eral proof-techniques in modular representation theory. In step (1), we see the stan-
dard manouevre of separating “absolute” questions (over sufficiently large fields) and
rationality questions (given the answer to a question over a large field K′, how does
one deduce things about the same question over smaller fields?). Next, step (2) shows
us how to use the cde triangle - in this case, the d morphism - to push characteristic 0
results to characteristic p. Here we have also used the so–called Dress induction the-
orem in Mackey theory (more on this in §9) to reduce the problem to simpler groups
for which explicit computations are possible.

Modular case tool I: Brauer characters

Another way of connecting characteristic 0 and characteristic p, still in the same Set-
ting 2.14 (with K sufficiently large, say), is via so-called Brauer characters. From the
perspective of the cde triangle, one can describe them as follows: ordinary characters
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provide a morphism RK(G) → C(G/conj, K), and if we restrict our class functions to
the p-regular conjugacy classes, i.e. the conjugacy classes of elements that have order
prime to p, the corresponding morphism RK(G) → C(Greg/conj, K) factors through
d : RK(G)→ Rk(G). A construction is given as follows:

Construction 2.20 (Brauer characters). By Hensel’s lemma, prime-to-p roots of unity
in k admit lifts to R. Thus if k has all prime-to-p roots of unity, so does K, and further-
more, there is an isomorphism (given by reduction mod m) between the correspond-
ing groups µ

p′
K and µ

p′

k . We let λ 7→ λ̃ denote the inverse of this isomorphism.
Given a finite dimensional k[G]-module V and g ∈ Greg, as g has order prime to p,

we find that the action of g on V is diagonalizable, with eigenvalues λi (counted with
multiplicity). We let χ(g) := ∑i λ̃i ∈ K.

The basic properties of these characters are easy to check: it behaves similarly to or-
dinary characters, e.g. it is additive along short exact sequences, χ(1G) = dim(V), it is
conjugation invariant, and finally the corresponding map Rk(G) → C(Greg/conj, K),
restricted to RK(G), recovers (the restriction to Greg of) ordinary characters.

Modular case tool II: block theory

The final tool we introduce in these recollections is the theory of blocks and defect
groups. The idea is to split the representation theory of G into different pieces, called
blocks.

Warning 2.21. The word “block” is a bit overloaded, in the sense that it can correspond
to different types of objects. The point is that there are canonical ways of matching
these different types of objects, so there is in general no possible confusion.

For Λ ∈ {R, k, K}, the algebra Λ[G] admits a decomposition
⊕

i Bi into a finite direct
sum of indecompsable two-sided ideals. These are generated by a central, primitive
idempotent ei ∈ Λ[G].

Given a primitive central idempotent e in an algebra A, three things correspond to
it: firstly, the idempotent e itself, secondly, the summand eA it generates, and thirdly,
on a more representation-theoretic note, the full sub-category of A-modules M such
that eM = M. Any of these three things is called a block of the algebra A.

We start by noting that, essentially by idempotent-lifting (cf. Lemma 2.15),for a
triple such as (R, k, K) from Setting 2.14, there are really only two notions of block:

Proposition 2.22. Reduction mod m induces an isomorphism between central idempotents
in R[G] and central idempotents in k[G]; in particular it induces a bijection their respective
sets of primitive central idempotents.

We can also identify the blocks of K[G]:

Proposition 2.23. The blocks of K[G] bijects with the set of irreducible representations of G
over K. If K is sufficiently large, this is equal to the number of conjugacy classes of G.
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We further note that the block decomposition Λ[G] ∼=
⊕

i Bi induces a decompo-
sition of the whole module category, namely ModΛ[G] ≃ ∏i ModBi . A Λ[G]-module
M “belongs” to a block Bi, corresponding to the idempotent ei, if in the above prod-
uct decomposition, it belongs to the factor ModBi , or, equivalently, if ei M = M, or
equivalently if ej M = 0 for all the other primitive central idempotents ej.

This is also the maximal decomposition of ModΛ[G] as a product of categories, so
the blocks of Λ[G] are a way to simplify the study of ModΛ[G] as much as possible.

Example 2.24. As the trivial Λ[G]-module Λ is indecomposable, it belongs to a single
block. This is called the principal block, often denoted B0.

Exercise 2.25.

1. The goal of this exercise is to prove Proposition 2.12. Throughout, k is a field of
characteristic p.

a) Prove that a p-group always has a nontrivial center. Hint: use the orbit-
stabilizer theorem for the conjugation action of the group on itself.

b) Using induction, deduce that any G-representation over k has a nonzero
invariant vector, that is, an element v with gv = v for all g ∈ G. Hint: We
are in characteristic p, so gpk − 1 = (g − 1)pk

. Apply this to a nontrivial
element in the center to induct on the size of the group G.

c) Deduce that any G-representation V has a filtration 0 = V0 ⊂ V1 ⊂ ... ⊂
Vn = V where each Vi+1/Vi has a trivial G-action.

d) Using the previous item over k[G], deduce that k[G] is a local ring and
hence that any projective module is free. Conclude with a proof of Propo-
sition 2.12.

e) If you know about projective covers, state and prove an analogous result
for groups of the form P× S where P is a p-group and S a p′-group.

2. Let k ⊂ k′ be a field extension. Prove that the induced morphism Rk(G) →
Rk′(G) is injective, for any finite group G. As a hint, you’ll want to
prove that given two nonisomorphic irreducible representations V0, V1 over k,
homk′[G](k′ ⊗k V0, k′ ⊗k V1) is trivial.

3. Prove that the decomposition morphism d : RK(G)→ Rk(G) is well-defined. As
a hint, you’ll want to notice that given two R-lattices L0, L1 in a K-vector space
V, there is some integer k such that mkL0 ⊂ L1. If you know about K-theory,
try to prove that there is even a morphism of spectra K(Fun(BG, Perf(K))) →
K(Fun(BG, Perf(k))) which induces d on π0. Prove also that the cde triangle
commutes.

4. We work out step (2) in Corollary 2.19. Using the compatibility of the ring map
d with induction and restriction Proposition 2.18 (2), prove that if G is a group
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and F a family of subgroups of G such that
⊕

H∈F RK(H)
(IndG

H)H∈F−−−−−−→ RK(G)

is surjective, then so is the corresponding map from Rk. Compare with Theo-
rem 9.6.

Now step (2) is then a direct consequence of a theorem of Brauer which says
that if K is “large enough” (contains enough roots of unity), then the map

⊕HIndG
H :

⊕
H≤G, H elementary

RK(H) −→ RK(G)

is surjective. Here, an elementary subgroup of G is a subgroup which, for some
prime q, is isomorphic to C×Q where Q is a q-group and C is a cyclic group of
order prime to q7.

3. Basic chromatic homotopy theory

Chromatic homotopy theory begins with the observation that certain cohomology
theories naturally give rise to so-called formal groups (cf. §6 for more details). This
connection between stable homotopy theory and the theory of formal groups allows
us to better understand the large-scale structure of the ∞-category of spectra. Among
other things, the notion of height of a formal group has an incarnation in stable homo-
topy theory through the chromatic filtration and the corresponding notions of height.

Our goal in this section is not to give a complete overview of this theory, rather
to introduce the players and ideas that will be relevant for the masterclass. Lurie’s
lecture notes [Lur10] are a good introduction to go into more depth than what we
have presented here. There are also two chromatic books by Doug Ravenel that cover
the foundations of chromatic homotopy theory [Rav23], [Rav92].

We begin by an important theorem, one that more or less justifies the idea that
chromatic homotopy theory is a way to organize the “large-scale structure” of Sp. To
state it, we need a black–boxed “definition”:

“Definition” 3.1. For every prime p (usually implicit in the notation), and every 0 ≤
n ≤ ∞ (the “height”), there is a spectrum K(n), called Morava K-theory at height n.
For 0 < n < ∞, its homotopy groups are Fp[v±1

n ] where |vn| = 2(pn − 1).
For n = 0, K(0) = Q, and for n = ∞, K(∞) = Fp.

Warning 3.2. When 0 < n < ∞, this spectrum is not an Eilenberg-MacLane spec-
trum, and in particular it is not

⊕
k∈Z Σ2(pn−1)kFp. In particular, it does not come from

classical discrete algebra.

Example 3.3. At height 1, Morava K-theory is related to complex topological K-theory,
namely K(1) = KU/p. In particular, v1 can be thought of as the Bott periodicity
element.8

7Not to be confused with “elementary abelian” groups, which are not the same as “elementary groups
that are abelian”

8The analogous fact at higher heights involves so-called Morava E-theory, or Lubin-Tate theory.
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With these preliminaries, we can now state the thick-subcategory theorem:

Theorem 3.4 (The thick subcategory theorem, [HS98]). Fix a prime p. The following is
an exhaustive and non-redundant list of the thick subcategories of Spω

(p): For any 0 ≤ n ≤ ∞,
C≥n := {X ∈ Spω

(p) | K(n− 1)⊗ X = 0}, as well as C≥0 := Spω
(p).

Furthermore, for all 0 ≤ n ≤ ∞, we have C≥n+1 ⊂ C≥n, and finally C≥∞ = 0.

Remark 3.5. Among other things, this theorem states that for a finite p-local spectrum
X, if K(n + 1)⊗ X = 0, then K(n)⊗ X = 0. This is not true in general for non-finite
spectra. For example, K(n + 1) ⊗ K(n) = 0, but K(n) ⊗ K(n) is not zero, as K(n)
admits a homotopy ring structure.

In fact, for commutative ring spectra, the implication is reversed! See [Hah16, The-
orem 1.1] or [BSY22, Theorem 1.5].

This suggests the following important definition:

Definition 3.6. A finite p-local spectrum X is said to be of type n if K(n− 1)⊗ X = 0
and K(n)⊗ X ̸= 0.

Remark 3.7. By the thick subcategory theorem, for any type n spectrum X, the thick
subcategory generatd by X is exactly C≥n.

The fact that this list of thick subcategories is non-redundant is a consequence of
the theory of vn-self maps, which we will mention a bit later; while the fact that it is
exhaustive is a consequence of the nilpotence theorem, another foundational result
in chromatic homotopy theory, showcasing the importance of Morava K-theories. It
has several equivalent formulations, here we give the one that is the most suitable to
prove the thick subcategory theorem (which we will not do in this document):

Theorem 3.8 (The nilpotence theorem [HS98]). Let f : X → Y be a map of finite p-local
spectra such that for all 0 ≤ n ≤ ∞, K(n)∗ f : K(n)∗X → K(n)∗Y is zero.

There is an integer k such that f⊗k : X⊗k → Y⊗k is nullhomotopic.
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The thick subcategory theorem suggests the following pictorial description of Spω:

. . . . . . . . . . . .

ker(K(2)) ker(K(2)) . . . ker(K(2))

ker(K(1)) ker(K(1)) . . . ker(K(1)) . . .

Spω
2−tors Spω

3−tors . . . Spω
p−tors . . .

Spω
tors

Spω

(where, of course, the K(n)’s lying over 2 are not at all the same as the ones lying over
3, or over a different prime p)

This is one incarnation of the chromatic filtration. In this picture, the ≤ n-part can
be seen as an open in the “spectrum” of Sp (precisely, the Balmer spectrum of Spω). It
turns out that there is a chromatic analogue of restriction to this open piece, namely
Ln-localization.

Definition 3.9. A spectrum X is Ln-acyclic if for all k ≤ n, K(k)⊗ X = 0.
A spectrum Y is Ln-local if for any Ln-acyclic spectrum X, Map(X, Y) = 0.

One can reinterpret Ln-acyclicity as acyclicity with respect to Morava E-theory. For
this, we again need a fake definition:

“Definition” 3.10. For every prime p (implicit in the notation), every perfect field
k of characteristic p and every height 0 < n < ∞, there is a K(n)-local spectrum
En, called Morava E-theory at height n. For 0 < n < ∞, its homotopy groups are
W(k)[[u1, ..., un−1]][u±1] with |ui| = 0, |u| = 2, where W(k) is the ring of Witt vectors
of k.

