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Harald August Bohr: Danish National Football Team 
1908, Olympic Games in London (*)

Opening game: Denmark - France B :  9 – 0, HB scored twice!
Semi final: Denmark - France A :  17 – 1, till today, Olympic record!
Final: Great Britain - Denmark: 2 – 0, Denmark Olympic Silver Medal! 



Informal Analytic Number Theory Seminar – D-MATH ETH Zurich
Kowalski Emmanuel (e-mail: Sunday 8 October, 2017, 18:11)

Dear all,

To avoid a time conflict, the Informal Analytic Number Theory seminar
has been moved to Mondays, 16:15, in HG G 19.2.

The first talk in this new slot will end a bit before to give time to
attend the Einführungsvorlesung of V. Tassion. I will finish the
discussion of the Bohr-Pál Theorem.

Best wishes,

Emmanuel



A more realistic title would be:

On some Mathematics of Risk 



I like to start on a personal note:



31. Jan. 1953 – 1. Feb. 1953 flooding at Dutch coast

• 1836 people killed
• 72’000 people evacuated
• 49’000 houses and farms floaded
• 201’000 cattle drowned
• 500 km coastal defenses destroyed;

more than 400 breaches of dikes
• 200’000 ha land floaded



Two days later, on February 3, 1953 I was born in 
Schoten, near Antwerp (which was also partly 
floaded):

Schoten



How can we protect the 
population from such events?

For instance by building dikes!



Like in Mary Mapes Dodge: «Hans Brinker
or The Silver Skates», 1865? 

If only!



But more by building dikes like:

(Maeslantkering)



The Delta-Project• Coastal flood-protection
• Requested dike height at l: hd(l)
• Safety margin at l: MYSS(l) = Maximal 

Yearly Sea Surge at l
• Probability(MYSS(l) > hd(l)) 

should be „small“, whereby „small“ is 
defined as (Risk):

• 1 / 10’000 in the Randstad
• 1 / 250 in the Deltaregion to the North
• Similar requirements for rivers, but with 1/10 – 1/100

• For the Randstad (Amsterdam-Roterdam):

Dike height = Normal-level (= NAP) + 5.14 m



Dike-height = NAP + 5.14 m

NAP

PE

Guus Balkema

1953: NAP + 4.5 m



Oosterschelde dike, 
“Neeltje Jans”



The Netherlands without dikes!

Henk van den Brink, KNMI, Fighting the arch-enemy with mathematics and 
climate models

26% area below sea level 
with about a population of 60%



The Netherlands with dikes:

(Henk van den Brink, KNMI)
Remark: 1/10’000  1/100’000



And the situation in Denmark?
• https://www.climatechangepost.com/denmark/coastal-floods/
• Copenhagen, though overall well protected: “The level of flood 

protection in Copenhagen is based on a water level of 150 cm above 
the mean sea level, which is associated to a return-period of 120 
years. The level of protection will have to be upgraded in case of sea 
level rise: even with only a 25 cm sea level rise, the city protection 
level would decline from 1-in-120 years to 1-in-10 years.”

• “Past experience demonstrates that the retrofit of coastal defense 
structures is a lengthy process requiring forward thinking and 
planning. For example, there was a 30 year lag between the decision 
to build the Thames barrier and its actual implementation. It is 
necessary to start thinking about long-term adaptation in coastal 
cities today, even if the risks of climate change are not imminent.”

• Damage protection against excessive rain … 14/8/10, 2/7/11 … !

https://www.climatechangepost.com/denmark/coastal-floods/


We have unfortunately seen many more 
examples since!
•Lothar, Katrina (*), Matthew
• Ike, Sandy (*)
•Harvey, Irma, Maria, …
•Sendai, Tohoku Earthquake (*)
•2011 Thai flood 
•… 



… as well as financial “storms” on Wall Street:



Some methodological ingredients from a mathematical point of view:

• Data: historical, expert, simulation, hence (mathematical) statistics
• Numerically simulated climate models (so-called ensembles): 

numerical analysis (Navier-Stokes equations)
• One is interested in yearly (say) maximal storm surges/heights, not 

the yearly average one, hence Extreme Value Theory (EVT) and the 
stochastic modelling of rare events enter

• Risk is interpreted as a 1 in 10’000 year event, hence the theory of 
risk measures plays a crucial role

• Interdisciplinarity is a fact and excellent communication skills are 
absolutely indispensable … e.g. L’Aquila!

