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The question that drives my research is: how do we learn from data? This is the fun-
damental question of inductive reasoning, and statistics provides methodology
for quantifying how data provides evidence of various positions we may take
about “the truth”. There is no universally agreed upon correct way of learning
from data, but various philosophical positions and a large number of practi-
cal models and related methodologies. I seek understanding of the models and
the methods we use in all details from a mathematical, a computational and an
applied viewpoint.

Learning problems

I will use precision medicine to exemplify my current methodological research.
The idea of precision or personalized medicine is that treatments of medical
conditions can and should be individualized to a much greater extent than is
currently the standard. Advocates posit that individualized treatments will have
large beneficial effects, and precision medicine is surrounded by a good deal of

hype.

To be specific, consider obesity with the body mass index (BMI) as our quantifi-
cation of how obese an individual is. With data on 7 adult individuals measuring
their BMI together with p genetic markers (e.g. SNPs, genetic information repre-
sented by a p-dimensional vector x = (x;)), we can ask questions like: which
genetic markers are associated with BMI; can we predict BMI from the genetic
markers; and can we design a treatment (a diet, say) based on the genetic mark-
ers that will lower BMI for the obese?

The last question on treatment strategies is by far the most difficult question.
It is a causal question that probability models cannot answer by themselves.
Answering such causal questions is at the core of precision medicine, as we
want not only to passively predict the BMI but actively to intervene to affect
BMI. My current research is very much focussed on causality, and how we can
learn causal structures from partially observed systems.

Prediction of BMI from the composition of genetic markers is a regression prob-
lem, and it is a routine statistical problem for p ~ 10, but in many ways a
non-trivial problem for large p that requires variable selection, incorporation of
prior knowledge, and care in the statistical assessments of the learned prediction
model.



A causal model is also a predictive model that should remain predictive under
various interventions, that is, when certain variables are actively manipulated
like changing an individuals diet. A predictive model should “just” generalize
beyond the data sample to samples from a reference population. I will restrict
attention to predictive learning and explain some recent mathematical result on
the assessment of how well a predictive model generalizes.

Predictive model assessment

If y; denotes BMI for the ith individual in our sample we want a model of
the conditional mean, i; = u(x;), of y; as a function of the vector x; of markers.
There is a large number of methods for computing an estimate, fI € R", from the
data. Some are linear maps of y = (y;) (projections and ridge regression), some
are nonlinear but globally Lipschitz (lasso), but many that show good empirical
predictive generalization have severe discontinuities (boosted regression trees,
random forests, forward stepwise variable selection, relaxed and adaptive lasso
etc). The lack of smoothness in y — or continuity in the first place — has made the
mathematical analysis of such estimation methods difficult. Without theoretical
results to support practice, there has been an unfortunate tendency in applied
statistics of ignoring discontinuities arising from e.g. variable selection, with a
resulting overoptimistic assessment of what has been learned from data.

One quantification of predictive performance is the average mean squared pre-
diction error
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for new independent Y;s. It is tempting to use the training error

err = %Z(yi —11;)?
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as an estimate of Err, but this will generally be a downward biased estimate.
Thus the training error is overly optimistic about how well the genetic markers
predict BMI. Sufficiently imaginative algorithms may easily find models with
zero training error even if BMI is, in fact, independent of the markers. In such a
case, what we appear to have learned from data is clearly wrong.

The optimism, Err — E(err), of the training error is rather easy to characterize
for linear estimators of u and also for Lipschitz estimators in a Gaussian model.
This can in turn be used to correct err of its bias leading to such statistics as
Mallows’ C, (a close relative of AIC) and Stein’s unbiased risk estimate (SURE),
which are not systematically misleading. A practical deficit of these statistics is
that they don’t work correctly for discontinuous estimators.
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Under the assumption that Y ~ A (u,0?I), Alexander Sokol, Frederik Vissing
Mikkelsen and I have in three papers developed representations of Err — E(err)
and computable estimates of this optimism for a number of discontinuous esti-
mators. The representations are all of the form

Err — E(err) = 22 (E(v )+ /wdv)
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where ¢ is the density for the N (i, 0?I) distribution and v is a measure singular
w.rt. Lebesgue measure. Our contribution consists of the term f pdv, whose
presence is intimately connected to the discontinuities of the map y — fi(y).

Alexander Sokol and I considered estimators that are metric projections onto
closed sets. They are Lipschitz if and only if the set is convex, and thus our
results covered such novel examples as g-quasinorm constraints for g < 1. The
measure v is always a positive measure, and we were able to obtain bounds,
though explicit representations of v were not obtained, nor did we derive esti-
mates of [ pdv.

Frederik Vissing Mikkelsen and I used different techniques for estimators that
are locally Lipschitz on open subsets U; C R" with finite perimeter boundaries
and such that R" = U;U;. With {i' denoting the estimator on U; we showed that
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where 7; denotes the outer unit normal to the boundary of U;, and H" ! the
(n — 1)-dimensional Hausdorff measure.

In the latter setting, we used the above representation to show that

/ pdv' = . E(H (1))

when U! = F(t,U?) and fi"! are parametrized by t € R and F is a flow. Here
t — H(t) is a jump function given in terms of the unit normals, ;, of U?, the

estimators fi"! and the vector field associated with the flow. Many estimators
used in practice can be brought on this form with t a tuning parameter. The
upshot is that
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is a computable estimate of Err(t) for the estimator fif, which can be used to e.g.
select the tuning parameter t.



