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My	research	focusses	on	what	hurdles	fruitful	practical	applications	of	causal	modelling	and	causal	machine	learning.

Speech	recognition,	text	translation,	automatic	video	captioning,	…	isn’t	machine	learning	already	fruitfully	applied?

The	 deep	 learning	 approach	 to	 machine	 learning	 has	 arguably	 revolutionised	 data	 science.	 Fitting	 expressive	 function

approximators	 and	 high-dimensional	 density	 estimators	 as	 black-boxes	 to	 huge	 datasets	 led,	 for	 example,	 to	 impressive

language	 and	 computer	 vision	 tools.	 Yet,	 in	 high-risk	 applications,	 such	 as	 treatment	 planning	 and	 therapy	 chatbots	 for

depressed	or	suicidal	patients,	we	cannot	deploy	such	black-box	models	and	risk	severe	failures.	Instead,	we	need	models

with	 reliable	 and	 expectable	 model	 behaviour	 also	 under	 environmental	 shifts	 and	 interventions.	 For	 example,	 a	 vision

system	for	autonomous	driving	ought	to	be	robust	against	environmental	shifts	and	to	be	working	reliably	in	a	white	winter

landscape,	on	a	colourful	autumn	parkway,	and	between	trucks	with	large-area	natural	paintings	on	them.

So	 we	 often	 require	 modelling	 abilities	 beyond	 classical	 probabilistic	 and	 machine	 learning	 models	 that	 predict	 future

observations	of	a	system	under	the	same	conditions	that	held	true	when	we	devised	the	model	(observational	distribution).

Perhaps,	 causality	 is	what	we	need.	With	 a	 statistical	causal	model	we	may	also	 reason	 about	 future	observations	of	 the

system	when	subjected	to	external	manipulating	forces	or	environmental	shifts	(interventional	distribution).

This	ability	is	crucial	for	reliable	predictions	and	data-driven	decisions	as	the	following	example	aims	to	illustrate	(here,	it

suffices	 to	understand	 the	graph	 intuitively	as	a	depiction	of	 the	cause-effect	 relationships,	while	 its	causal	semantics	and

correspondence	to	an	accompanying	structural	equation	model	can	also	be	made	formally	precise):

A	non-causal	model	may	wrongly	 lead	us	 to	 treat	blurred	vision	(the	side	effect)	 instead	of	 insulin	deficiency	(the	cause)

since	blurred	vision	predicts	but	does	not	cause	diabetes	(the	effect);	likewise,	the	model	may	fail	to	accurately	predict	the

incidence	of	diabetes	in	a	different	environment	and	population	with	prevalence	of	myopia	(another	cause	of	blurred	vision)

higher	than	in	the	training	population.

Indeed,	 research	 into	 causality	 in	machine	 learning	 gained	 traction,	 not	 least	 since	 Judea	 Pearl’s	 2011	Turing	Award	 on

causality,	and	research	foci	shifted	accordingly,	for	example,	from	representation	learning	to	causal	representation	learning.

Causal	machine	learning	to	the	rescue?

The	models	deployed	today	for	prediction	tasks	on	text,	image,	video,	and	voice	data	are	highly	complex	and	non-linear	with

billions	of	parameters,	composed	of	dozens	of	stacked	neural	network	layers,	and	take	days	to	train	in	the	cloud.	This	sheer

model	complexity	and	flexibility	appears	to	be	key	to	the	success	of	predictive	machine	learning	and	allows	scaling	to	high-

dimensional	(low-risk)	applications	such	as	ad	placement	or	text	translation.	While	equipping	these	machine	learning	models

with	causal	reasoning	abilities	is	promising,	it	ain’t	easy.

First,	 in	 statistical	 causal	modelling	we	 often	 require	 restrictive	 assumptions	 for	 providing	 a	 statistical	 account	 of	 causal

model	 properties	 and	 for	 characterising	 their	 identifiability	 from	 data.	 The	 gap	 is	 substantial	 between	machine	 learning

engineering	practice	and	statistical	causal	modelling	theory.	On	the	one	hand	are	universal	function	approximators,	massive

datasets,	flexible	high-dimensional	density	estimators,	and	a	model	zoo	of	often	heavily	overparameterised	models;	on	the

other	hand	are	restricted	model	classes	with	limiting	assumptions,	for	example,	on	the	linearity	of	cause-effect	relationships



or	the	(non-)existence	of	relevant	yet	unobserved	variables,	and	impossibility	results	that	characterise	the	theoretical	limits

for	learning	causal	structure	from	data.	While	machine	learning	models	over	thousands	of	variables	are	commonplace,	for

