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Abstract 

The I(2) model is defined as a sub-model of the general vector au­
toregressive model, by two reduced rank conditions. The model describes 
stochastic processes with stationary second difference. A parametrization 
is suggested which makes likelihood inference feasible. The asymptotic 
distribution of the maximum likelihood estimators is given. It is shown 
that the asymptotic distribution is either Gaussian, mixed Gaussian or, in 
some cases, even more complicated. 

1 Introduction 

The vector autoregressive model is often applied in statistics to describe a sta­
tionary time series but such models can also be used to describe the fluctuations 
of non stationary processes by imposing suitable restrictions on the parameter 
space. 

In econometrics the observed time series like prices, money and income are 
often best described by non stationary processes and a class of processes that 
has often been used consists of a random walk plus a stationary process, that 
is, a process for which the difference is stationary. We call such a process an 
1(1) process, that is, integrated of order 1. A closer inspection of the price 
variables (in logs) shows that the changes, that is the inflationrate,is"sometimes 
best described by an 1(1) process. If the changes of a process is an 1(1) process the 
process itself is called an 1(2) process and it can be decomposed into a cumulated 
random walk, a random walk, and a stationary process, see (7). 

The statistical analysis of 1(1) processes is now a well established technique 
in econometrics, see Johansen [3], Reinsel and Ahn [14] and Phillips [13]. 

The statistical analysis of 1(2) processes is discussed by Johansen [7J in the 
context of the vector autoregressive model using a modification of likelihood 
methods, and it is followed by papers by Paruolo [10] and [11]. Regression models 
have been used by Stock and Watson [16]. 
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See Johansen [8] for an analysis of prices, interest rates and exchange rates 
in Australia and US, and Juselius [9] for an analysis of purchasing power parity 
between Denmark and Germany using the notion of 1(2) processes. 

The purpose of this paper is to analyse the likelihood function for the 1(2) 
model as a sub-model of the general VAR model as defined in Johansen [7]. An 
algorithm for calculating the maximum likelihood estimator is given in [6], and in 
this paper we want to find the asymptotic distribution of the maximum likelihood 
estimator and compare it with the results for the above two step procedure. 

It is known that by restricting the coefficient matrix of the levels in a reduced 
form error correction model to have reduced rank, the process is forced to be 
non-stationary, and conditions exist for eliminating the possibility of 1(2), see 
[5]. For an 1(2) model we need two reduced rank conditions (5) and (6) and the 
first result, in section 4, of this paper is a parametrisation of this model where 
the parameters vary independently, which makes the analysis of the likelihood 
function feasible. We next discuss briefly the asymptotic analysis of the process 
and product moments derived from it. Section 7 contains the derivatives of the 
likelihood function with respect to the relevant parameters. Using these results 
we can then prove the existence and consistency of the maximum likelihood esti­
mator, and find their asymptotic distribution. It turns out that the asymptotic 
distribution is not mixed Gaussian as one finds in the /(1) analysis. 

2 The analysis of 1(1) variables 

The vector autoregressive model can be rewritten as an error correction model in 
the form 

k-l 

~Xt = ITXt- 1 + L fi~Xt-i + ft, (1) 
i=l 

and it is a well known result that if the roots of the characteristic polynomial 

k-l 

A(z) = 1(1 - z)1 - ITz - L fi(l - z)zil 
i=l 

are outside the unit disk, then the process generated by (1) is stationary. If unit 
roots are allowed then A(l) = -IT is of reduced rank, and can be written as 
IT = o:j3'. Under this condition X t has the representation 

t 

Xt = CLfi + C(L)ft, (2) 
i=l 

where 
k-l 

C = j31.(o:~fj31.tlo:~, r = 1- L fi, (3) 
i=l 

provided o:~ f,B 1. has full rank. Thus X t has the form of an /(1) variable, that is, 
a stationary process plus an random walk. This representation shows the main 
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result in cointegration analysis, see Granger [2J, namely that although X t is a non 
stationary proc~ss it still holds that 13' X t is stationary. This result shows that 
there can be stationary relations between non stationary variables. It accounts 
for the interest that this type of analysis has gained in econometrics, where the 
existence of stationary relations between variables allows one to formulate struc­
tural economic relations as stationary relations, and the error correction model 
shows how the process reacts and adjusts to a disequilibrium error (f3'Xt ) through 
the adjustment coefficients a. The random walk a~ I:l=l Ei which accounts for the 
non stationarity of the process is called the common trend. 