• …



An important research distinction (very broadly)
• All fields of application need a proper definition of risk
• All fields of application need statistical estimation of risk measures
• (EE) For Environmental/Engineering applications one typically faces 

one random variable (r.v.), of course based on measurements of 
typically multivariate stochastic processes, or measurements of 
several such rvs for different sites leading to statistical estimation: 
STATISTICS

• (EF) For applications in Economics/Finance one typically combines 
measures of risk across different rvs (e.g. portfolio factors) in a 
functional way leading to risk aggregation/diversification/allocation: 
FUNCTIONAL ANALYSIS  



As a consequence, classical mathematical  
theorems (e.g.!) in use in (EE) and (EF) differ:

(EE) The Fisher-Tippett-Gnedenko Theorem
The Pickands-Balkema-de Haan Theorem, etc …
from the realm of Extreme Value Theory (EVT)

(EF)  The Hahn-Banach Theorem (*)
The Fenchel-Moreau Theorem, etc …  
from the realm of Functional Analysis and Convex Analysis 
(*) during the financial crisis some banks actually “achieved”

the financial equivalent of the Banach –Tarski paradox!



Fenchel’s Theorem (1929): The total curvature 
of a space curve is greater than or equal to 2π

with equality only for convex curves.
Proof of Konrad Voss (*) (1955): The total 

curvature of a space curve is one halve the 
total absolute Gaussian curvature of a circular 

tube around the curve.
(*) Konrad Voss (ETH):  1928 – 2017

In QRM the relevant result is Fenchel’s Duality 
Theorem from convex analysis. Werner Fenchel

(1905-1988)



A sample of mathematical results from:

Taken from the support-website

www.qrmtutorial.org

Containing:
- Book(s) info
- Full course pdf slides (~ 800)
- All R-programs
- Extra course information
- Videos
- News, etc.

(2005, 2015)

(700 pages)

http://www.qrmtutorial.org/


Two important risk measures: VaR and ES 

2.3.2 Value-at-risk

Definition 2.5 (Value-at-risk)

For a loss L ∼ FL, value-at-risk (VaR) at confidence level α ∈ (0, 1) is

defined by VaRα = VaRα(L) = F←L (α) = inf{x ∈ R : FL(x) ≥ α}.

VaRα is simply the α-quantile of FL. As such, FL(x) < α for all

x < VaRα(L) and FL(VaRα(L)) = FL(F←L (α)) ≥ α.

Known since 1994: Weatherstone 415 report (J.P. Morgan; RiskMetrics)

VaR is the most widely used risk measure (by Basel II or Solvency II)

VaRα(L) is not a what if risk measure: It does not provide information

about the severity of losses which occur with probability ≤ 1 − α.

© QRM Tutorial Section 2.3.2

http://www.qrmtutorial.org


Definition 2.8 (Expected shortfall)

For a loss L ∼ FL with E(L+) < ∞, expected shortfall (ES) at

confidence level α ∈ (0, 1) is defined by

ESα = ESα(L) =
1

1 − α

∫ 1

α
VaRu(L) du. (7)

ESα is the average over VaRu for all u ≥ α ⇒ ESα ≥ VaRα.

Besides VaR, ES is the most important risk measure in practice.

ESα looks further into the tail of FL, it is a “what if” risk measure

(VaRα is frequency-based; ESα is severity-based).

ESα is more difficult to estimate and backtest than VaRα (the variance

of estimators is typically larger; larger sample size required).

ESα(L) < ∞ requires E(L+) < ∞.

Subadditivity and elicitability (see the appendix). One can show:

◮ In contrast to VaRα, ESα is subadditive (more later).

© QRM Tutorial Section 2.3.4

http://www.qrmtutorial.org
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8 Aggregate risk

8.1 Coherent and convex risk measures

8.2 Law-invariant coherent risk measures

8.3 Risk measures for linear portfolios

8.4 Risk aggregation

8.5 Capital allocation

© QRM Tutorial Section 8

http://www.qrmtutorial.org


8.1 Coherent and convex risk measures

Consider a linear space M ⊆ L0(Ω,F ,P) (a.s. finite rvs).

Each L ∈ M (incl. constants) represents a loss over a fixed time horizon.

A risk measure is a mapping ̺ : M → R; ̺(L) gives the total amount

of capital needed to back a position with loss L.

C ⊆ M is convex if (1 − γ)x+ γy ∈ C for all x, y ∈ C, 0 < γ < 1. C

is a convex cone if, additionally, λx ∈ C when x ∈ C, λ > 0.

