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My research focuses on understanding quantum computing devices and their appli-
cations, especially to solve many-body problems in physics.

I have always been captivated by computer science. In an effort to understand
how problems can be broken down into elementary steps, it has emerged that there are
different formal languages. The most powerful ones, Turing machines or A-calculus,
are computationally universal, which means they are equivalent and define what is
and is not “computable”. Interestingly, there are limits to what is computable. For
example, undecidable problems do not admit an algorithmic solution. Problems can
also be unsolvable in practise, if finding the solution takes too long. The complexity
of an algorithm is the number of elementary steps needed to solve any problem of a
given fixed size N. Algorithms for which the complexity grows (asymptotically) as
a polynomial of [V are said to be efficiently solvable, and can typically be solved by
throwing enough computational power at them (for example, multiplying matrices).

Unfortunately, many important problems do not fall into this family. For example,
part of our job is to prove true statements. It is widely believed that searching for a proof
of a bounded length N has a complexity that grows exponentially with N (otherwise
P = NP), meaning that a computer cannot efficiently search for proofs. As a result, our
jobs cannot straightforwardly be done by computers.

Ever since statistical physics was invented in the second half of the 19th century,
a central theme of physics has been to understand how phases of matter emerge from
the complexity of applying simple rules to many particles. Computers have played an
important role as practical tools in statistical physics as they allow simulating complex
systems. In turn, physics has inspired a number of important algorithms.

A snag in this success story has been that our world microscopically is described
by quantum theory, which cannot be efficiently simulated by computers. The reason
is that classical representations of quantum problems intrinsically scale exponentially
with problem size. This problem has sparked the idea of a quantum computer—a
computing device that follows the laws of quantum rather than classical mechanics. In
1994, Peter Shor showed that a quantum computer can find prime factors in polynomial
time, unlike classical computers. This is very exciting, because it establishes that in
spite of computational universality, not all computing models are equally powerful (if
you are willing to believe that factoring is hard for classical computers). It also provides
more support for the belief that simulating Nature microscopically requires a quantum
computer in general and that there will always be problems we cannot solve on classical
computers.

These fundamental questions are fascinating, but what makes the current times
particularly exciting is that first quantum computers are being built, and scaling them up
seems eminently possible. Thus, we may soon witness to a revolution in computational
quantum many-body physics and related fields. This prospect motivates the search



for fast and robust algorithms that can exploit these devices, especially for quantum
simulation.'

My research centers in particular around finding, proposing, and understanding
quantum algorithms to simulate quantum many-body systems. The two subfields of
this general direction that I currently mainly work on concern (i) algorithms to prepare
many-body states, and (ii) the robustness of these and other algorithms to errors.

The first problem, state preparation, is in some sense “Problem 0” of quantum
simulation. A quantum algorithm might for example solve the problem of computing
the time evolution of a state under a given Hamiltonian. To use this algorithm, one
has to first prepare the state at the beginning of the time evolution. Conceptually, we
can think of state preparation as “uploading” data to a quantum computer. It requires
an efficient classical description of the state and an efficient algorithm to compile this
description into native quantum operations.

The second problem is inspired by current devices, which do not posses error
correction mechanisms and thus can only perform quantum computations with errors.
Processes in Nature are robust against some types and amount of errors. Chemical
reactions, for instance, predictably happen despite the molecules being constantly
objected to random stochastic fluctuations of the environment. Similarly, materials
retain their properties at finite temperature and in the presence of structural defects.
Thus, when studying quantum algorithms for many-body problems, it may be the case
that similar robustness can be identified. A better understanding of this will make the
existing devices more usable in practise.

A common misconception is that quantum computers are superior to conventional computers in all
ways—this is emphatically not the case. Most things that can be done well with classical computers will not
benefit from quantum computers. At the moment, it appears like quantum many-body simulation and perhaps
cryptography are the most promising application of quantum computers. This said, it may well be that there
are really cool applications of quantum computers that we do not know about yet. (Incidentally, simulation
and cryptography were the first known applications of classical computers, t0o.)