Warning 3.11. As in the case of Morava K-theory, the above is very far from a defini-
tion. The spectrum En is again very far from an Eilenberg-MacLane spectrum, and it
is not captured by its homotopy groups alone.

Warning 3.12. In principle, En depends not only on k and n, but also on a formal group
G on k, of height n, so one should really write E(k, G). When k is algebraically closed,
any two formal groups on k of the same height are isomorphic; and in practice, many
of the properties of E(k, G) really only depend on n (and p, of course), so this abuse
of notation is not so problematic.
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Remark 3.13. The spectra E(k, G) depend functorially on the pair (k, G), and are in
fact commutative ring spectra, functorially (and in a more or less unique way). They
are extremely important in chromatic homotopy theory. For instance they have prop-
erties analogous to those algebraically closed fields (see [Rog08],[BSY22]).

Example 3.14. At height 1, and for k = Fp, E1 is simply KUp, p-completed topological
K-theory.

Remark 3.15. In the above example, we see that KU is an “integral” version of all the
E1’s at different primes. At higher heights, it is not clear whether there are analogues,
that is, spectra that can be completed at any prime to give some variant of En (even if
not exactly the spectrum En). At height 2 for instance, topological modular forms can
be seen as an attempt to get such an integral version of E-theory.

We can now state without the proof the following

Proposition 3.16. A spectrum X is Ln-acyclic if and only if it is En-acyclic.

Remark 3.17. For example in this proposition, we see that En-acyclicity only depends
on the prime p and the height n.

We can now introduce most of the “chromatic localizations”, and make basic ob-
servations about them.

Example 3.18. With E = En, Morava E-theory, LEn = Ln because a spectrum is En-
acyclic if and only if it is Ln-acyclic.

A deep theorem about Ln is that it is a smashing localization:

Theorem 3.19 (The smash product theorem, [Rav92]). Localization at En is smashing,
namely the canonical map LnS⊗ X → LnX is an equivalence for any spectrum X.

Remark 3.20. Note that LnS is not equivalent to En.

This theorem shows that localizing at En really behaves like restriction to an open,
restriction to “heights ≤ n”. Once we are in height ≤ n, we can try to complete at the
height. One way to do that is to K(n)-localize:

Example 3.21. Localization at K(n), LK(n) is not a smashing localization.

We will later introduce another localization, namely T(n)-localization, which be-
haves somewhat like LK(n), i.e. like a completion at the height n.

Before going there, we introduce a variant of Ln.

Example 3.22. We let L f
n denote the localization at the class of acyclics Ind(C≥n+1).

Note that, while the kernel of Ln-localization consists exactly of the En-acyclics, the
kernel of L f

n-localization consists exactly of the spectra that are filtered colimits of
compact En-acyclics.

This justifies the name/notation: the f stands for “finite”.
It is not hard to prove that L f

n-localization is also smashing.
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We now aim to introduce T(n)-localizations, the last chromatic localization we will
mention. For this, we need the notion of a vn-self map, a central object in chromatic
homotopy theory. Historically, they were discovered as non-trivial “periodic” fami-
lies of elements in the stable homotopy groups of spheres. From the perspective of
this short introduction, they can be seen as ways to build type (n + 1)-spectra from
type n spectra, thus ensuring that each of the inclusions C≥n+1 ⊂ C≥n described above
is proper.

Definition 3.23. A vn-self map9 on a finite p-local spectrum F is a a self-map, possibly
of non-zero degree, v : ΣkF → F such that K(m)∗v is nilpotent for m ̸= n, and an
isomorphism for m = n.

Observation 3.24. If F is of type > n, then in particular K(n)∗F = 0 so the zero map is
a vn-self map.

If F is of type < n, then F does not admit a vn-self map.

This observation says that vn-self map are really only interesting for type n spectra.

Proposition 3.25. Suppose F is a type n-spectrum, and v is a vn-self map. The cofiber of v,
F/v is a type n + 1-spectrum.

One can prove many properties of the vn-self maps, such as their asymptotic
uniqueness, or more generally their asymptotic compatibility with any map. The
striking theorem here is the following:

Theorem 3.26 (The periodicity theorem [HS98]). Any type n spectrum admits a vn-self
map.

Further, for any type n spectrum F with a vn-self-map v, one can define the tele-
scope of (F, v):

Definition 3.27. If v : ΣkF → F is a self-map, one may define its telescope as the
sequential colimit of the diagram

F → Σ−kF → Σ−2kF → Σ−3kF → . . .

The various basic properties of vn-self maps guarantee that the telescope of (F, v)
is independent of the choice of the chosen vn-self map v, and in fact:

Lemma 3.28. If F, F′ are type n-spectra, then Tel(F) is in the thick subcategory generated by
Tel(F′) (and conversely, by symmetry).

In particular, they have the same Bousfield class, i.e. for any spectrum X, Tel(F)⊗ X =

0 ⇐⇒ Tel(F′)⊗ X = 0.

Because of this, one can define:

9At the implicit prime p
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Definition 3.29. A spectrum X is T(n)-local if and only if for some (and hence all)
type n spectrum F, X is Tel(F)-local.

The corresponding localization is called T(n)-localization, denoted LT(n).

Remark 3.30. Note that T(n) itself is not a well-defined spectrum, only the correspond-
ing Bousfield class is defined. Nonetheless, it is not uncommon to let T(n) be Tel(F)
for some type n spectrum F. The corresponding localization does not depend on this
choice, but some arguments are simpler or possible through specific choices, e.g. if
F is chosen to be a ring spectrum (which is always possible, as one can prove that
End(F) ≃ F⊗ F∨ is always type n, whenever F is).

Example 3.31. For a type n spectrum F, LT(n)F ≃ Tel(F). For a type m spectrum X,
where m > n, LT(n)X = 0.

Like K(n)-localization, T(n)-localization is like a “completion at the height n” - as
such, it is also not smashing. They share many formal properties, partly because:

Observation 3.32. Any K(n)-local spectrum is T(n)-local.

But in fact, the similarities go deeper and do not all follow from this fact. In fact,
the telescope conjecture (now believed to be false by most experts) is equivalent to the
statement that T(n)-local also implies K(n)-local.

Example 3.33. At height n = 1, the telescope conjecture holds, namely K(1)-local is
equivalent to T(1)-local.

Example 3.34. The version of the telescope conjecture that states that the map
LT(n)X → LK(n)X is an equivalence is known to hold in some cases, e.g. if X is an
MU-module.

Example 3.35. For a commutative ring spectrum R, LT(n)R = 0 if and only if LK(n)R =

0. Note that this does not imply that LT(n)R ≃ LK(n)R.

Remark 3.36. Another formulation of the telescope conjecture is that L f
n is equivalent

to Ln, i.e. that any X with En ⊗ X = 0 is a filtered colimit of compact spectra with the
same property.

One of the key features that distinguish SpT(n) and SpK(n) from Sp is their relation-
ship with the Tate construction:

Theorem 3.37 (Telescopic Tate vanishing [Kuh04]). Let G be a finite group. In SpT(n) and
SpK(n), the Tate construction with respect to G is always 0, i.e. there is a natural equivalence
MhG ≃ MhG for any T(n)-local (resp. K(n)-local) spectrum M with G-action. Note that
here, the homotopy orbits are taken in SpT(n) (resp. SpK(n)).

Remark 3.38. In fact, this is true more generally for π-finite spaces, cf. [HL13], [CSY22].

We mention one final key tool about T(n)-localization, namely, the existence of the
Bousfield-Kuhn functor. This is a functor, usually denoted Φ : S∗ → SpT(n) for n > 0,
with the following remarkable property:
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Theorem 3.39 (Bousfield-Kuhn). The composite Φ ◦Ω∞ : Sp → SpT(n) is equivalent to
T(n)-localization.

This is remarkable because this means that the T(n)-localization of a spectrum X
only depends on its underlying space, with no information abouts its deloopings, or
its highly structured commutative monoid structure. This rather striking fact is by
now a key fact in chromatic homotopy theory, and can be used to rederive, among
other things, Kuhn’s telescopic Tate vanishing, cf. [CM17].

Remark 3.40. An immediate corollary is that the functor of K(n)-localization also fac-
tors through S∗.

Exercise 3.41. 1. Let C ⊂ Spω be a stable subcategory, and let L denote the localiza-
tion at the class of acyclics given by Ind(C). Prove that L is smashing. Formulate
and prove a more general statement, replacing Sp with a presentably symmetric
monoidal stable ∞-category which is compactly generated, and where compacts
agree with dualizables.

2. Prove Observation 3.24, i.e. that type < n-spectra cannot admit vn-self maps. If
v : ΣkX → X is such a vn-self map, one can try to consider the cofiber X/v.

3. Prove Proposition 3.25, i.e. that if F is a type n spectrum, and v a vn-self map,
then F/v is a type n + 1-spectrum.

4. Prove that if F is a type n finite spectrum, then so is End(F) ≃ F⊗ F∨.

5. Prove that if F is a type n spectrum, L f
nF ≃ Tel(F). Prove that L f

n-acyclics are also
T(n)-acyclic, and that Tel(F) is T(n)-local. Deduce the first part of Example 3.31,
namely that LT(n)F ≃ L f

nF ≃ Tel(F).

6. Prove the second part of Example 3.31, that is, if X is a finite p-local spectrum of
type > n, then LT(n)X = 0.

7. Prove Observation 3.32, namely that a K(n)-local spectrum is T(n)-local.

8. For n > 0, prove that any bounded above spectrum is T(n)-acyclic. In par-
ticular, all Eilenberg-MacLane spectra are T(n)-acyclic. Think about how this
relates to the Bousfield-Kuhn functor.
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Part I.

Week 1
4. Borel equivariant theory

Definition 4.1. Let G be a group and C an ∞–category. The associated Borel equivariant
∞–category is defined to be Fun(BG, C) = CBG.

Remark 4.2. Concretely, an object in Fun(BG, C) consists of the following data:

• An object X ∈ C,

• the datum of an equivalence X
g−→
≃

X for every g ∈ G,

• the datum of an equivalence h ◦ g ≃ hg of maps X → X for every pair (g, h) ∈
G× G,

• and higher and higher coherences. . .

Warning 4.3. When G is a finite group, the ∞–category BG is very much not finite!
The proof of this will be deferred to the exercise. In particular, this means that (−)hG

does not commute with all colimits and that (−)hG does not commute with all limits
in general. This is a very important philosophical point underpinning why study-
ing Borel equivariant situations is a hard and interesting problem in the homotopical
setting.

Remark 4.4. We collect here the basic adjunctions enjoyed by these Borel equivariant
∞–categories. Let p : BG → ∗ be the unique map. And for a subgroup H ≤ G, write

BH i−→ BG for the induced map on classifying spaces (which is also a covering space
with fibre G/H). Then for C an ∞–category which has the appropriate (co)limits,
taking the appropriate Kan extensions, we get the two sets of adjunctions

C Fun(BG, C) Fun(BH, C)trivG :=p∗

(−)hG :=p!

(−)hG :=p∗

ResG
H :=i∗

IndG
H :=i!

CoindG
H :=i∗

(2)

The functor (−)hG is called the G–homotopy orbits, (−)hG the G–homotopy fixed points,
IndG

H the induction, and CoindG
H the coinduction. When C is semiadditive, the Kan

extension formula for the map BH → BG shows that IndG
H ≃ CoindG

H. Furthermore,
under the pointwise symmetric monoidal structures on the functor categories that
appear in (2), the middle functors are symmetric monoidal (in particular trivG1 ∈
Fun(BG, C) is always the tensor unit), and so their respective right adjoints (−)hG

and CoindG
H are lax symmetric monoidal.
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Proposition 4.5. Let G be a group and C an ∞–category. For any A, B ∈ CBG, we have an
equivalence

MapCBG(A, B) ≃ MapC(A, B)hG

Remark 4.6. Combining the last few points, we see that when G is a finite group,
trivGX ∈ Fun(BG, C) need no longer be compact even if X ∈ C were. For instance,
the sphere spectrum with trivial G–action trivGS ∈ Fun(BG, Sp) is no longer compact
in the Borel equivariant ∞–category.