Axioms for ̺ we consider are:

Monotonicity: L1 ≤ L2 ⇒ ̺(L1) ≤ ̺(L2).

Translation invariance: ̺(L+m) = ̺(L) +m for all m ∈ R.

Subadditivity: ̺(L1 + L2) ≤ ̺(L1) + ̺(L2) for all L1, L2 ∈ M.

Positive homogeneity: ̺(λL) = λ̺(L) for all λ ≥ 0.

Convexity: ̺(γL1 + (1 − γ)L2) ≤ γ̺(L1) + (1 − γ)̺(L2) for all 0 ≤
γ ≤ 1, L1, L2 ∈ M.

© QRM Tutorial Section 8.1

http://www.qrmtutorial.org


Definition 8.1 (Convex, coherent risk measures)

A risk measure which satisfies monotonicity, translation invariance

and convexity is called convex .

A risk measure which satisfies monotonicity, translation invariance,

subadditivity and positive homogeneity is called coherent.

A coherent risk measure is convex; the converse is not true, see below. On

the other hand, for a positive-homogeneous risk measure, convexity and

coherence are equivalent.

8.1.1 Risk measures and acceptance sets

Definition 8.2 (Acceptance set)

For a monotone and translation-invariant risk measure ̺ the acceptance

set of ̺ is A̺ = {L ∈ M : ̺(L) ≤ 0} (so it contains the positions that

are acceptable without any backing capital).

© QRM Tutorial Section 8.1.1
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8.1.2 Dual representation of convex measures of risk

Theorem 8.10 (Dual representation for risk measures)

Suppose |Ω| = n < ∞. Let F = P(Ω) (power set) and M := {L :

Ω → R}. Then:

1) Every convex risk measure ̺ on M can be written in the form

̺(L) = max{EQ(L) − αmin(Q) : Q ∈ S1(Ω,F)}, (39)

where S1(Ω,F) denotes the set of all probability measures on Ω, and

where the penalty function αmin is given by αmin(Q) = sup{EQ(L) :

L ∈ A̺}.

2) If ̺ is coherent, it has the representation

̺(L) = max{EQ(L) : Q ∈ Q}
for some set Q = Q(̺) ⊆ S1(Ω,F).

One can show that αmin(Q) = supL∈M{EQ(L) − ̺(L)}.
© QRM Tutorial Section 8.1.2
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8.1.3 Examples of dual representations

Proposition 8.11 (ES formulas)

For α ∈ (0, 1),

1) ESα(L) =
E

(
(L− F←L (α))+

)

1 − α
+ F←L (α);

2) ESα(L) =
E(LI{L>F←

L
(α)}) + F←L (α)

(
1 − α− F̄L(F←L (α))

)

1 − α
.

Corollary 8.12 (ES formulas under continuous FL)

Let FL be continuous at F←L (α). Then

1) ESα(L) =
E(LI{L>F←

L
(α)})

1−α

2) ESα(L) = E(L |L > F←L (α)) (i.e. conditional VaR (CVaR))

With dual representations one can give a proof for ESα being subadditive;

see the following result.

© QRM Tutorial Section 8.1.3
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Theorem 8.13

For α ∈ [0, 1), ESα is coherent on M = L1(Ω,F ,P). The dual

representation is given by

ESα(L) = max{EQ(L) : Q ∈ Qα}, (40)

where Qα is the set of all probability measures on (Ω,F) that are

absolutely continuous with respect to P and for which the measure-

theoretic density dQ/dP is bounded by 1/(1 − α).

© QRM Tutorial Section 8.1.3

http://www.qrmtutorial.org


8.3.2 Elliptically distributed risk factors

Theorem 8.24 (Risk measurement for elliptical risk factors)

Let X ∼ Ed(µ,Σ, ψ) and ̺ be any positive-homogeneous, translation-

invariant and law-invariant risk measure on M. Then:

1) For any L = m+ λ′X ∈ M, ̺(L) = m+ λ′µ +
√

λ′Σλ̺(Y1)

for Y1 ∼ S1(ψ).

2) If ̺(Y1) ≥ 0, then ̺ is subadditive on M (e.g., VaRα for α ≥ 0.5).

3) If EX exists then, ∀L = m+ λ′X ∈ M and ρij = ℘(Σ)ij = Pij ,

̺(L− EL) =

√
√
√
√
√

d∑

i=1

d∑

j=1

ρijλiλj̺(Xi − EXi)̺(Xj − EXj).