example,	for	high-resolution	images,	we	struggle	to	scale	causal	structure	learning	algorithms	beyond	a	couple	of	dozens	of

variables.	To	make	progress	despite	this	gap	and	to	improve	machine	learning	via	causal	principles,	I	research	how	to	use

abstract	 causal	 knowledge	 as	 weak	 supervision	 signal	 for	 improving	 rich	 machine	 learning	 models.	 The	 hope	 is	 to

systematically	 incorporate	 our	 prior	 knowledge,	which	 is	 often	 not	 only	 partial	 but	 comes	 in	 abstract	 form	 of	 high-level

properties	instead	of	exact	causal	knowledge	on	the	model	variables,	into	complex	machine	learning	pipelines.

Second,	 in	 causal	 inference	we	often	 implicitly	 assume	 that	 the	observable	 variables	 are	meaningful	 causal	 entities.	This

assumption	is	often	inapt	and	hurdles	fruitful	application.	In	neuroimaging,	for	example,	it	is	nonsensical	to	apply	a	causal

structure	learning	algorithm	to	the	raw	fMRI	voxel	values	or	EEG	signals.	Before	learning	the	causal	structure,	we	need	to

construct	representations	or	recover	latent	from	observed	variables	that	are	meaningful	causal	entities.	We	face	similar	issues

when	we	transform	variables	that	admit	a	causal	model	to	simplify	the	model.	For	example,	even	if	we	could	obtain	a	causal

model	over	several	billions	of	neurons,	 this	model	may	not	be	pragmatically	useful	 for	a	neurologist	 to	decide	on	patient

treatment	plans.	To	obtain	a	useful	comprehensible	model,	we	need	to	abstract	and	simplify	the	billions-of-neurons	model

while	retaining	the	essential	causal	information.	Only	by	systematically	deriving	a	manageable	model	on	the	level	of	brain

regions	from	a	causal	model	over	billions	of	neurons	do	we	obtain	a	model	that	is	pragmatically	useful	for	a	neurologist	to

decide	on	patient	treatment	plans.	In	both	cases,	when	we	recover	latent	causal	variables	or	aggregate	variables	to	simplify	a

model,	 we	 easily	 break	 the	 variables’	 and	 model’s	 causal	 semantics.	 Conversely,	 the	 choice	 of	 wrong	 variables	 or	 the

inability	to	measure	the	right	variables	conceptually	hinders	the	applicability	of	causal	inference	methodology.	To	address

this	 hurdle,	we	 formalised	 and	 characterised	 causal	model	 transformations	 and	 abstractions	 that	 guarantee	 that	 the	 causal

semantics	 stays	 intact	 when	 transforming	 the	 underlying	 variables.	We	 hope	 to	 extend	 this	 to	 a	 notion	 of	 approximate

correspondence	 between	 two	 causal	 models	 with	 an	 associated	 approximation	 error	 that	 can	 be	 used	 to	 learn	 optimal

simplifications	of	causal	models.

Third,	 the	 scarcity	 of	 real-world	 data	with	 known	 cause-effect	 relationships	 hinders	 the	 development	 of	 causal	 structure

learning	 algorithms.	 Instead	 of	 real-world	 data,	 benchmarks	 of	 causal	 structure	 learning	 algorithms	 commonly	 rely	 on

synthetic	 data	 and	 presume	 causal	 additive	 noise	 models.	 In	 my	 research	 I	 scrutinise	 the	 practical	 relevance	 of	 such

benchmarks	 and	 additive	 noise	 models.	We	 have	 shown	 that	 without	 knowledge	 of	 the	 true	 data	 scale	 recent	 structure

learning	algorithms	that	follow	a	direct	machine	 learning	paradigm	fail	 to	recover	causal	structure.	Similarly,	our	 insights

from	the	Causality	4	Climate	NeurIPS	competition	2019	highlight	the	(unintended)	patterns	in	data	scale	of	additive	noise

models:	we	 demonstrated	 that	 for	 causal	models	with	 additive	 noise	 simple	 algorithms	 achieve	 performance	 on	 par	with

other	 more	 involved	 and	 computationally	 expensive	 causal	 discovery	 algorithms.	 In	 my	 research	 I	 aim	 to	 improve

benchmarking	 of	 causal	 structure	 learning	 and	 to	 raise	 awareness	 that	 assumptions	 commonly	 employed	 in	 the	 causality

literature	may	arguably	be	implausible	for	real-world	settings	and	thus	prevent	fruitful	application	of	the	developed	tools.