Lemma 4.7. Let C ∈ Catperf
∞ considered as an object with trivial G–action. Then we have the

equivalences

colim
BG
C ≃ Fun(BG, IndC)ω lim

BG
C ≃ Fun(BG, C)

Proof. The second equivalence is covered in Exercise 4.11 Item 2. For the first, recall
that we have an equivalence Ind : Catperf

∞ ⇄ Prst,L,ω : (−)ω from Theorem 1.28. So
we could use this equivalence to compute in presentable ∞–categories and consider
IndC with the trivial G–action. The value of this manoeuvre is that we have a further
equivalence Prst,L,ω ≃ Prop

st,R,filt where the latter is the ∞–category of stable presentable
∞–categories where morphisms are right adjoint functors preserve ω–filtered colim-
its. Since this was a contravariant equivalence, we need to compute the limit of the
diagram indexed over BG in Prst,R,filt: here we have used that BG was an ∞–groupoid
and so passing to right adjoints is just taking the inverse. But now by the second
equivalence, we see that the limit is Fun(BG, IndC). And so passing back to Catperf

∞ ,
we obtain colimBG C ≃ Fun(BG, IndC)ω as wanted.

We end this section with a few words about the various relationship between dif-
ferent kinds of compact objects in the setting of the so–called parametrised homotopy
theory, ie. the theory of Fun(Z, C) where C is a presentable ∞–category and Z ∈ S .
The two cases that we will consider are Z = BG where G is a finite group and Z = X
where X is a compact space. We include this discussion about compact spaces only
as a cautionary tale to be careful about compactness in the parametrised setting.

The first case is left as an exercise to the reader:

Proposition 4.8. Let G be a finite group and C a presentable ∞–category. The inclusion
Fun(BG, C)ω ⊆ Fun(BG, C) factors through Fun(BG, Cω).

Remark 4.9. For R ∈ CAlg(Sp), it is a standard fact that an object in ModR is compact
if and only if it is dualisable, so that we have an equivalence Modω

R ≃ Moddbl
R . Thus,

even though we only have an inclusion Fun(BG, Modω
R ) ⊆ Fun(BG, ModR)

ω which
is in general not an equivalence, we do have an equivalence

Fun(BG, Modω
R ) ≃ Fun(BG, Moddbl

R ) ≃ Fun(BG, ModR)
dbl

by virtue of Proposition 1.39.
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Now for the other case, we have a reverse inclusion, and as this is tangential to the
masterclass, we will be brief with the proof.

Proposition 4.10. Let X ∈ S be compact and C a presentable ∞–category. The inclusion
Fun(X, Cω) ⊆ Fun(X, C) factors through Fun(X, C)ω.

Proof. Since π0X is finite, without loss of generality we can suppose π0X = {x}.
Since compact objects are retracts of finite colimits, using functoriality of limits, we
may reduce to the case when X ∈ S is finite, ie. it is built as a colimit of a finite
diagram. In this case, let ζ ∈ Fun(X, Cω) and ∂ : J → Fun(X, C) be a filtered diagram.
We need to show that the map of spaces

colim
J

MapCX (ζ, ∂j) −→ MapCX (ζ, colim
J

∂j)

is an equivalence. Now by the formula for mapping spaces in functor categories
Fact 1.9, this is equivalent to

colim
J

lim
X

MapC(ζ(x), ∂j(x)) −→ lim
X

MapC(ζ(x), colim
J

∂j(x))

Now finite limits commute with filtered colimits in spaces, so the source is equivalent
to limX colimJ MapC(ζ(x), ∂j(x)) ≃ limX MapC(ζ(x), colimJ ∂j(x)) where the equiva-
lent was by our hypothesis that ζ(x) ∈ Cω. This completes the proof.

Exercise 4.11.

1. Prove Warning 4.3 that BG does not have a finite cell structure when G is a finite
group. Hint (which we learnt from Thomas Goodwillie): consider the covering
space over BG associated to a nontrivial subgroup Cp and the Fp–cohomology of BCp.

2. Prove that (trivGC)hG ≃ Fun(BG, C) and (trivGX)hG ≃ Map(BG, X). Hint: one
way is to use the formula for limits in Cat∞ from §1.

3. Prove Proposition 4.5. Hint: By virtue of Item 2, you can prove more generally that
mapping spaces in limits of ∞-categories are computed as limits of mapping spaces -
for this, given a diagram C• : I → Cat∞ of ∞-categories, and two points x, y : ∗ →
limI Ci, consider the I-indexed diagram

∗ → Ci × Ci ← Fun(∆1, Ci)

and use the fact that limits commute with pullbacks to express MaplimI Ci
(x, y) in terms

of mapping spaces in the Ci’s.10

4. Prove Proposition 4.8, i.e. that there is a natural inclusion Fun(BG, C)ω ⊆
Fun(BG, Cω). Hint: letting i : ∗ → BG be the unique map, compute the right ad-
joint i∗. You might want to use the fact that a left adjoint preserves compact objects if
and only if the right adjoint preserves filtered colimits.

10Why does this work for Fun(BG, C), but not for Fun(J, C) for ∞-categories that aren’t ∞-groupoids ?
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5. Tate constructions and stable module categories

Construction 5.1 (Norm maps in classical algebra). Let G be a finite group acting on
an abelian group M. Write

MG := M/(m− gm : m ∈ M, g ∈ G) MG := {m ∈ M : gm = m∀g ∈ G} ⊆ M

The norm map is defined as

Nm: MG −→ MG :: [m] 7→ ∑
g∈G

gm

Crucially, when |G| acts invertibly on M, Nm is an isomorphism with inverse

Nm−1 : MG −→ MG :: m 7→ 1
|G|m

Construction 5.2 (The Tate construction). An analogous notion of a norm map also
exists at the higher algebraic level, but since a proper construction of it is quite fiddly,
we content ourselves with merely stating here that, when C is semiadditive, there is
an analogous transformation of functors Fun(BG, C)→ C

Nm: (−)hG =⇒ (−)hG

For more details, the reader is referred to [Lur17, §6.1.6]. In suitable cases, this
“higher” norm map recovers the classical one above. For example, using the spec-
tral sequences

Hs(G, πtX)⇒ πt+sXhG Hs(G, πtX)⇒ πt−sXhG

when X is connective and |G| acts invertibly on πiX for i ≥ 1, this higher norm map
will become the classical one upon applying π0.

When C is moreover stable, taking the cofibre cofib(Nm) of the norm map is an
extremely useful construction: this is what is called the Tate construction (−)tG. The
following string of lemmas is one of the reasons why this is such a fruitful considera-
tion. We will indicate the contents of some of their proofs in the exercises.

Lemma 5.3 ([NS18, §I.3], see also [GM95, Prop. 3.5]). Suppose C is presentably symmetric
monoidal stable. Then the functor (−)tG : Fun(BG, C) → C canonically refines to a lax
symmetric monoidal functor. In particular, for any E∞–ring object R in Fun(BG, C), RtG

refines to an E∞–ring object in C; for any R–module M, MtG then refines to an RtG–module.

Lemma 5.4 (Tate vanishing on induced objects). The Tate construction (−)tG vanishes
on induced objects, ie. those of the form IndG

e X.

Lemma 5.5 (Tate vanishing away from the group order). Suppose X ∈ Fun(BG, C) is
an object on which |G| acts invertibly. Then XtG ≃ 0.
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Lemma 5.6 (Torsionness of Tate). Let M ∈ Fun(BG, D(Z)). For any n ∈ Z, πn MtG is a
|G|–torsion abelian group.

We now introduce an important construction, the stable module category, as a cate-
gorification of the Tate construction. Let C a presentable stable ∞–category. Recall
from Proposition 4.8 that we have the inclusion Fun(BG, C)ω ⊆ Fun(BG, Cω). We can
use this to make the following

Definition 5.7. Let G be a finite group and C be a presentable stable ∞–category. We
define the small and large stable module ∞–categories, respectively, to be the Verdier
quotients (cf. Theorem 1.24)

stmodG(C) := Fun(BG, Cω)/ Fun(BG, C)ω

StModG(C) := Ind(stmodG(C)) ≃ Ind
(

Fun(BG, Cω)
)
/ Fun(BG, C)

Notation 5.8. For a connective E∞–ring spectrum R ∈ CAlg(Sp)≥0, we write
stmodG(R) := stmodG(ModR) for the G–stable module category for R. It is not hard
to see that Fun(BG, ModR)

ω is a ⊗–ideal so that StModG(R) inherits a natural sym-
metric monoidal structure from Fun(BG, ModR) with the tensor unit given by trivGR.

The following is the fundamental result justifying our assertion earlier that stable
module categories categorify the Tate construction. The proof will be sketchy and we
invite the reader to fill in the details in the exercise at the end.

Proposition 5.9. For R ∈ CAlg(Sp) and X, Y ∈ stmodG(R), we have an equivalence

mapstmodG(R)(X, Y) ≃ mapR(X, Y)tG

In particular, the endomorphism spectrum of the tensor unit trivGR is given by (trivGR)tG.

Proof. Since Fun(BG, ModR)
ω ⊆ Fun(BG, Modω

R ) is the thick subcategory generated
by R[G], we will use the justifiable notation ⟨R[G]⟩ to denote Fun(BG, ModR)

ω for
short. By Proposition 4.5 and by the colimit description of mapping spectra in Verdier
quotients, we get that mapstmodG(R)(X, Y) is computed as the cofibre of the map

colim
A∈⟨R[G]⟩/Y

mapR(X, A)hG → mapR(X, Y)hG

Now look at the square

colimA∈⟨R[G]⟩/Y
mapR(X, A)hG mapR(X, Y)hG

colimA∈⟨R[G]⟩/Y
mapR(X, A)hG mapR(X, Y)hG

(3)

Since X was compact, and so dualisable, we get mapR(X, A) ∈ ⟨R[G]⟩ and so the
left vertical map is an equivalence. We claim that the top map is also an equivalence,
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and this reduces to showing that colimA∈⟨R[G]⟩/Y
A → Y is an equivalence, or equiv-

alently, that colimA∈⟨R[G]⟩/Y
YA ≃ 0 where we write YA := cofib(A → Y). Given this

claim (which we will work out in the exercise), the cofibre of the bottom map can be
computed as the cofibre of the right vertical, which is mapR(X, Y)tG as required.

In fact, interestingly for p–groups, we have the following theorem which we will
neither prove nor use in the rest of this document.

Theorem 5.10 ([Mat15, Thm. 2.9]). If G is a p–group, then there is a symmetric monoidal
equivalence StModG(R) ≃ ModRtG .

Exercise 5.11.

1. Show that (CoindG
e −)hG ≃ id and (IndG

e −)hG ≃ id. This should indicate to
some extent why Lemma 5.4 is true.

2. Prove Lemma 5.5 about Tate vanishing away from the group order in the special
case when C = Sp. Hint: show this first for X = trivG(S[

1
|G| ]) using the π∗–long

exact sequence associated to the defining sequence for (−)tG.

3. Prove Lemma 5.6 about Tate torsionness. Hint: prove this first for π0(ZtG) using
the π∗–long exact sequence associated to the defining sequence for (−)tG.