4) If cov(X) exists and ̺(Y1) > 0 then, for every L ∈ M,

̺(L) = E(L) + k̺

√

var(L) for some k̺ > 0 depending on ̺.

5) If Σ−1 ex., ̺(Y1) > 0 then S̺ = {x : (x−µ)′Σ−1(x−µ) ≤ ̺(Y1)2}.

© QRM Tutorial Section 8.3.2
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8.4.4 Risk aggregation and Fréchet problems

Consider the margins-plus-copula approach where Lj ∼ Fj , j ∈ {1, . . . , d},

are treated as known (estimated or postulated) and C is unknown.

Consider L = L1 + · · · + Ld. Due to the unknown C (dependence

uncertainty), risk measures can no longer be computed explicitly.

Our goal is to find bounds on VaRα and ESα under all possible C. Let

Sd := Sd(F1, . . . , Fd) :=

{

L =
d∑

j=1

Lj : Lj ∼ Fj , j = 1, . . . , d

}

and consider

̺(L) := ̺(Sd) := sup{̺(L) : L ∈ Sd(F1, . . . , Fd)} (worst ̺)

̺(L) := ̺(Sd) := inf{̺(L) : L ∈ Sd(F1, . . . , Fd)} (best ̺)

If ̺ = ESα, ESα(L) =
∑d

j=1 ESα(Lj) (subadditivity, com. additivity).

ESα, VaRα, VaRα depend on whether the portfolio is homogeneous

(that is, F1 = · · · = Fd); we focus on VaRα.
© QRM Tutorial Section 8.4.4
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Summary of existing results

d = 2: Fully solved analytically

d ≥ 3: Here we distinguish:

◮ Homogeneous case (F1 = · · · = Fd):

ESα(L) solved analytically for decreasing densities (e.g. Pareto,

Exponential)

VaRα(L), VaRα(L) solved analytically for tail-decreasing densi-

ties (e.g. Pareto, Log-normal, Gamma)

◮ Inhomogeneous case:

Few analytical results: current research

Numerical methods: (Adaptive/Block) Rearrangement Algorithm

© QRM Tutorial Section 8.4.4
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8.5 Capital allocation

How can the overall capital requirement may be disaggregated into additive

contributions/units/investments? Motivation: How can we measure the

risk-adjusted performance of different investments?

8.5.1 The allocation problem

The performance of investments is usually measured using a RORAC

(return on risk-adjusted capital) approach by considering

expected profit of investment j

risk capital for investment j
.

The risk capital of investment j with loss Lj can be computed as

follows: Compute ̺(L) = ̺(L1 + · · · + Ld). Then allocate ̺(L) to the

investments according to a capital allocation principle such that

̺(L) =
d∑

j=1

ACj ,

where the risk contribution ACj is the capital allocated to investment j.
© QRM Tutorial Section 8.5
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The formal set-up

Consider an open set 1 ∈ Λ ⊆ Rd \ {0} of portfolio weights and define

L(λ) = λ′L =
d∑

j=1

λjLj , λ ∈ Λ.

For a risk measure ̺, define the associated risk-measure function

r̺(λ) = ̺(L(λ)),

so that r̺(1) = ̺(L).

8.5.2 The Euler principle and examples

If r̺ is positive homogeneous and differentiable at λ ∈ Λ, Euler’s rule

(see the appendix)implies that

r̺(λ) =
d∑

i=1

λi
∂r̺

∂λi
(λ) so ̺(L) = r̺(1) =

d∑

j=1

∂r̺

∂λj
(1).

Note that r̺ is positive homogeneous if ̺ is.

© QRM Tutorial Section 8.5.2
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5 Extreme value theory

5.1 Maxima

5.2 Threshold exceedances

© QRM Tutorial Section 5
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An introduction to 1-d EVT



5.1.4 The block maxima method (BMM)

The basic idea in a picture based on losses X1, . . . , X12:

0 t

Losses

M31

M32

M33

M34

Consider the maximal loss from each block and fit Hξ,µ,σ to them.

© QRM Tutorial Section 5.1.4
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5.2.2 Modelling excess losses

The basic idea in a picture based on losses X1, . . . , X12.

0 t

Losses

X5 − u
X6 − u

X8 − u

X12 − u

u

Consider all excesses over u and fit Gξ,β to them.

