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Classical descriptive set theory is a field concerned with studying the properties of concretely

definable subsets of the real line R, and other similar topological spaces. It originated in the work

of Cantor, Lebesgue, Lusin and Suslin, among others. The archetypical example of a concretely

definable set is a Borel set: Such a set can be built from open intervals by repeatedly taking

countable unions and complements.

A major rethinking of descriptive set theory occurred from late 1950s to the early 1970s, when

the field effective descriptive set theory was developed by people like Addison, Moschovakis, Kechris

and Solovay, among many others. From this point of view, descriptive set theory is established as a

theory parallel to computability theory of functions on the natural numbers in the sense of Turing

and Church. That is, a computability theory of the continuous. Pushing aside the intricacies, and

lying only slightly, the upshot is this: Borel functions on R, and similar topological spaces, are

quite a good analogue of computable functions.

While descriptive set theorists of the 1950s and 1960s were busy developing effective descriptive

set theory, Mackey, Thoma, Glimm and Effros were studying classification problems of (usually

infinite dimensional) unitary representations of groups and C∗-algebras.

For Abelian countable groups, Pontryagin’s duality provides a satisfying classification of irre-

ducible representations in terms of characters, but what about the irreducible representations of

general countable groups?

From one point of view this question is trivial, by way of the following trick: There are at most

continuum many irreducible unitary representations of a countable group up to isomorphism, so

we can in principle assign to each isomorphism class a unique real number as an invariant.

This, however, is a deeply unsatisfying classification because it does not give us a concrete way

of computing from a given irreducible unitary representation the invariant. In fact, if we accept the

tenet that in the continuous setting Borel means computable, then nothing like the above “trick

classification” of irreducible representations is possible in general.

The troublemaker is the Vitali equivalence relation Ev on R: Two real numbers x, y ∈ R are

Ev-equivalent iff x− y is rational. There is no Borel (or measurable) function f : R→ R such that

xEvy if and only if f(x) = f(y) (it is a fun exercise to show this). That is, there is no way of

classifying real numbers up to rational translation by assigning to each class a single real number

as a complete invariant, if we require that this assignment be Borel (or just measurable).

The combined work of Effros, Glimm and Thoma in the 1960s showed that if G is a countable

group that is not Abelian-by-finite, then Ev can be embedded in a Borel way into the isomorphism

problem for irreducible unitary representations of G, thus obstructing a concrete classification.

To Mackey and his contemporaries, the idea that Borel means computable was taken to be

intuitively true; they were unaware of the development of effective descriptive set theory, but were

vindicated by it. It also seems that they thought that once Ev was shown to be embedded into an

isomorphism problem, then all hope was lost.
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In the late 1980s, descriptive set theorists realized that a better view is that Ev represents just

one of many degrees of complexity that a classification problem can have; and it is a rather low one.

The key definition is the following: Given a space X whose points are interesting “objects”

we wish to classify (e.g., unitary representations), and denoting the isomorphism relation among

the objects by E (which is then an equivalence relation in X), and given a space Y of potential

invariants, and an equivalence relation F on Y among those invariants, it would be natural to

say that the points of X can be classified up to E-equivalence by a computable (!) assignment of

invariants in Y , modulo F -equivalence, if there is a Borel f : X → Y such that

xEy ⇐⇒ f(x)Ff(y).

In this case we write E ≤B F (read “E is Borel reducible to F”), and think of E as being “at

most as complicated” as F . If both E ≤B F and F ≤B E, then we write E ≡B F (read “E is

Borel bi-reducible to F”). The ≡B classes may then be thought of as “degrees of complexity” for

classification problems.

The results of Effros, Glimm and Thoma then show that when G is a countable group which is

not Abelian-by-finite, then Ev is Borel reducible to the isomorphism relation on irreducible unitary

representations of G.

One may wonder if the converse is true, in which case things wouldn’t be so bad at all, because

it would seem like a really nice theorem to be able to classify irreducible unitary representations

by real numbers modulo rational differences!

Alas, the news is very bad: In the late 1990s, Gregory Hjorth developed a “theory of turbulence”

for equivalence relations, which allowed him to prove that there are many natural equivalence

relations that are far, far more complex than Ev, including the isomorphism relation on irreducible

representations of groups that are not Abelian-by-finite.

Hjorth’s theory is a watershed in the study of continuous actions of “large” topological groups,

such as the unitary group of infinite dimensional Hilbert space, or the permutation group of the

natural numbers; and it has been applied far and wide by now. For instance, we now know that

the main classification problem in ergodic theory, of ergodic measure-preserving transformations

of the unit interval, is turbulent (Foreman-Weiss, 2003). This despite the success of Ornstein in

classifying the very special class of Bernoulli shifts, or the classification of transformations with

pure point spectrum by von Neumann.

Operator algebras is, of course, an area ripe with classification problems of central interest, and

here the news is bad, too. The isomorphism problem on nuclear, simple, separable, unital C∗-

algebras is turbulent (Farah-Toms-Törnquist, 2011), and while there is also a natural upper bound

on the complexity (Elliott-Farah-Paulsen-Rosendal-Toms-Törnquist, 2013), it was shown that this

upper bound is in fact achieved by this isomorphism problem (Marcin, 2014).

Von Neumann algebras fare little better: The isomorphism problem on separably acting von

Neumann factors (in every type class, except type I) is turbulent (Sasyk-Törnquist, 2009). We also

identified an upper bound on the complexity of classifying von Neumann factors, but it remains

open if this upper bound is achieved. Answering this is closely related to understanding certain

complicated continuous actions of the group of unitary operators on an infinite dimensional sepa-

rable Hilbert space. And this is emblematic of much of descriptive set theory today: New results
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are achieved by studying large topological groups and their continuous actions, and this in turn is

related to understanding the confluence of combinatorics (finite and infinite) and analysis.

Asger Törnquist, 2015