4. Fill in the details for the proof of the mapping spectrum formula for stable mod-
ule categories Proposition 5.9. More specifically,

a) Show from the mapping spectrum formula for Verdier quotients that

mapstmodG(R)(X, Y) ≃ cofib
(

colim
A∈⟨R[G]⟩/Y

mapR(X, A)hG → mapR(X, Y)hG
)

b) Show using dualisability of X that mapR(X, A) ∈ ⟨R[G]⟩. Deduce from
this that the left vertical map in (3) is an equivalence.

c) Prove the claim that colimA∈⟨R[G]⟩/Y
YA ≃ 0 by showing that

πn colimA∈⟨R[G]⟩/Y
YA = 0 for all n. Hint: show first that the indexing category

⟨R[G]⟩/Y is filtered. Now show that any element α ∈ πn colimA∈⟨R[G]⟩/Y
YA

must be zero by showing that cofib(α : ΣnR → YA) must also be of the form
cofib(B→ Y) for some B ∈ ⟨R[G]⟩.

6. Basics of formal group laws (by Lennart Meier)

One can tensor line bundles. This induces a multiplication map m : CP∞ × CP∞ →
CP∞. Commutativity and associativity of the tensor product show that this makes
CP∞ into a homotopy commutative H-space.
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Let E be a complex-oriented cohomology theory. One can take as the definition that
an isomorphism E∗(CP∞) ∼= E∗JxK with |x| = 2 exists and is chosen. Thus, m induces
a map

m∗ : E∗(CP∞) ∼= E∗JxK→ E∗Jx1, x2K ∼= E∗(CP∞ ×CP∞).

This map is continuous for the usual topologies defined on rings of power series, i.e.
for every k, l the preimage (m∗)−1(xk

1, xl
2) contains (xn) for some n. This follows from

the fact that the image of m|
CPk−1×CPl−1 lies in some CPn−1 because CPk−1 ×CPl−1 is

compact.
As furthermore, m∗ is an E∗-algebra morphism (as it is induced by a map of spaces),

it follows that m∗ is equivalent data to the power series F = m∗(x). We record how
the axioms for a homotopy commutative H-space translate into properties of F.

We know that the composition CP∞ id×pt−−−→ CP∞ × CP∞ m−→ CP∞ is homotopic to
the identity (right unitality). As the map E∗JxK → E∗ induced by pt → CP∞ sets
x = 0, we see that this translates into F(x1, 0) = x1. Likewise, left unitality translates
into F(0, x2) = x2. These two conditions are equivalent to

F(x1, x2) = x1 + x2 + higher terms. (4)

The twist map CP∞ × CP∞ → CP∞ × CP∞ just permutes x1 and x2. Thus, the
homotopy commutativity of CP∞ translates into

F(x1, x2) = F(x2, x1). (5)

The homotopy associativity of m translates into

F(x1, F(x2, x3)) = F(F(x1, x2), x3). (6)

Definition 6.1. Let R be a commutative ring. A power series F ∈ RJx1, x2K satisfying
(4), (5) and (6) is called a formal group law over R.

Example 6.2. If E is a complex oriented ring spectrum, we obtain a formal group law
over E∗ = E−∗. For E being ordinary homology, this formal group law is x + y. For
E = KU being complex K-theory, we obtain x + y ± uxy for u the Bott element in
π2KU and the sign depending on the conventions.

For a commutative ring R, denote by CAlg the category of commutative rings.11

Exercise 6.3. Denote by Â1 the functor CAlg → Set, sending each S to its set of
nilpotent elements, and by Gm : CAlg→ Set, sending each S to the units in S.

1. Show that Gm is representable. Moreover, show that it lifts to a functor to abelian
groups.

11In homotopy theory, one often uses CAlg for commutative ring spectra instead and uses CAlg♡ for
commutative rings. We drop the heart here for simplicity.
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2. Denote by Ĝm ⊂ Gm the subfunctor on those units x such that 1− x is nilpotent.
Show that this is isomorphic to Â1.

3. Show that a lift of Â1 to a functor to abelian groups is equivalent to a formal
group law over Z. Compute this in the case of Ĝm. How does this compare to
the formal group law for KU?

Exercise 6.4. 1. Let C be any category with all finite limits. Define what an abelian
group object in C is. If A is such an abelian group object and G a finitely gener-
ated abelian group, define Hom(G, A).

2. Let G be a compact abelian Lie group and let Ĝ ∼= Hom(G, U(1)) its Pontryagin
dual. Show Spec R(G) ∼= Hom(Ĝ, Gm). (If you’re not familiar with schemes,
define Spec R(G) to be the functor represented by the representation ring R(G)

on CAlg.)

Exercise 6.5. Every elliptic curve C over C is isomorphic to C/Λ for a lattice Λ ⊂ C

(i.e. a discrete subgroup isomorphic to Z2).

1. Visualize the n-torsion in C.

2. Consider the subspace X of C × C of points adding to zero. Contemplate that
X/Σ2 ∼= P1

C.

7. Classical Smith theory

In this section we sketch a proof of Smith’s famous theorem using ideas from a so–
called localisation theorem expanding on [MCC+96]. For the remainder of the section,
we assume G is a p-group and X a finite dimensional G-CW-complex (considered as
a genuine G-space). All cohomology groups considered are with mod p-coefficient

Theorem 7.1 (P. A. Smith). Let X be a genuine G-space, if X is a mod-p cohomology sphere
of dimension n, then XG is also a mod-p cohomology sphere of smaller dimension m. If p is
odd, then n−m is even and XG is non-empty if n is even.

Recall that p-groups have the special property of being solvable, ie. we have a
normal series

e = G0 ◁ G1 ◁ ... ◁ Gi ◁ ... ◁ Gn = G

where | Gi | is pi, so that Gi/Gi−1
∼= Cp. The proof for this is not too difficult and uses

the same orbit–counting method from Exercise 2.25 Item 1 (a).

Observe that we have XG = (XGi)G/Gi , and hence we can prove the above theorem
by induction on the order of the group. We are therefore reduced to the case where
G = Cp. So from now on, we fix G = Cp.
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Recall that the group cohomology of G = Cp with mod p coefficients, as an algebra,
is isomorphic to Fp[t]⊗Λ(x), | t |= 2, | x |= 1 when p is odd and Fp[t], | t |= 1 when
p is even.

Further recall that the Borel equivariant cohomology of a space with a G–action,
(i.e, an object in Fun(BG,S)) is defined as H∗G(X) := H∗(XhG) = π−∗map(XhG, Fp),
which naturally admits the structure of a H∗(BG)-algebra via the fibration X →
XhG → BG

A genuine G-space can be considered as a space with G-action, and hence we can
also define its Borel equivariant cohomology the same way.

Proposition 7.2 (Localisation Theorem). For a finite dimensional G-CW complex X we
have that the canonical map

H∗G(X)[t−1]→ H∗G(XG)[t−1]

is an isomorphism, where t is the degree 2 generator of H∗(BCp) when p is odd and the degree
1 generator when p is even.

Proof. Since our group G is Cp, we have the following cofibre sequence of objects in
Fun(BG, Sp)

S[XG] −→ S[X] −→
⊕
a∈A

IndG
e Ska

where A is a set and 0 ≤ ka ≤ n for all a ∈ A, by finite dimensionality. Applying
(−)hG then yields the cofibre sequence

S[XG]hG −→ S[X]hG −→
⊕
a∈A

Ska (7)

over S[BCp] in Sp. Here, we have also used Exercise 4.11 Item 1.
Upon application of map(−, Fp)[t−1], we get the fibre sequence(

∏
a∈A

map(Ska , Fp)
)
[t−1] −→ map((XG)hG, Fp)[t−1] −→ map(XhG, Fp)[t−1] (8)

Now, ∏a∈A map(Ska , Fp) is concentrated in finitely many degrees, and so inverting
any element in nonzero degree will yield the zero object. Therefore the fibre term
in (8) is zero, whence the equivalence map((XG)hG, Fp)[t−1] ≃ map(XhG, Fp)[t−1] as
desired.

In fact we have something more from the proof: applying H∗ to the cofibre se-
quence (7), we have:

Corollary 7.3. Hi
G(X)→ Hi

G(XG) is an isomorphism for i > n = dim(X).

Let’s now give the proof of Theorem 7.1:
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Proof. The proof will distinguish two cases: the case where X has fixed points, and
when it does not. In the case where X has at least one fixed point, we will give a direct
poof of all the claims, while in the case where X has no fixed points, we will prove
that n must be odd. As in this situation, XG = ∅ is the (−1)-sphere, it follows that
n−m is even too.

The key tool in the proof is the (cohomological) Serre spectral sequence associated
to the fibration X → XhG → BG:

Ep,q
2 = Hp(BG, Hq(X)) =⇒ Hp+q

G (X)

As our group G = Cp and we are working with mod p coefficients, we note that
the action of G on Hq(X) is trivial : indeed, X is a mod p cohomology sphere, so
Hn(X) ∼= Fp and there is no nontrivial action of Cp on this group. This implies that
the local coefficients here are trivial. Hence Ep,q

2
∼= Hp(BG)⊗ Hq(X).

We now assume X has fixed points. In this case, it also has homotopy fixed points,
and so the fibration XhG → BG admits a section.

This implies (together with the fact that X is a mod p cohomology sphere) that the
spectral sequence collapses at the E2-page: there is a map from this spectral sequence
to the spectral sequence of the fibration ∗ → BG → BG which induces an isomor-
phism on the q = 0 line, which forbids any nonzero differential.

As a consequence of the collapse together with the hypothesis that X is a homology
sphere, we have that the reduced cohomology H̃∗G(X) is a free H∗(BG)-module of
rank 1 with generator in degree n.

Now by Corollary 7.3 we have an isomorphism in high degreesH̃∗G(X) ≃
H̃∗G(XG) ≃ H̃∗(XG) ⊗ H∗(BG). Hence by counting dimension we have that XG is
a mod p cohomology sphere of dimension m ≤ n. This proves the very first part of
the statement.

We now assume that p is odd. The H∗(BG)-module structure is what implies that
n = m mod 2 : indeed, the map XG → X induces a map H∗G(X) → H∗G(XG) of free
H∗(BG)-modules of rank 1 which is an isomorphism in high enough degrees. Because
of the exterior algebra generator in degree 1 of the group cohomology H∗(BCp), for
any such map M∗ → N∗, the degree of the free generators in M∗, N∗ must differ by
an even amount.

Finally, we prove that if p is odd and n even,then XG is non-empty. For this, note
that if there is no fixed point, the spectral sequence converges to the cohomology
of a finite dimensional space. We will see that this is impossible, by inspecting the
multiplicative structure of our spectral sequence. Recall that Ep,q

2
∼= Hp(BG)⊗Hq(X),

and let η denote the generator of Hn(X).
As the abutment is finite dimensional d = dn+1 : H∗(BG)⊗ Hn(X)→ H∗+n+1(BG)

must an isomorphism for ∗ >> 0. For degree reasons, d(α) = 0 for all α ∈ H∗(BG), so
that d(αη) = (−1)|α|αd(η), by the Leibniz rule. But d(η) ∈ Hn+1(BG) is in odd degree
(n is even), and hence it must be of the form λxtk for some λ ∈ Fp, where x, t are the
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generators of H∗(BG). We thus see immediately that d(xtrη) = 0 for arbitrarily large
r, which is a contradiction with the fact that d is an isomorphism for sufficiently large
∗.

8. Sheaf theory

In this section, we explain the basic theory of ∞–categorical sheaves on topological
spaces. We will be mainly following [Lur17, §5.5.5], [Vol17] and unpublished notes of
Oscar Bendix Harr.

Let X be a toplogical space, and C be an ∞-category which is bicomplete (that is it
has all small limits and colimits). We can define the ∞-category of C-valued sheaves
on X, ShC(X). For this, let U (X) be the poset of open subsets of X under inclusion.

Definition 8.1. ShC(X) is the full subcategory of the presheaf ∞-category PshC(X) =

Fun(U (X)op, C) spanned by the presheaves F such that for all open covers
⊔

Ui → U
the following descent/gluing condition holds: the map

F (U)→ lim
V
F (V)

is an equivalence, where V runs over all open subsets which are contained in one of
the Ui’s.

