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In the 1950s Eugene Wigner faced a problem that is often encountered when analysing high dimen-
sional disordered systems. He wanted to understand the energy spectra of heavy nuclei. However, the
physics are too complicated to be analysed numerically to the necessary accuracy even with modern
computational methods. Furthermore, at the time the relevant interactions were not sufficiently well
understood. His bold solution to this problem was to replace the detailed microspcopic interactions by
random ones and to determine the spectrum of the resulting random matrix model instead. Mathe-
matically this is a much more approachable problem. Behind his idea lies the deep insight that across
a vast range of different systems certain statistical properties of spectral information are universal,
i.e. they do not depend on model details. This line of thinking has lead to numerous successful ap-
plications of random matrix theory (RMT) in fields as diverse as communication and number theory,
condensed matter physics, neural networks and statistics. My research is focussed on developing robust
mathematical tools for identifying and establishing spectral universality phenomena for a wide range
of models that are often motivated by applications from physics or engineering.

The simplest random matrix models have entries that all follow the standard normal distribution
and are otherwise independent up to specific symmetry constraints. For example, the self-adjoint n×n-
random matrix H = (hij) with hij = hij is said to belong to the Gaussian orthogonal ensemble (GOE)
if its entries are real valued normal random variables and to the Gaussian unitary ensemble (GUE) if
they are complex valued. In both cases the joint distribution p(n)n (x1, . . . , xn) of all n eigenvalues and
their k-point marginals or k-point correlation functions
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rescaled to the typical eigenvalue spacing scale 1
nρ(x)

, are universal across a wide range of models. The
functions ρk are conjectured to reflect the joint statistical behaviour of k eigenvalues around a fixed
point x in the bulk of the spectrum for systems as diverse as chaotic quantum billiards, the hypothetical
Hilbert-Pólya operator that determines the non-trivial zeros of the Riemann zeta functions, as well as
the Anderson Hamiltonian, describing the motion of a quantum particle in a random potential.

An overarching goal of my research is to identify the main mechanisms that lead to spectral uni-
versality and to use such insights to prove (1) for models that go far beyond the exactly solvable GOE
and GUE. The first step towards this goal is to control the eigenvalues λ1, . . . , λn of H on mesoscopic
scales just above their typical spacing distance. More precisely, the local law

1

n
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asserts that with high probability the deterministic density ρ(x) correctly predicts the number of eigen-
values in any interval [an, bn] as long as bn−an � 1

n
. Such statement also indicates the strong correlation

among the eigenvalues since we expect (2) only in the regime bn − an � 1√
n
if λi are assumed to be

independent. Due to the relation
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, z ∈ C \ Spec(H) ,

between the resolvent G(z) := (H − z)−1 and the Stieltjes transform of the empirical spectral distri-
bution µn = 1

n

∑n
i=1 δλi , proving a local law is equivalent to controlling 1

n
TrG(z) in the limit n → ∞

in the regime Im z � 1
n
. In fact, for a large class of Hermitian matrices the fluctuation of every entry
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of the resolvent vanishes as n → ∞, showing that the resolvent G = (gij) is well approximated by
a deterministic matrix M . The following informal theorem identifies the matrix M as the solution
to a self-consistent equation, the matrix Dyson equation (3). The main assumption on H is that
the correlations among its entries decay sufficiently rapidly to ensure that not too many entries are
determined by the same source of randomness. Otherwise the entry distributions are very general. In
particular, they do not have to be Gaussian.

Theorem (Resolvent of random matrices with correlated entries). Let H be a random matrix with
decaying correlations among its entries and z ∈ C with Im z > 0. Then all entries of the resolvent
satisfy gij(z)−mij(z)→ 0 with high probability as n→∞, where M = (mij) solves the matrix equation

M(z) =
1

A− z − SM(z)
. (3)

Here, A := EH is the expectation of H and the linear operator S : Cn×n → Cn×n is determined by the
covariances of the entries of H through

SX := E(H − EH)X(H − EH) .

The non-linear high dimensional matrix equation (3) is used to infer properties about the spectrum
of H. It is obtained via a renormalisation procedure that remains valid when the spectral parameter z
is chosen n-dependent, as long as Im z � 1

n
. As a consequence, the local law (2) holds with the spectral

density ρ implicitly defined in terms of the solution M through the relation
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Despite its high dimensionality the algebraic equation (3) enforces surprisingly strong regularity
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Figure 1: Eigenvalues & Spectral density

properties on ρ. Under some additional assumptions on the
data A and S in (3), the bulk regime {x : ρ(x) > 0} consists
of finitely many disjoint open intervals, the spectral bands.
Inside each band ρ is real analytic. The boundaries of these
intervals are called spectral edges and ρ has a one sided
square root growth behaviour at these points. Only when
two bands touch a cusp singularity emerges with a cubic
root growth on both sides. Put differently, the singularities
of the spectral density ρ are all algebraic of degree two or
three (see Figure 1).

The local law for random matrices with general decaying
correlations among their entires provides enough control on
the eigenvalues to establish local spectral universality in the bulk. Furthermore, the two singularity
types of the spectral density ρ are accompanied by their own local universality class.

Theorem (Local spectral universality). 1) For a large class of random matrices with decaying corre-
lations among their entires the local k-point correlation functions (1) coincide with the ones from the
GOE or GUE, depending on whether the matrix entries are real or complex valued.
2) Across the entire model class the distribution of all edge eigenvalues also coincides with the GOE/GUE
edge distribution (Tracy-Widom).
3) For random matrices with independent entries in the complex Hermitian symmetry class the local
eigenvalue statistics around any cusp singularity is given by the Pearcey process.

Despite such detailed understanding of the universality classes for a large range of random matrix
models, it remains a mystery why spectral universality extends to systems with much lower degrees of
disorder. For the above theorem to be applicable to an n×n-matrix H, the randomness that generates
H has to span all its degrees of freedom, i.e. it has to span an n2-dimensional space. On the other
hand, the universal GOE eigenvalue statistics are observed also e.g. for the 3-dimensional Anderson
model whose randomness is restricted to the diagonal, i.e. it spans an n-dimensional space. Reducing
the gap of mathematical understanding between these models is a major motivation for my research.
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