The I(1) model is defined by equation (1) where the parameters are 

(a, 13, r 1, ... , r k- 1 , D), 

which vary freely. 
The statistical analysis of this model by likelihood methods shows that a and 13 

can be estimated by reduced rank regression of .6.Xt on Xt- 1 on .6.Xt- 1 , ... , .6.Xt- k+1, 

see Johansen [3J. It turns out that the maximum likelihood estimator of 13 is su­
perconsistent in the sense that T(/J - 13) is weakly convergent, and that the limit is 
mixed Gaussian, which means that (asymptotic) inference on 13 can be conduded 
in the usual way, using the X2 distribution, see section 6. 

3 The representation of 1(2) variables 

For an analysis of I(2) variables it is convenient to rewrite the autoregressive 
model as 

k-2 

.6.2X t = r.6.Xt- 1 + ITXt- 2 + L \l!i~2Xt_i + tt, (4) 
i=l 

where Et are i.i.d. Np(O,11). We assume as before that the parameters a,f3 are 
defined by 

IT = af3', a,f3 (p X r), r < p. (5) 

If a and 13 are of full rank we define a1- and 131- of dimension p x (p - r) and 
full rank such that a'a1- = 13'131- = O. We need the notation a = a{a'a)-l and 
similarly for other matrices of full rank. We let IAI denote the determinant of 
the square matrix A. In order that (4) should generate I(2) variables we must 
assume that ai r 13 1- has reduced rank, so that we can define the parameters <p 

and'TJ by 

a~rp1- = <P'TJ', <P,'TJ (p-r) X s, s <p-r. (6) 

We then define the parameter functions 
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Note that ((3, (31, (32) are mutually orthogonal and the same holds for (a, a}, (2)' 
Note also that the parameter "7 depends on the choice of (3l.., whereas ((31, (32) are 
independent of this choice. In [5] it is shown that under the above conditions and 
the condition 

la~e(321 = la~(r,Ba'r + 1 - ~ Wi)(32 i= 0, 

it holds that the process X t is an 1(2) process with the representation 

t j t 

X t = C2 L L Ei + Cl L Ei + C(L)Et. (7) 
j=l i=l i=l 

The coefficient matrices Cl and C2 are complicated functions of the parameters 
of the model, and we here only quote the result 

(8) 

It follows from (7) that X t needs two differences to become stationary as long 
as C2 i= o. From (7) and (8) it is seen that (3~Xt is 1(2) and that no linear 
combination of this process has lower order of integration. Since ((3, (31)'(32 = 0 
we have ((3, (31)'C2 = 0 and hence ((3, (31)'Xt is 1(1) in general, but more can be 
said. It turns out, see [5], that 

and therefore also the process 

(3' X t + air .6.Xt , 

are stationary. Thus the representation (7) implies that T = ((3, (31) are C(2, 1) 
in the sense that they reduce the order of the process from 2 to 1. The rela­
tion (3'Xt cointegrates with the 1(1) process .6.Xt to stationarity. The process 
a~ 2:;=1 2:{=1 Ei is called the common 1(2) trend. 

It is the purpose of this paper is to find the asymptotic distribution of the 
maximum likelihood estimators for the parameters ((3, (31, (32) together with a 
matrix e such that (3'Xt + e' .6.Xt is stationary, see the definitions in Table 1. 

4 A reparametrization of the 1(2) model 

In this section we define the VAR model with 2 lags written in the error correction 
form, and define the 1(2) model as a sub-model which has two reduced rank 
conditions (5) and (6) on the coefficient matrices. We then define a different 
parametrization, which has the property that the parameters vary unrestrictedly. 
This make the analysis of the likelihood easier. 
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The reparametrization only involves the parameters IT, r· and n so in the 
next sections w~ only analyse the VAR(2) model 

,6.2Xt = r,6.Xt- 1 + ITXt- 2 + tt, 
where tt are i.i.d. Np(O, n). 

The restrictions imposed on the model are 

IT = af3', 

where a and f3 are p X 'T' matrices of full rank, and 

-I rf3- , a 1. 1. = !.pT/ , 

(9) 

(10) 

where !.p and T/ are P X s matrices. Thus the parameters are ()* = (a, /3,!.p, T/, r, n) 
which vary freely except for the restriction (10). 