Proposition 8.2. If C is stable then ShC(X) is stable

For sheafification, the situation is a bit more subtle than in 1-categories. In the
presentable case, there is no problem, but in general, it does not seem to be known
whether sheafification exists.

Proposition 8.3. If X is locally compact Hausdorff or if C is presentable, then the inclusion
ShC(X) ⊂ PshC(X) admits a left adjoint. Moreover, if filtered colimits in C are left exact,
then the sheafification functor is also left exact.

Given a continuous map f : Y → X we have an induced functor f−1 : U (X)op →
U (Y)op which, in turn, by precomposition induces a functor ( f−1)∗ : PshC(Y) →
PshC(X). This functor has a left and a right adjoint given respectively by left and
right Kan extensions

PshC(Y) PshC(X)
( f−1)∗

( f−1)!

( f−1)∗
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We define f∗ : ShC(Y)→ ShC(X) to be the restriction of ( f−1)∗: this restriction will
be checked to preserve sheaves in the exercise, so this makes sense. We will refer to
this as the pushforward along f , which fits into an adjuction (as long as sheafifcation
for X exists)

ShC(Y) ShC(X)
f∗

f ∗

(9)

where f ∗ is defined as

ShC(X) ⊂ PshC(X)
( f−1)!−−−→ PshC(Y)→ ShC(Y)

where the last arrow is the sheafification functor.

Definition 8.4 (Stalk). Let x ∈ X be a point and ix : ∗ → X be its inclusion. For
F ∈ ShC(X), the stalk at x is defined as Fx := i∗xF .

The following fact will be checked in the exercise at the end.

Fact 8.5 (Stalk formula). Prove that Fx = colimx∈U F (U), where the colimit is defined
over the directed system of open sets containing x ∈ X

Another subtlety of ∞-categories is that in general, stalks do not detect equivalences
between sheaves - this is related to the question of “hypercompleteness” of ∞-topoi.
In sufficiently finite-dimensional situations, though, this problem disappears, cf. for
example:

Theorem 8.6 ([Lur09, Thms. 7.2.1.17 and 7.2.3.6]). Let X be a manifold. Suppose C
is compactly generated then φ : F → G is equivalence if and only if φx = i∗x(φ) is an
equivalence for all x

We now turn to the matter of cosheaves, which will lead to the phenomenon of
Verdier duality and exceptional functors.

Definition 8.7 (co-Sheaves). The category of C-valued cosheaves is defined as
coShC(X) := ShCop(X)op

Hence, given a map f : Y → X between locally compact Hausdorff spaces, dualizing
the adjunction f ∗ ⊣ f∗ yields an adjunction

coShC(Y) coShC(X)
f+

f+
(10)

From now on we assume all our sheaves are valued in stable ∞–categories.

Construction 8.8 (Compactly supported sections). For every presheaf F ∈ PshC(X)

we associate the co-presheaf of ”compactly supported sections” Fc ∈ PshCop(X)op

Fc : U 7→ colim
K⊂U

(
fib

(
F (X)→ F (X \ K

))
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where K ranges over compact subsets of U (since X is Hausdorff, X \K is open, hence
the above expression makes sense). See also [Lur17, Def. 5.5.5.9] for this construction.
Importantly, this takes sheaves to cosheaves (cf. [Lur17, Cor. 5.5.5.12]).

Theorem 8.9 (Verdier Duality). Let X be a locally compact Hausdorff space. The compactly
supported sections above gives a canonical equivalence DX

DX : ShC(X)
≃−−→ coShC(X)

Proof. Refer to section 5.5.5 of [Lur17]

Construction 8.10 (Exceptional functors). Verdier duality is a valuable notion partly
because it yields certain exceptional functorialities. To wit, given a map f : Y → X of
locally compact Hausdorff spaces, Verdier duality gives us two new, so–called ”ex-
ceptional” functors defined as

coShC(X) coShC(Y) coShC(X) coShC(Y)

ShC(X) ShC(Y) ShC(X) ShC(Y)

f+ f+

f !

DX ≃ DY≃ DX ≃ DY≃
f!

Thus, collecting the adjunctions (9) and (10), we see that f gives rise to the following
adjunctions

ShC(Y) ShC(X) ShC(Y) ShC(X)
f ∗

f∗

f!

f !

We now work towards a relationship between the ∗ and the ! constructions. We
learnt of the proof of the following from Oscar Harr.

Theorem 8.11. Let f : Y → X be a map of locally compact Hausdorff spaces. There is a
canonical natural transformation Nm f : f! → f∗ which is an equivalence if f is proper.

Proof. By definition of f!, constructing Nm f is the same as constructing a natural
transformation f+DY → DX f∗.

For Z ⊂ Y closed we let FZ denote the fiber of the map F (Y) → F (Y \ Z). Un-
packing the definitions (which is a good exercise) yields for any open V ⊂ X that

f+DYF (V) = colim
K⊆ f−1V

cpt

FK DX f∗F (V) = colim
L⊆V
cpt

F f−1L

where K ranges over compact subsets of f−1(V) and similarly for L in V. Now note
that we have natural maps FK → F f−1( f (K)) given as maps of fibers

FK F (X) F (Y \ K)

F f−1 f (K) F (Y) F (Y \ f−1 f (K))
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inducing a natural map ( f+DYF )(V)→ (DX f∗F )(V) which is also natural in F , and
thus we have the desired natural transformation f+DY → DX f∗.

Moreover when f is proper, f−1(L) is compact, for any compact L ⊂ X and the in-
clusion K ⊂ f−1( f (K)) guarantees that the functor f−1 is cofinal, viewed as a functor
from compact subsets of V to compact subsets of f−1(V). It follows that the above
natural transformation is an equivalence.

By very similar arguments we also have a comparison map between the upper ∗
and ! functors, which we briefly state as follows:

Proposition 8.12. Let j : V ↪→ X be an open embedding. Then there is a canonical natural
equivalence j∗ ≃ j!

Now let C⊗ be a symmetric monoidal ∞-category, where the tensor product pre-
serves colimits in each variable. The presheaf category PshC(X) can be given the
structure of a symmetric monoidal ∞-category with the pointwise tensor product.
This in turn gives a symmetric monoidal structure on ShC(X) where the tensor prod-
uct of sheaves is given as the sheafification of their tensor product as presheaves.

Proposition 8.13. Assume C⊗ is presentably symmetric monoidal. The symmetric monoidal
∞-category ShC(X)⊗ is also presentably symmetric monoidal. In particular, it admits
internal-hom objects denoted by HomX(F ,G).

Given a map f : Y → X between locally compact Hausdorff spaces, we get an
enriched adjunction - informally, this means that for F ∈ ShC(Y) and G ∈ ShC(X),
we have natural equivalences of the form:

f∗HomX( f ∗F ,G) ≃ HomY(F , f∗G)

This is obtained by a straightforward unwinding of adjunctions, using also the that
f ∗ is symmetric monoidal.

What is less trivial is the following, whose proof we omit in these notes. The inter-
ested reader may refer to [Vol17] for more details.

Proposition 8.14. (Projection formula) Let f : Y → X be a map of locally compact Hausdorff
spaces and let F ∈ ShC(Y) and G ∈ ShC(X). We then have

f!(F ⊗ f ∗G) ≃ f!F ⊗ G

By a straightforward unravelling of adjunctions again, this gives us another form of
enriched adjunction

f∗Hom(F , f !G) ≃ Hom( f!F ,G)

Exercise 8.15.

1. Show that ( f−1)∗ : PshC(Y)→ PshC(X) takes sheaves to sheaves. Hint: use that
( f−1) takes cover to a cover
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2. Show the formula for stalks Fact 8.5. Hint: use the pointwise formula for left Kan
extensions. Note that no sheafification is needed since Y = ∗.

3. Show the claim that f+DYF (V) = colimK⊆ f−1V
cpt

FK and DX f∗F (V) =

colimL⊆V
cpt
F f−1L in the proof of Theorem 8.11.

Part II.

Week 2
9. Mackey functors and Dress inductions

We now introduce Mackey functors. We will present it in a modern manner, but
one of the canonical classical references for this is chapter 6 of [Die79]. We will first
informally recall the classical notions of Mackey functors and Green functors, not
because we will be using them, but rather to show to the reader that categorifying it
will be seen to recover successfully all the defining features from the classical setting.

Recollections 9.1 (Classical Mackey and Green). A G–Mackey functor M is the da-
tum of an abelian group M(H) for each H ≤ G such that for any subconjugation
K ≤ H there are homomorphisms ResH

K : M(H) → M(K) and any subgroup L ≤ K,
a homomorphism IndK

L : M(L) → M(K). Besides satisfying the usual transitivity re-
lations IndG

HIndH
K = IndG

K and ResH
K ResG

H = ResG
K , these have to satisfy the following

double–coset formula: for any subgroups H, K ≤ G, there is an identification of maps
M(H)→ M(K)

ResG
K IndG

H =
⊕

g∈K\G/H

IndK
K∩g H ResH

K∩g H

Note here that since we have a pullback square of finite G–sets

⨿g∈K\G/H G/K ∩g H G/H

G/K G/G

⌟

we are really saying that whenever we have such pullbacks, we get a commuting

⊕
g∈K\G/H M(G/K ∩g H) M(H)

M(K) M(G)

⊕IndK

ResH
K∩g H

IndG
H

ResG
K
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In the literature, such conditions are sometimes called Beck–Chevalley conditions.
There is a natural symmetric monoidal structure on the 1–category of Mackey func-

tors, under which the commutative algebra objects are called G–Green functors. Con-
cretely speaking, these are Mackey functors R which levelwise have commutative
ring structures, the restriction maps ResG

H are ring maps, and which satisfy the so–
called Frobenius reciprocity, ie. for H ≤ K and x ∈ R(H), y ∈ R(K), we have

y · IndK
Hx = IndK

H(ResK
H y · x) ∈ R(K)

One of the most important examples of Green functors is the Burnside ring Mackey
functor A: A(H) is given by the commutative ring generated by transitive G–orbits,
addition given by disjoint unions, and multiplication given by products of G–sets. In
fact, this is the unit object in the symmetric monoidal structure on Mackey functors
alluded to above, and consequently all Mackey functors are modules over A.

Having seen the classical picture, we now return to the functorial mode of living.

Construction 9.2 (Lindner). We will not belabour the details here but we will write
Span(G) for the following 1–category: the objects are finite G–sets and morphisms
between finite G–sets S and T are isomorphism classes of spans

U

S T

where U is another finite G–set and the two legs are G–equivariant maps. Composi-
tions are given by taking by taking pullbacks

U ×T V

U V

S T W

This 1–category is semiadditive where ∅ is the zero object and the biproduct is given
by disjoint unions of finite G–sets; it admits a symmetric monoidal structure given
by taking cartesian product of finite G–sets which we will write as Span(G)⊗: we
have opted for this notation since the cartesian product of sets is not the categorical
product of this category and so this structure is not the cartesian symmetric monoidal
structure. Moreover, for K, H ≤ G and a subconjugation g(−) : K ↪→ H, there is a
product–preserving functor iH

K : Span(K)→ Span(H) sending orbits K/L to H/gL.

The insight of Harald Lindner from 1976 was that Mackey functors can be encoded
by this category. For ∞-categories, we have to get rid of the words “isomorphism
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classes of”, and instead consider the groupoid of spans ((FinG)/S,T)
≃ as the mapping

space between S and T, thus making Span(G) into a (2, 1)-category. The details of
this construction, in much greater generality, were worked out in [Bar17]. We can
now define:

Definition 9.3. Let C be a semiadditive ∞–category. The ∞–category of C–valued
G–Mackey functors MackG(C) is defined as Fun×(Span(G), C) where Fun× denotes
product–preserving functors.