© QRM Tutorial Section 5.2.2
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Convergence of maxima

QRM is concerned with maximal losses (worst-case losses). Let (Xi)i∈N
ind.∼

F (can be relaxed to a strictly stationary time series) and F continuous.

Then the block maximum is given by

Mn = max{X1, . . . , Xn}.

One can show that Mn
a.s.→

n→∞
xF (similar as in the SLLN; due to monotone

convergence to a constant) where

xF := sup{x ∈ R : F (x) < 1} = F←(1) ≤ ∞
denotes the right endpoint of F .

Question: Is there a “CLT” for block maxima?

© QRM Tutorial Section 5.1.1
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Idea CLT: What about linear transformations (the simplest possible)?

Definition 5.1 (Maximum domain of attraction)

Suppose we find normalizing sequences of real numbers (cn) > 0 and

(dn) such that (Mn − dn)/cn converges in distribution, i.e.

P((Mn − dn)/cn ≤ x) = P(Mn ≤ cnx + dn) = F n(cnx + dn) →
n↑∞

H(x),

for some non-degenerate df H (not a unit jump). Then F is in the

maximum domain of attraction of H (F ∈ MDA(H)).

The convergence to types theorem (see the appendix)guarantees that

H is determined up to location/scale, i.e. H specifies a unique type of

distribution.

Question: What does H look like?

© QRM Tutorial Section 5.1.1
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Theorem 5.3 (Fisher–Tippett–Gnedenko)

If F ∈ MDA(H) for some non-degenerate H, then H must be of GEV

type, i.e. H = Hξ for some ξ ∈ R.

Proof. Non-trivial. For a sketch, see Embrechts et al. (1997, p. 122).

Interpretation: If location-scale transformed maxima of iid random

variables converge in distribution to a non-degenerate limit, the limiting

distribution must be a location-scale transformed GEV distribution (that

is, of GEV type).

One can always choose normalizing sequences (cn) > 0, (dn) such that

Hξ appears in standard form (although from a statistical point of view,

(cn) > 0, (dn) are simply estimated).

All commonly encountered continuous distributions are in the MDA of

some GEV distribution.

© QRM Tutorial Section 5.1.1
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Definition 5.2 (Generalized extreme value (GEV) distribution)

The (standard) generalized extreme value (GEV) distribution is given by

Hξ(x) =







exp(−(1 + ξx)−1/ξ), if ξ 6= 0,

exp(−e−x), if ξ = 0,

where 1 + ξx > 0 (MLE!). A three-parameter family is obtained by a

location-scale transform Hξ,µ,σ(x) = Hξ((x − µ)/σ), µ ∈ R, σ > 0.

The parameterization is continuous in ξ (simplifies statistical modelling).

The larger ξ, the heavier tailed Hξ (if ξ > 0, E(Xk) = ∞ iff k ≥ 1
ξ ).

ξ is the shape (determines moments, tail). Special cases:

1) ξ < 0: the Weibull df, short-tailed, xHξ
< ∞;

2) ξ = 0: the Gumbel df, xH0
= ∞, decays exponentially;

3) ξ > 0: the Fréchet df, xHξ
= ∞, heavy-tailed (H̄ξ(x) ≈ (ξx)−1/ξ),

most important case for practice

© QRM Tutorial Section 5.1.1
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Definition 5.13 (Excess distribution over u, mean excess function)

Let X ∼ F . The excess distribution over the threshold u is defined by

Fu(x) = P(X − u ≤ x | X > u) =
F (x + u) − F (u)

1 − F (u)
, x ∈ [0, xF − u).

If E|X| < ∞, the mean excess function is defined by

e(u) = E(X − u | X > u) (i.e. the mean w.r.t. Fu)

Interpretation: Fu is the distribution of the excess loss X − u over u,

given that X > u. e(u) is the mean of Fu as a function of u.

One can show the useful formula e(u) = 1
F̄ (u)

∫ xF

u F̄ (x) dx.

For continuous X ∼ F with E|X| < ∞, the following formula holds:

ESα(X) = e(VaRα(X)) + VaRα(X), α ∈ (0, 1) (12)

© QRM Tutorial Section 5.2.1
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Theorem 5.15 (Pickands–Balkema–de Haan (1974/75))

There exists a positive, measurable function β(u), such that

lim
u↑xF

sup
0≤x<xF−u

|Fu(x) − Gξ,β(u)(x)| = 0.

if and only if F ∈ MDA(Hξ), ξ ∈ R.

Proof. Non-trivial; see, e.g. Pickands (1975) and Balkema and de Haan

(1974).