The purpose of this section is to define another set of parameters that vary 
unrestrictedly. In order to motivate the new parameters we first analyse the 
model equations as follows: Multiplying (9) by a' and a~ we find 

a~,6. 2 X t = a~ r ,6.Xt- 1 + a~ tt. 
Using the condition a~r~1. = !.pT/', the identity I 

definition f31 = f31.T/ the right hands side of (12) equals 

(11) 

(12) 

~ 1.f3~ + ~ f3' and the 

a~r~f3',6.Xt-l + a~r~1.f3~,6.Xt-l + a~tt 

, , AX +-' = K, T D t-l a 1. tt· (13) 

We define tlt = a~ tt, W .:.... a'na1. (a~ Oa1.)-1 and t2t = a'tt - wa~ tt, which is 
independent of tlt, and find from (11) and (13) the conditional model for a',6.2 X t 

given a~,6. 2 X t and the past 

a',6.2Xt = wa~,6.2Xt + (a' - wa~)r,6.Xt_l + f3'Xt - 2 + tu. (14) 

The new set of parameters is given as () = (a, T, p, K" e, 01, O2 , w) and they are 
defined in Table 1 
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() 

a 
7 

P 
e 
11,' 

Table 1 
Definition of new parameters () 

in terms of the old parameters ()* 

()* 

((3,(31) 
(7'7 )-17'(3 
(a'-wa~)r 
(a~r;J,cp) 
a'Oa.L (a~ Oa.L)-1 
a~Oa.L 
a'Oa - a'Oa.L(a~Oa.L)-la~Oa 

dimension 
pxr 
px(r+s) 
(r+s)xr 
rxp 
(p - r) X (r + s) 
rx(p-r) 
(p-r) X (p-r) 
r X r. 

The vectors that are C (2,1) are collected in the matrix 7, and the matrix p 
recovers from 7 those vectors that span the row space of the IT matrix. In terms 
of these parameters the model equations (14) and (12) can be written 

(15) 

-, A2X "AX a.L Ll t = 11, 7 Ll t-l + flt. (16) 

By the choice of 7 = ((31) (32) we have that the first r rows are orthogonal to 
the last s rows, and that we can choose p = (1,0)" but this requires that the first 
columns of 7 are the (3 vectors, and we want to let 7 vary freely, and hence need 
the parameters p in order to pick out the (3 vectors. 

From given values of the new parameters () we can reconstruct the parameters 
of the original model ()* which satisfy the restriction (6). To see this we use the 
definitions in Table 2. 

Table 2 
Definition of old parameters ()* 

III terms of new parameters () 
()* () dimension 

(3 
cp 
TJ 
o 
r 

7p 
K,'jh 

;JjJP.L 
a02ar' + (a.L + aw )01 (a.L + aw), 
a.LK,'7' + aWK,'7' + ae 

6 

pxr 
pxr 
(p-r)xs 
(p-r)xs 
pxp 
p xp. 



With this c~oice we see that IT = a/3' = ap'T' has reduced rank (::=;)1" . Further 
we find that if /3 has full rank then 

a~r,Bl. = ""T',Bl. = ",'(pp'+ Pl.P~)T',Bl. = (K'Pl.)(p~ T',Bl.) = !.pr!" 

since p'T',Bl. = /3',Bl. = O. This matrix has reduced rank (::=;)8, since Pl. is (1" + 
8) X 8. Thus any values of the new parameters () correspond to values of the 
old parameters ()* with the required restrictions, hence the new parameters vary 
unrestrictedly. 

Note that only if p and T are chosen such that the product has full rank do we 
get a /3 of full rank, 'and hence a parameter value from ()*. Thus strictly s:reaking 
the parameters in () should have the restriction that T p has full rank in order 
that a parameter point in the old parameter set is produced. We shall, however, 
let the parameters in () vary freely, since the extra points that we add form a 
small set with Lebesgue measure zero, which does not influence the analysis of 
the likelihood function. 

We conclude by pointing out that the parameters we are really interested in 
are the matrices 

j3 = /3 = Tp 
/31 = /31-"1 = fpl. 
/32 = ,Bl.7]l. = Tl. 

as well as the matrix e which describe the cointegration properties of the process. 
The relation (31 = fpl. is seen from the fact that (3 = Tp by definition, (32 is 
orthogonal to T = ((3, (31) hence /32 = Tl. and finally the remaining vectors are 
orthogonal to Tl. and TP, and therefore must have the form fpl.. The idea in 
the following is to work with the parameters T, p and e in the analysis of the 
likelihood function and then derive the distributions of (3, (31 and /32 at the end. 

The basic equation (9) can be written in terms of the new parameters in an 
error correction form 

,6.2 X t = a(p'T'Xt _ 2 + (,6.Xt- 1 ) + (al. + aw)",'T',6.Xt _ 1 + ft, (17) 

which shows that a, al., wand", are coefficients of the sta,tion!1ry variables 
p'T'Xt - 2 + e ,6.Xt - 1 and T' ,6.Xt - 1 which represent disequilibrium errors. 