If C furthermore is given a symmetric monoidal structure which commutes with
colimits in each variable, then MackG(C) can be equipped with the Day convolution
symmetric monoidal structure. In this case, objects in CAlg(MackG(C)⊗) are called
C–valued G–Green functors.

Remark 9.4 (Mackey structures and properties). We can collect a wealth of structures
and properties on MackG(C), categorifying the features of classical Mackey functors,
which we record in the following list:

1. By virtue of the semiadditivity of C, limits and colimits in MackG(C) =

Fun×(Span(G), C) are computed pointwise.

2. The maps iG
H from Construction 9.2 gives rise to the following adjunctions

MackG(C) MackH(C)
ResG

H

IndG
H

CoindG
H

where we have called ResG
H := (iG

H)
∗, IndG

H := (iG
H)!, and CoindG

H := (iG
H)∗.

By looking at the appropriate Kan extension formulas, one sees that there is a
canonical equivalence IndG

H ≃ CoindG
H.

3. When C has a symmetric monoidal structure commuting with colimits in each
variable, the map ResG

H refines to a symmetric monoidal functor, and so CoindG
H

refines to a lax symmetric monoidal functor.

4. For subgroups H, K ≤ G, we have a double–coset decomposition of functors
MackK(C)→ MackH(C)

ResG
H IndG

K ≃
⊕

g∈H\G/K

IndH
H∩gK ◦ ResHg∩K

H∩gK ◦ResK
Hg∩K

where Hg := g−1Hg ≤ G.

5. When C is presentable and is given the structure of a closed presentably sym-
metric monoidal structure, the Day convolution MackG(C)⊗ will also be closed
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symmetric monoidal. In this case, writing HomG for the internal hom in
MackG(C), it will be compatible with restrictions in that

ResG
H HomG(−,−) ≃ HomH(ResG

H −, ResG
H −)

It is then an easy adjunction consequence that we have the Frobenius reciprocity
relations:

Y⊗ IndG
HX ≃ IndG

H(ResG
H Y⊗ X) Y⊗CoindG

HX ≃ CoindG
H(ResG

H Y⊗ X)

This list is very much not exhaustive and we reserve a much more comprehensive
and complementary enumeration in Remark 10.5 in the case when C = Sp.

We end this section by recording Dress’ famous induction theorem [Dre75]. This was
a breakthrough that neatly captured many famous results in representation theory,
and as with many great ideas, in hindsight it is surprisingly easy.

Lemma 9.5 (Abstract splitting). Let (C,⊗, 1) be a symmetric monoidal ∞–category and
R ∈ CAlg(C,⊗, 1). Let M be an R–module such that we have a commuting diagram

1

M R

1

For any R–module N, we then have a retraction of R–module idN : N → M⊗R N → N.

Theorem 9.6 (Higher Dress induction). Let F be a family of subgroups in G and
(C,⊗, 1) be a presentably symmetric monoidal semiadditive ∞–category. Let R ∈
CAlg(MackG(C)⊗) and suppose that the unit 1

1−→ R factors through the R–module map
IndG

F :
⊕

H∈F IndG
H ResG

H R→ R. For any R–module M, the canonical map

IndG
F :

⊕
H∈F

IndG
H ResG

H M −→ M

then admits a splitting natural in M.

Remark 9.7. The formulation above is nowhere near optimal since we have mainly
used the adjective “presentably symmetric monoidal” for convenience. One can of
course ask for much less and still the same manoeuvres hold. In particular, setting
C to be the 1–category of abelian groups with its tensor product, the above recovers
Dress’ original statement for Mackey functors valued in abelian groups.

Exercise 9.8.

1. Let N be an abelian group. Convince yourself that you can always build a G–
Mackey functor M which is zero everywhere except at G, where it evaluates to
M(G) = N. Show however that it is not in general possible to get a G–Mackey
functor which is zero everywhere except at e where it evaluates to M(e) = N.
Can you find a condition on N and G where this can be done?
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2. Prove the Frobenius reciprocity law from Remark 9.4 (5).

3. Prove the abstract splitting lemma Lemma 9.5. Deduce Dress’ induction Theo-
rem 9.6 from this.

10. Genuine equivariant spectra

Before talking about genuine G–spectra, we should say a few words first about gen-
uine G–spaces. Recall first that the orbit category of G, OG, is the 1–category whose
objects are transitive G–sets G/H and G–equivariant maps between these.

Definition 10.1. The ∞–category of genuine G–spaces SG is defined as Fun(Oop
G ,S).

Remark 10.2. In particular, the datum of a genuine G–space contains much more struc-
ture than just a space with a G–action. The latter kind is what is called Borel equivari-
ant G–spaces whose ∞–category is given by Fun(BG,S). The reader might want to
consult §4 for more on these kinds of categories. In fact, since there is a fully faithful
inclusion i : BG ↪→ Oop

G given by ∗ 7→ G/e, we get the Bousfield (co)localisation

SG Fun(BG,S)Bor:=i∗

F(EG+,−):=i∗

EG+⊗−:=i!

Here we have included the classical notations EG+⊗− and F(EG+,−) for the benefit
of the reader who might need to navigate older literature. These correspond to the
cofibrant and fibrant replacements, respectively, when one takes (co)limits. In any
case, conceptually this is also a reasonable notation since one can check for example
that the idempotent endofunctor on i∗i∗ : SG → SG is given by X 7→ F(EG+, X) where
F(−,−) is the internal hom in SG. Additionally, for those coming from a more model
categorical background, we should also note that both SG and Fun(BG,S) come from
the same topological category, ie. Fun(BG, Top). They differ, however, in the model
structures used: in the latter, an equivariant map of G–topological spaces f : X → Y
is a weak equivalence if f is a weak equivalence; in the former, such a map is a weak
equivalence if f H : XH → YH is a weak equivalence for all H ≤ G.

Construction 10.3 (Universal spaces for families). A family F associated to the finite
group G is a collection of subgroups of G that is closed under subconjugations. Then
EF ∈ SG is the G–space defined using its fixed points as

EFH ≃
{
∗ if H ∈ F
∅ if H /∈ F
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Now, write S0
G for the genuine G–space which has S0 at every fixed point. We can

then define an associated pointed G–space ẼF by the cofibre sequence

EF+ −→ S0
G −→ ẼF

On fixed points, this G–space contains the complementary datum:

ẼFH ≃
{
∗ if H ∈ F
S0 if H /∈ F

One should think of these as characteristic functions: EF holds only information of
fixed points inside F whereas ẼF only holds information for those outside of F .

Definition 10.4. The ∞–category of genuine G–spectra SpG can be defined simply as
MackG(Sp).

This is an extremely highly structured ∞–category and so unsurprisingly it partici-
pates in many useful adjunctions. Moreover, at least three distinct “fixed points” can
be extracted out of a genuine G–spectrum, all of them useful in their own ways, and
they are: genuine fixed points (−)G, homotopy fixed points (−)hG, and geometric
fixed points (−)ΦG = ΦG(−).

We enumerate all these structures here without providing any proofs. As far as we
know, all the following statements can be obtained using the Mackey functor descrip-
tion and the keen reader may want to try to prove these for themselves or refer to
[Bar17; Nar17; Wil17] for proofs.

Remark 10.5 (Structures and properties of genuine G–spectra). We will collect all the
adjunctions in one diagram at the end of this list.

1. There is a functor (−)G : SpG → Sp called the genuine G–fixed points. View-
ing genuine G–spectra as spectral G–Mackey functors, this functor is concretely
given by evaluating on the orbit G/G. This functor commutes with all lim-
its and colimits. We can also define (−)H : SpG → Sp as the composition
(−)H ◦ ResG

H (cf. point 4 for the restriction functor). From the Mackey functor
point of view, it is clear that {(−)H}H≤G is jointly conservative since a Mackey
functor is zero if and only if the datum at G/H is zero for all H ≤ G.

2. There is a canonical presentably symmetric monoidal structure on SpG. Viewed
as Mackey functors, this symmetric monoidal structure is constructed as the
Day convolution (cf. [BGS20]). Since Sp⊗ is the tensor unit in CAlg(Pr⊗L,st), we
obtain a unique symmetric monoidal colimit–preserving functor

inflG : Sp −→ SpG

It turns out that the right adjoint of this is given precisely by the genuine
fixed points (−)G. Consequently, (−)G canonically refines to a lax symmetric
monoidal functor.
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3. There is an adjunction SG[−] = Σ∞
G,+ : SG ⇌ SpG : Ω∞

G generalising the usual
adjunction in the nonequivariant setting. The description of Σ∞

G is not as easy
as one might expect in that it does not commute with genuine fixed points,
although there is a formula. This is called the tom–Dieck splitting, and it says
that for X ∈ SG, we have an equivalence

(SG[X])G ≃
⊕

(H)≤G

S[(XH)hWG H ]

where WG H := NG H/H is the Weyl group of H in G.

4. There is a unique symmetric monoidal colimit–preserving functor ΦG : SpG →
Sp satisfying ΦGSG[−] ≃ S[(−)G] : SG → Sp. This is called the geometric G–fixed
points, and it has a fully faithful right adjoint which we denote by ΞG (following
[Gla17]). From the Mackey functors point of view, for X ∈ Sp, the genuine
G–spectrum ΞGX is given by

(ΞGX)H ≃
{

X if H = G

0 if H ⪇ G

For a genuine G–spectrum X, we will also write ΦHX ∈ Sp for ΦH ResG
H X.

5. There is a symmetric monoidal colimit–preserving functor ResG
H : SpG → SpH

called restriction. On Mackey functors, this is given by only remembering the
data of genuine fixed points on subgroups of H. This functor has both a left and
a right adjoint. These are called induction IndG

H and coinduction CoindG
H respec-

tively. Since ResG
H was symmetric monoidal, by general nonsense, CoindG

H is lax
symmetric monoidal.

Moreover, there is a canonical natural transformation IndG
H ⇒ CoindG

H which
is an equivalence. Classically, this is termed the Wirthmüller isomorphism. These
functors also satisfy

IndG
H ResG

H X ≃ X⊗ SG[G/H] ≃ F(SG[G/H], X) ≃ CoindG
H ResG

H X

Finally, they also interact nicely with the symmetric monoidal structures via the
so–called Frobenius reciprocities (cf. Remark 9.4 (5)):

X⊗ IndG
HY ≃ IndG

H(ResG
H X⊗Y) and X⊗CoindG

HY ≃ CoindG
H(ResG

H X⊗Y)

6. There is a functor Bor : SpG → SpBG which is sometimes called Borellification.
This forgets the structures of all the other fixed points and only remembers the
underlying spectrum with its G–action. This has both a fully faithful left and
right adjoint written as EG+ ⊗− and F(EG+,−). The justification for this nota-
tion is the same as the one we gave in Remark 10.2. In particular, for instance,
for X ∈ SpG, we have EG+ ⊗ Bor(X) ≃ EG+ ⊗ X = SG[EG]⊗ X.
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As promised at the beginning of this remark, we summarise all the adjunctions in this
pretty G–flower.

Sp SG Sp

SpG

SpBG SpH

inflG

Σ∞
G

ΞG

Ω∞
G

(−)G

ΦG

ResG
HBorEG+⊗−

F(EG+,−) CoindG
H

IndG
H

Before ending this section, we record the following important observation that the
geometric fixed points are an alternative to the genuine fixed points when checking
that something is zero.

Proposition 10.6 (Geometric fixed point detection). Suppose ΦH M ≃ 0 ∈ Sp for all
H ≤ G. Then M ≃ 0.

Proof. We prove by induction on G. By induction we have that ResG
H M ≃ 0 for all

H ⪇ G. Hence by Remark 10.5 (4), we se that M ≃ ΞG M̃ for some M̃ ∈ Sp. But then
0 ≃ ΦG M ≃ ΦGΞG M̃ ≃ M̃ ∈ Sp, and so indeed M ≃ 0 as desired.