Interpretation

The GPD is the canonical df for excess losses over high u.

The result is also a characterization of MDA(Hξ), ξ ∈ R. All F ∈
MDA(Hξ) form a set of df for which the excess distribution converges

to the GPD Gξ,β with the same ξ as in Hξ when u is raised.

© QRM Tutorial Section 5.2.1
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5.2 Threshold exceedances

The BMM is wasteful of data (only the maxima of large blocks are used).

It has been largely superseded in practice by methods based on threshold

exceedances (peaks-over-threshold (POT) approach), where all data above

a designated high threshold u are used.

5.2.1 Generalized Pareto distribution

Definition 5.12 (Generalized Pareto distribution (GPD))

The generalized Pareto distribution (GPD) is given by

Gξ,β(x) =







1 − (1 + ξx/β)−1/ξ, if ξ 6= 0,

1 − exp(−x/β), if ξ = 0,

where β > 0, and the support is x ≥ 0 when ξ ≥ 0 and x ∈ [0, −β/ξ]

when ξ < 0.

© QRM Tutorial Section 5.2
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The sinking of the MV Derbyshire

I Massive ore-bulk-oil combination carrier,
built in 1976

I On 9 Sep 1980, she sinks in the Pacific
Ocean, close to Japan, during Typhoon
Orchid

I All 44 people on board died
I Sunk suddenly: no mayday calls, no

lifeboats
I Largest UK ship to have been lost at sea

J.E. Heffernan & J.A. Tawn (2003) JRSS(C) 52(3), 337–354

Johan Segers (UCL) Modelling Storms, Crashes, and Records ISBA, UCL, 25 Oct 2013 33 / 41



Why did the Derbyshire sink?

I 1990 Formal investigation.
Hypothesis: structural failure
(evidence from sister ships)?
Inconclusive evidence.

I 1994 Ship found in 4200m deep
ocean

I 1997–1998 underwater
expedition: sinking due to crew
negligence?

I 2000 two-month formal high
court investigation: hatch cover
on hold 1 failed as bow deck
encountered ‘green seas’

Johan Segers (UCL) Modelling Storms, Crashes, and Records ISBA, UCL, 25 Oct 2013 34 / 41



The question: Probability of large wave impact?

I Safety standard for hatch cover on hold 1:
42 kPa

I Uncertainty about:
I ship: speed, preliminary damage

leading to loss of free-board
I wave conditions (height, period):

hindcast via satellite data

Statistical problem

P(wave impact > 42 kPa on hatch cover | ship & see conditions) =?

Johan Segers (UCL) Modelling Storms, Crashes, and Records ISBA, UCL, 25 Oct 2013 35 / 41



How to model the distribution of large wave impact?

I Wave impacts arrive according to a Poisson process
I µ(z) is expected number of impacts per hour larger than u
I Size of such an impact:

Fu(x; z) = P(impact ≤ x | impact > u; z)

I Previous analyses: model uncertainty about Fu is much larger than
uncertainty about the state of the ship or the sea!

Johan Segers (UCL) Modelling Storms, Crashes, and Records ISBA, UCL, 25 Oct 2013 37 / 41



Conclusions and final outcome of the investigation

I Sinking due to initial damage, leading to increased probability of wave
impact causing front hatch cover to collapse

I Judge’s report: Statistical evidence of
‘absolutely fundamental importance
to the outcome of this investigation’

I Judge recommends further extensive model testing to strengthen
regulations on hatch cover strengths

I Eventually led to new worldwide mandatory design standards for
carriers: 35% stronger than previously

J.E. Heffernan & J.A. Tawn (2001) Extremes 4, 359–378
J.E. Heffernan & J.A. Tawn (2003) JRSS(C) 52(3), 337–354
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A final comment:

L‘Aquila April 6, 2009

David SpiegelhalterQuestion: Why this combination?

http://www.google.ch/url?sa=i&rct=j&q=l'aquila+earthquake&source=images&cd=&cad=rja&docid=2djaNL81DIaxXM&tbnid=Fl_lE1EMs-4QrM:&ved=0CAUQjRw&url=http://www.guardian.co.uk/world/2012/oct/27/laquila-earthquake-battle-science-politics&ei=cphcUbr9MYLfPefcgKgG&bvm=bv.44697112,d.ZGU&psig=AFQjCNHs4dbwOs2gGAjaEVMUYrQ7rQmZnA&ust=1365109191191475
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Thank you!
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