5 Asymptotic properties of the process 

The asymptotic results needed for the analysis are collected in the next table. 
The results are found in the literature see Phillips and Durlauf [12], Chan and 
Wei [1], and Johansen [5]. We assume that ft is i.i.d. with mean zero and variance 
[1, even though this assumption can be relaxed. 

The basic result is that a random walk is approximated by a Brownian motion, 
in the sense of weak convergence, that is, 
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[Tu) 

T-t 2.: Et ~ W(U), 
t=l 

where W is a Brownian motion with variance matrix n. From this result follows 
a number of other results which are relevant for the discussion of the asymptotic 
properties of the process Xt. We collect these in the Table 3. 

Table 3 
Asymptotic properties of product moments of the E'S 

~ J~ W(u)W(u),du 
~ J~(Jou W(s)ds)W(u)'du 
~ J~(JOU W( s )ds) Jou W( s)' dsdu 
~ J~W(dW)' 
~ J~(JOU W(s)ds)(dW)'. 

From these results we can derive properties of the process X t if it is I(l) or 
if it is I(2). The I(l) process X t is given by the representation (2) provided the 
matrix C given by (3) is well defined. We then find the results in Table 4. 

Table 4 
Asymptotic properties of the process and 

the product moments for 1(1) processes 

T-t f3~ X[Tt) ~ f3~ Cwt 
T-2~~ 2:.[=1 Xt-1XLl~.l ~ ~~ C Jo1 wtW:dtC'~.l 
T-1~~Lr=lXt-1E~ ~ ~~CJ~W(dW)'. 

If X t is defined by the equations (4) under conditions (5) and (6), and if C2 

given by (6) is well defined, then the process is I(2) and given by (7) or as the 
solution of (12) and (14). In this case we define W1 and W2 from Elt and E2t 
and apply the representation (7) to derive results about the process in various 
directions as well as properties of the product moments Mij defined by 

T 

M ·· = T-1 " A 2- i X . A 2-jX' . ; J' - 0 1 2 ~J L.; LJ. t-~LJ. t-J'"' - , , , 
t=l 

T 

Micj = T-12.:~2-iXt_iEjt, i = 0,1,2, j = 1,2. 
t=l 
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Table 5 
Asymptotic properties of the process and 

the product moments for 1(2) processes 

T-t ,B~~X[Ttl w 
,B~C2 Wt Hot --> 

1 - w 
j3~CI Wt Hlt T-'j ,B~X[Ttl --> 

T-3/2 j3~X[Ttl w - t 
H2t --> ,B~C2 fa Wudu 

T-I j3~Mllj32 w fo1 HoH~du --> 

T-Ij3~M22j31. w 
f5 HIH~du --> 

T-2 j3~ M22 j32 w 
f5 H1H~du --> 

T-3 j3~M22j32 w fo1 H2H~du --> 

T-I j3~M12j3I w fo1 HoH{du --> 

T-2 j3~M12j32 w fo1 HoH~du --> 

j3~MIq 
w 

f5 Ho (dW1 )' --> 

j3~M2E2 
w 

f5 HI (dW2)' --> 

T-Ij3~M2f2 w fo1 H2( dW2)'. --> 

The process H = (H~, Hi, H~) is given by the first three rows in Table 5 and 
consists of the non-stationary components of the limit process derived from Xt. 
Thus H2 is the limit of the process in the directions 132 and therefore the process 
is the continuous analogue of an 1(2) process, that is, an integral of a Brownian 
motion. The differences of this process has a limit process that is the Brownian 
motion Ho, and therefore H2t = f~ Houdu. Note the different normalizations of 
the process and its differences. When multiplying by 131 the matrix C2 vanishes 
and the next term of (7) takes over and defines in the limit the process H 1 . 

To get an overview of such results one can summarize them in another table: 
Let lit be integrated of order I(i), i = 0,1,2, then 

S "T 1I Y' E 0 (T(i+j)Vl) ij = LJt=lIit jt P , 

that is, the order of magnitude of these product moments are given by Table 6. 