Exercise 10.7.

1. By only using the adjunctions above, show that

(CoindG
H(−))G ≃ (−)H ΦGIndG

H ≃ 0 ΦG(EG+) ≃ 0

2. Let R ∈ CAlg(SpG) is such that RG ≃ 0, then R ≃ 0. Hint: use one of the
identities in the preceding problem.

3. Show that {G/H}H≤G form a (finite) set of compact generators for SpG.

11. Abstract nilpotence technology

This section will summarise the key abstract points of the influential papers [Mat16;
MNN17] which in turn were built on top of the insights of Daniel Quillen, Ethan Dev-
inatz, Mike Hopkins, Jeff Smith, and others in their groundbreaking work on nilpo-
tence phenomena in equivariant and chromatic stable homotopy theory. Throughout
this section, the following assumptions will be in force.

Hypotheses 11.1 ([MNN17, Hypotheses 2.26]). (C,⊗, 1) is a presentably symmetric
monoidal stable ∞–category and A ∈ Alg(C⊗) which satisfy the following:

1. The unit 1 is compact,

2. The object A is dualisable in C,
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3. C is generated as a localising subcategory by dualisable objects.

Definition 11.2. We say that an object M ∈ C is A–acyclic if A⊗M ≃ 0.

Here are the three important abstract notions:

Definition 11.3. Suppose we are in the setting of Hypotheses 11.1. We define three
stable subcategories as follows:

1. Let CΓA ⊆ C be the smallest localising subcategory of C containing A⊗ X for ar-
bitrary dualisable X ∈ C. This is called the full subcategory of A–torsion objects.
By construction, CΓA is presentable and the inclusion CΓA ⊆ C preserves colim-
its, and so by the adjoint functor theorem, this admits a right adjoint which we
denote by ΓA : C → CΓA called A–acyclisation;

2. Let CΛA ⊆ C be the full subcategory of A–complete objects, ie. those objects Y ∈ C
such that for any A–acyclic M ∈ C, we have mapC(M, Y) ≃ 0. This is clearly
a full subcategory closed under limits, and is thus in particular a thick subcate-
gory. Moreover, this can be viewed as a localisation of C at a set of morphisms
and so the inclusion CΛA ⊆ C has a left adjoint which we denote ΛA : C → CΛA

called A–completion;

3. Let CNilA ⊆ C be the smallest thick ⊗–ideal in C containing A. This is called the
full subcategory of A–nilpotent objects.

Observation 11.4. Importantly, if M ∈ ModA, then M is A–torsion, A–complete, and
A–nilpotent. And so all the subcategories introduced above can be thought of as
different generalisations of the underlying objects of A–modules. This is a simple
observation whose proof we defer to the exercises at the end.

Using this observation, we can prove the following.

Lemma 11.5. Under Hypotheses 11.1, A∨ ∈ CNilA where A∨ is the dual of A.

Construction 11.6 (Adams towers and the A–acyclisation formula, [MNN17, Cons.

3.4, Prop. 3.5]). Let I := fib(1 1−→ A). From this we may consider the infinite filtration

· · · → I⊗3 → I⊗2 → I → 1

called the Adams tower of A, where note that cofib(I⊗k → I⊗(k−1)) ≃ I⊗(k−1)⊗ A. Note
also that since A was dualisable by Hypotheses 11.1, each of the terms in the Adams
tower is also dualisable. We now define UA to be the colimit of the tower’s dual, ie.

UA := colim
[
1→ I∨ → (I∨)⊗2 → (I∨)⊗3 → · · ·

]
and define also

VA := fib(1→ UA)

49



Now by Lemma 11.5 we know that A∨ is A–nilpotent, and on the other hand, the
fibres Vk := fib(1 → (I∨)⊗k) are built in finite steps from terms like A∨ ⊗ (I∨)⊗i.
Hence in total we see that Vk is A–nilpotent for all k. A fact that we will not prove in
these notes is that we have the formula for A–acyclisations given by

ΓA(X) ≃ VA ⊗ X (11)

and the adjunction counit is given by applying −⊗ X to VA → 1. In particular, since
CΓA ⊆ C is a Bousfield colocal subcategory, X is A–torsion if and only if VA ⊗ X → X
is an equivalence.

Another important reason to have introduced the Adams towers is that it provides
a valuable alternative description of nilpotence which perhaps hews closer to and
explains the word “nilpotence”. The proof is extremely instructive as it exhibits many
of the important standard manoeuvres in studying nilpotent phenomena.

Proposition 11.7 ([MNN17, Prop. 4.7]). Let A ∈ Alg(C). An object M ∈ C is A–
nilpotent if and only if for all n ≫ 0, the maps I⊗n ⊗ M → M in the Adams tower are
nullhomotopic.

Proof. Suppose that M is A–nilpotent. Define J ⊆ C to be the full subcategory of C
on those objects X such that I⊗n ⊗ X → X is nullhomotopic for n≫ 0. We claim that
J is a thick ⊗–ideal which contains A. Given this, by minimality of CNilA as a full
subcategory having these properties, we see that M ∈ CNilA ⊆ J as was to be shown.

Now to prove the claim: that it is a ⊗–ideal and is closed under retracts is clear,
and so we are left to show that this is closed under taking cofibres. Suppose X →
Y is a map in J and write C := cofib( f ). Let n ≫ 0 be such that I⊗n ⊗ X → X
and I⊗n ⊗ Y → Y are nullhomotopic. Consider now the solid diagram of horizontal
cofibre sequences

I⊗2n ⊗Y I⊗2n ⊗ C I⊗2n ⊗ ΣX

I⊗n ⊗Y I⊗n ⊗ C I⊗n ⊗ ΣX

Y C ΣX

0

0

We claim that the middle vertical composition is nullhomotopic. This is simply be-
cause the top right square ensures that we have the dashed map factoring the middle
top vertical map. Hence, the middle vertical composite map factors through the null
map I⊗n ⊗Y → Y, whence its nullity as required.

Now for the converse, suppose for all n ≫ 0, the maps I⊗n ⊗ M → M are
nullhomotopic. Recall first that the cofibres of I⊗k ⊗ M → I⊗(k−1) ⊗ M are A–
modules, and so A–nilpotent. Since CNilA is thick, we see by induction that the cofibre
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Q := cofib(I⊗n ⊗M→ M) is A–nilpotent also. But on the other hand, I⊗n ⊗M→ M
is nullhomotopic and so we get that Q ≃ I⊗n ⊗ M ⊕ΩM. Therefore, since CNilA is
closed under retracts, ΩM, and so also M, is in CNilA as desired.

The following relates the notion of nilpotence with torsionness and completeness.
In fact, these notions are even more interrelated than we will be able to cover here,
and for more details we refer the reader to [MNN17; BHV18]. For example, the map

CΓA ↪→ C ΛA−→ CΛA is always an equivalence: this says that the A–torsions and A–
completes are two different ways that an abstract ∞–category sits inside C.

Proposition 11.8. The inclusion CNilA ⊆ C factors through CΓA ∩ CΛA . That is, A–nilpotent
objects are both A–torsion and A–complete.

Having explained the general setup, we now discuss how nilpotence can be a very
useful notion in attacking descent problems, and for that we will need the following

Definition 11.9 ([Mat16, Def. 3.18]). Let (C,⊗, 1) be as in Hypotheses 11.1 and let
A ∈ CAlg(C). We say that A is descendable if CNilA = C, ie. 1 ∈ CNilA .

The following is a prototypical and instructive example of a thick⊗-ideal argument
whose proof we defer to the exercise. It should give the reader a flavour of how one
uses the definition of nilpotence above.

Proposition 11.10 (Thick ideal membership descent via descendability, variation on
Proposition 11.12). Suppose A ∈ CAlg(C) is descendable and let I ⊆ C be a thick tensor
ideal. For any M ∈ C, M ∈ I if and only if M⊗ A ∈ I .

One advantage of this definition of descendability is that it is easy to prove, by
a straightforward unravelling of definitions, statements of the following form. The
slogan here is that “nilpotence has very nice categorical permanence properties”.

Proposition 11.11 (Abstract nilpotence functoriality, [MNN17, Cor. 4.13]). Let C⊗,D⊗
be presentably symmetric monoidal stable ∞–categories and f : C⊗ → D⊗ a lax symmetric
monoidal functor. For A ∈ Alg(C), we have f (CNilA) ⊆ DNil f (A)

. In particular, descendabil-
ity of algebra objects are preserved under strong symmetric monoidal functors.

Descendability will not play any role elsewhere in these notes, but we felt that we
cannot exposit on the theory of nilpotence without mentioning it since it plays such a
central unifying role in the general theory. We now return to the main stream.

Proposition 11.12 (Thick ideal membership descent via nilpotence, [MNN17, Prop.
4.16]). Suppose M ∈ C is A–nilpotent and let I ⊆ C be a thick tensor ideal. In this case,
M ∈ I if and only if M⊗ A ∈ I .

Remark 11.13. In the last few results, we have shown how useful the notion of nilpo-
tence is, and how easy it is to transfer this property around under categorical opera-
tions once we have it. On the other hand, while torsionness and completeness are very
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interesting properties, they do not enjoy nearly as much categorical closure properties
and so are in general quite hard to deal work with. In this perspective, the punchline
of Proposition 11.8 is then that if we can show that something is nilpotent, then we
have the luxury of dragging along its torsionness and completeness under various
categorical operations which might have otherwise destroyed these two properties.

We end this section with a powerful abstract criterion in showing A–nilpotence in
the presence of unital ring structures. This will be important in the next section when
we specialise the nilpotence technology to the equvariant setting.

Theorem 11.14 ([MNN17, Thm. 4.19]). Under Hypotheses 11.1, and for R ∈ C be a
homotopy unital algebra, we have that R is A-torsion if and only if it is A-nilpotent.

Proof. Being A-nilpotent always implies A-torsion by Proposition 11.8. The interest-
ing direction is deferred to an exercise at the end.

Remark 11.15. We rehash [MNN17, Rmk. 4.20] here, namely, that the theorem above
is a souped up version of the following simple observation: if a classical discrete ring
R is p–power torsion, then there exists a uniform n such that pn · R = 0. In this way,
one slogan for nilpotence is that it generalises the niceness coming from “uniformly
bounded p–torsion”. From this point of view, we should interpret the theorem as
saying that, morally, checking p–power torsionness is easier than showing pn–power
torsion for a specific n, and in the case of unital rings, satisfying the easier condition
implies that we already have pn–power torsion for some n.

Exercise 11.16.

1. Show Observation 11.4. Hence, deduce Lemma 11.5.

2. Prove Proposition 11.8. Hint: you will need Hypotheses 11.1 (3) to prove the torsion
statement, and for the completeness statement, you may apply Proposition 11.7.

3. Prove Proposition 11.10. Hint: for the interesting direction, show that the full sub-
category on objects X such that X⊗M ∈ I is a thick ⊗–ideal.

4. Prove Theorem 11.14. Hint: use Construction 11.6 and the compactness of the unit
1. It will be helpful to show along the way that in a stable ∞–category D, if a map
f : X → Y is nullhomotopic, then X is a retract of fib( f ).

12. Nilpotence in the equivariant setting

We will now explore nilpotence phenomena in the setting (C,⊗, 1) = (SpG,⊗, SG) of
genuine G–spectra. Let F be a family of subgroups for the finite group G. Recall also
from Remark 10.5 (5) that G/H+ = CoindG

H ResG
H SG = F(G/H+, SG) is naturally an

object in CAlg(SpG).
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Definition 12.1 (F -nilpotence, [MNN17, Def. 6.36]). Let AF :=
∏H∈F F(G/H+, SG) ∈ CAlg(SpG). We define the ful subcategory of F–nilpotent
objects (SpG)NilF ⊆ SpG to be the full subcategory of AF–nilpotent objects. This is
equivalent to the smallest thick ⊗-ideal in SpG containing {G/H+}F .

Morally, substantiated by Proposition 11.7, we can think of F–nilpotent objects as
those G–spectra that are built in finitely many steps from objects of the form G/H+ ⊗
X = IndG

H ResG
H X where H ∈ F . That is, they are determined, in a finitary way, only

by data from subgroups inside the family F .
We now state a couple of facts without further comments and we refer the reader

to [MNN17, Props. 6.5 & 6.6] for details.

Proposition 12.2 (Formulas for equivariant localisations). Let F be a family. We have
the following formulas for F–acyclisation and F–completion:

ΓAFX ≃ EF+ ⊗ X and ΛAF (X) ≃ F(EF+, X)

The following is then an immediate corollary of the facts above and Proposi-
tion 11.8.

Corollary 12.3 ([MNN19, Prop. 2.12]). Let M ∈ SpG be F -nilpotent. Then it is F -torsion
and F -complete, that is, the maps

EF+ ⊗M −→ M M −→ F(EF+, M)

are equivalences.

The following is also not hard, and we will prove it in an exercise below.

Proposition 12.4 (Calculus of F -nilpotence, [MNN17, Prop. 6.38]). Let F ⊆ F ′ be
families of subgroups of G. Let H ≤ G and let FH denote the family of subgroups of H which
also belong to F (so FH can be viewed both as a family for H and for G).

1. We have an inclusion (SpG)NilF ⊆ (SpG)NilF′ ;

2. If X ∈ (SpG)NilF then ResG
H X ∈ (SpH)NilFH

;

3. If Y ∈ (SpH)NilFH
then IndG

HY ∈ (SpH)NilF for any F containing FH. In particular,

IndG
HY ∈ (SpG)NilF .

The following pair of results are now the culmination of all the work we did in
these notes on the nilpotence technology in equivariant stable homotopy theory.

Lemma 12.5 (Proper F -nilpotence reduction, [MNN17, Prop. 6.40] ). X ∈ NilF if and
only if for all H /∈ F the restriction ResG

H X ∈ SpH is PH-nilpotent.
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Proof. The only if direction is by Proposition 12.4 (1, 2), noting that if H /∈ F then
FH ⊆ PH. For the other direction, suppose without loss of generality that G /∈ F ,
otherwise there is nothing to do. By hypothesis we get that X ∈ SpG is PG-nilpotent.
Thus by Proposition 11.12, it suffices to show that X ⊗ APG ∈ NilF . By induction on
|G| we may assume that for all H ⪇ G, ResG

H X is FH-nilpotent. Hence by Proposi-
tion 12.4 (3) we get that

X⊗ APG ≃
⊕
H⪇G

IndG
H ResG

H X ∈ (SpG)NilF

as required.

We may use this reduction step to deduce the following important theorem. In the
presence of unital ring structures, this is one of the first things to try when showing
that something is nilpotent, and this is also the criterion used in [CMN+20] in proving
some of the main results.

Theorem 12.6 (Geometric fixed criterion for ring nilpotence, [MNN17, Thm. 6.41]).
Let R ∈ SpG be a homotopy commutative unital ring spectrum. Then R ∈ (SpG)NilF if and
only if for all H /∈ F , ΦHR ≃ 0 ∈ Sp.

Exercise 12.7.

1. Show the equivalence in Definition 12.1.

2. Prove Proposition 12.4. Hint: this is a straightforward consequence of the functorial-
ity of nilpotence and the double–coset formula Remark 9.4 (4).

3. Prove Theorem 12.6. Hint: you might want to recall Theorem 11.14.

13. K–theory and localising invariants

Let C,D, E ∈ Catperf
∞ and suppose C i−→ D p−→ E is a null–composing sequence, so that

we have the datum of a commuting square

C D

0 E

i

≡ p

Since 0 ∈ Catperf
∞ is the zero object, the space of such commuting squares is con-

tractible if it is non–empty. Hence, we will from now on denote such a datum merely
as the sequence

C i−−→ D p−−→ E
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Definition 13.1. Such a null–composing sequence is said to be a Verdier sequence or
an exact sequence if it is both a fibre and a cofibre sequence. If p has both a left and a
right adjoint, then we say that it is a split Verdier/exact sequence.

Remark 13.2. The reader is referred to [CDH+20, App. A] for a comprehensive treat-
ment on Verdier sequences, but here is brief summary of some of the important points
about sequences C → D → E which compose to zero:

1. If it is a fibre sequence, then the map C → D is fully faithful;

2. It is a cofibre sequence if and only if the map D → E is a Verdier quotient. In
particular, it is essentially surjective;

3. Suppose it is a Verdier sequence. Then i has a left (resp. right) adjoint if and only
if p has a left (resp. right) adjoint. In these cases, the left (resp. right) adjoint of
p are necessarily fully faithful, so that p is then a Bousfield colocalisation (resp.
localisation). As such, the splitness condition in the definition of split Verdier
sequences actually can be completed to a diagram of adjoints

C D Ei p

q

r

ℓ

j

Such a situation is also known as a stable recollement.

Definition 13.3. Let C be a presentable stable ∞–category. A functor E : Catperf
∞ −→ C

is said to be an additive invariant (resp. a localising invariant) if it sends split Verdier
sequences (resp. Verdier sequences) to fibre sequences in C.

Example 13.4 (Algebraic K–theory). Segal–Waldhausen’s algebraic K–theory con-
structed via the S•– or Q–construction is an example of a localising invariant. In
fact, it satisfies the universal property of being the initial additive invariant under the
groupoid core functor (−)≃ : Catperf

∞ → S . That is, it is the initial additive invariant
receiving a transformation (−)≃ ⇒ K(−) and it can moreover be delooped to take
values in connective spectra. Additionally, and very importantly from its construc-
tion via the S•– or Q–construction, K–theory is also in fact a localising invariant12.
Moreover, by virtue of the transformation (−)≃ ⇒ K, it makes sense for us to speak
of the class [X] ∈ K(C) of an object X ∈ C.

Observation 13.5 (Waldhausen’s splitting). Write s : ∆0 → ∆1 and t : ∆0 → ∆1 for the
inclusion of the source and the target, respectively. One of Waldhausen’s many key

12See [BGT13] for the original treatment of all these in the ∞–categorical setting. Beware, however,
that there they also imposed the condition of preserving filtered colimits in the definition of addi-
tive/localising invariants. This is however a technical point that can be avoided, and is dealt with in
the upcoming work [CDH+].
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original insights is the following: for C ∈ Catperf
∞ , we have the split Verdier sequence

C C∆1 Cs∗ t∗
s∗

fib

t!

c

where c takes X to X =−→ X. This means that for any additive F : Catperf
∞ → Sp, we

have the split fibre sequence of spectra

F(C) F(C∆1
) F(C)F(s∗) F(t∗)

F(fib) F(c)

which yields the equivalence of spectra

F(fib)× F(t∗) : F(C∆1
) F(C)× F(C) : F(s∗) + F(c)≃

This is of foundational importance as we will see in the next two basic results which
may be seen as “trickling down” the additivity property through various levels of
decategorifications.

Proposition 13.6. Let F : Catperf
∞ → Sp be an additive invariant. If we have a cofibre se-

quence α ⇒ β ⇒ γ of maps C → D in Catperf
∞ , then we have an equivalence of morphisms

Fβ ≃ Fα⊕ Fγ : FC → FD.

Proof. The key for these kinds of statements is that both natural transformations

(β⇒ γ), (α⊕ γ⇒ γ) : C −→ D∆1

have the same fibres, ie. γ. Hence, applying F and postcomposing further with the
equivalence F(fib) × F(t∗) : F(D∆1

)
≃−→ F(D) × F(D) from Observation 13.5 yields

that the two morphisms

F(β⇒ γ), F(α⊕ γ⇒ γ) : F(C) −→ F(D∆1
)

are equivalent. Finally, postcomposing now these two equivalent morphisms with
F(s∗) : F(D∆1

)→ F(D) shows that we have an equivalence of morphisms

F(β) ≃ F(α⊕ γ) ≃ F(α)⊕ F(γ) : F(C) −→ F(D)

as was to be shown.

Using the same kind of tricks, we may also prove the following, which we have left
as an instructive exercise to the reader.

Proposition 13.7. If X → Y
f−→ Z is a fibre sequence in C, then [Y] = [X] + [Z] ∈ K(C).

In particular, −[X] = [ΩX] = [ΣX] ∈ K(C).
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Exercise 13.8.

1. Prove Proposition 13.7. Hint: the key trick is very similar to the proof of Proposi-
tion 13.6. We highly recommend working this out as a didactic exercise.

2. This question is about a toy model of an important technique from [CMN+20] in
showing vanishing geometric fixed points. It might be beneficial first to review
Lemma 4.7 and §5. Let R ∈ CAlg(Sp). Recall that we can define a genuine Cp–
spectrum KCp(R) by considering the image of the ∞–category PerfR with the
trivial G–action in the following composition

Fun(BCp, Catperf
∞ ) ↪→ MackCp(Catperf

∞ )
K−−→ MackCp(Sp) = SpCp

Let assp : K(R)hCp ≃ colimBCp K(R) → K(colimBCp PerfR) ≃ K(R[Cp]) be the
colimit–interchange map (which is sometimes known as the assembly map,
hence the notation). Show that if this assembly map is an equivalence and if
K(RtCp) ≃ 0, then ΦCp KCp(R) ≃ 0.

14. Picard spectra

Definition 14.1. Let (C,⊗, 1) be a small symmetric monoidal stable ∞–category. An
object X ∈ C is said to be invertible if there exists a Y ∈ C such that X⊗Y ≃ 1. Define
P ic(C) to be the subspace of C≃ on those objects which are invertible.

Remark 14.2. We will not argue for this here, but Pic(C) is naturally a group–like E∞–
space using ⊗ as the addition, 1 as the zero, and the inverses of elements given by
the inverse of an invertible object. Consequently, via Segal’s equivalence CGrp(S) ≃
Sp≥0, it can be viewed as an object in Sp≥0. We write pic(C) for the corresponding
connective spectrum.

Fact 14.3. The inverse Y of an invertible object X is unique and exhibits the dual X∨

of X.

The following basic fact will be proved in the exercise.

Proposition 14.4. Let R ∈ CAlg(Sp). The homotopy groups of pic(R) := pic(PerfR) ∈
Sp≥0 are computed as follows:

πnpic(R) ∼=
{

πn−1R n ≥ 2

(π0R)× n = 1

Here is another fact which is good to know.

Proposition 14.5. Let (C,⊗, 1) be a symmetric monoidal stable ∞–category whose unit is
compact and where ⊗ commutes with colimits in each variable. In this case, any dualisable
object is compact.
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Proof. Let X ∈ C be dualisable and let ∂ : I → C be a filtered diagram in C. To see that
X is compact, consider the following:

MapC(X, colim
I

∂i) ≃ MapC(1, DX⊗ colim
I

∂i)

≃ MapC(1, colim
I

DX⊗ ∂i)

≃ colim
I

MapC(1, DX⊗ ∂i)

≃ colim
I

MapC(X, ∂i)

where the first and last equivalences are by dualisability, the second and third equiv-
alences are by our hypotheses on (C,⊗, 1). This finishes the proof.

Exercise 14.6.

1. Show Proposition 14.4. Hint: recall that mapR(R, R) ≃ R in ModR.

2. Compute Pic(Sp) as Z. Hint: for X, Y ∈ P ic(Sp) such that X ⊗ Y ≃ S, argue
first that they must be finite spectra and can without loss of generality be assumed to be
connective with nonzero π0. Next, consider the Fp–, Q–, and Z–homologies of X ⊗ Y
to argue that H∗(X; Z) is isomorphic to Z in the zeroth degree. Deduce finally that
X ≃ S.
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