Table 6 
The order of magnitude of product 

moments of inte rated variables 
ifj 0 1 2 
OTT T2 
1 T T2 T3 
2 T2 T3 T4 

These results will be applied below for the analysis of the likelihood equations. 
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6 Asymptotic analysis of the 1(1) model 

This section is included to justify certain steps in the analysis of the 1(2) model 
and is a brief summary of the 1(1) analysis as it can be found in the papers by 
Johansen (1988) or Reinsel and Ahn (1990). To simplify we consider only the 
model given by 

(18) 

and assume in the calculations below that a and (3 are chosen so that X t is 
/(1). In this case C = (31..( a~(31..)-la~. We apply the following notation for the 
derivatives of matrix valued functions with respect to matrix arguments. 

Let f(x) be defined on the space of matrices of dimension n x m (Mn,m) and 
with values in the space Mk,p, say, and let h t Mn,m- We assume that we have 
the following Taylor approximation 

1 
f(x + h) = f(x) + Dxf(h) + "2Dxxf(h, h) + O(lhI 3 ). 

Here Dxf(h) is linear in h and denotes the derivative of f wit respect to x 
in the direction h, and Dxxf(h, k) is linear in hand k and denotes the second 
derivative of f with respect to x in the directions hand k. Finally Ihl denotes a 
norm on the space of matrices Mn,m' The condition for a point x to be stationary 
is that the derivative with respect to x in the direction h is zero for all directions, 
or that Dxf(h) = 0 for all h E Mn,m' 

The likelihood function for the model given by (28) is 

log L( a, (3, n) = - ~ log Inl- ~tr{n-1~;=1 tt( a, (3)tt( a, (3)'}. 

From this function we find the derivatives with respect to the various param­
eters. The derivatives and their order of magnitude is given in Table 7. 

Table 7 
Derivatives and their order of magnitude for the 1(1) model 

D(3LogL(b) tr{n-1 2:;=1 ttX:_1ba'} E 

DaLogL(a) tr{n-l2:;=lttX:_l(3a'} E 

DoLogL(h) ftr {n-1 hn-1(T-1 2:;=1 ttt~ - n)} E 

D(3(3LogL(b, b) -tr n-1ab'2:;=1 X t- 1XL1 ba'} E 

D(3aLogL(b, a) -tr n-1a(3'2:;=1 Xt-1XLl ba'} 

D(3oLogL(b, h) 

+tr n-1 2:;=1 ttXL1 ba'} 

-tr n-1 hn-1 'L.;=1 ttX:_1 ba'} 

-tr n-1a(3'2:;=1 X t- 1X:_1(3a'} 

-tr n-1hn-1 2:;=1 ttX L1(3a'} 

E 

E 

E 

E 

DaaLogL( a, a) 

DaOLogL(a, h) 

DooLogL(h, h) ftr {n-1 hn-1 h} - tr { n-1 hn-1 hn-1 'L.;=1 ttt~} E 
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It is seen from Table 4 and Table 7 that 

and that T-tDcxlogL(a) and T-tDologL(h) are asymptotically Gaussian. The 
asymptotic variance of the first is n-1 ® a Var(f3 IX t )a' and the second has a limit 
distribution which can be derived from that of 

T 

T-t I) EtE~ - n). 
t=1 

If the second derivatives are normalized similarly we find that 

Table 8 
Linits of second derivatives in the J(1) model 

T-2 D~f3log L(b, b) ~ -tr { n-1ab'C J~ WWfdtClba/} 

T-l D;m log L( a, a) .!.." -tr {n-1a Var(,B'Xt)a'} 
T-l D~fJ log L( h, h) .!.." - ~tr {n-1 hn-1 h} 

whereas all mixed derivatives normalized by the corresponding powers of T 
tend to zero in probability. This has the consequence that inference about any 
of the parameters a,,B and n can be conducted as if the others were known. The 
reason for this is that the information matrix becomes block diagonal in the limit, 
a result that holds for the 1(2) analysis as well. Since inference on n and a is 
usual inference in the sense that the limit distributions Gaussian we focus in the 
following on the asymptotic properties of the estimator for ,B. 

First, however, we need to discuss the normalization of the estimator, since 
evidently a and j3 are not identified since only their product enters the equations. 
A general way of normalization is to choose a matrix c (p X r) and define ,Bc = 
,B( cl,B) -I, so that,Bc = ,B( c' ,Bt1 is the same for any choice of maximum likelihood 
estimator. A very special choice is found as follows: 

implies that 

so that 
{3 -,B = T-1,B.lBT, 

and hence the deviation between {3 and ,B are contained in the space spanned by 
,B.l Note that {3 = ,Bc for c = 13· We shall find the asymptotic distribution of 
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We then derive the well known result about the asymptotic distribution of S 
in such a way that the proof can be applied in the 1(2) model. The likelihood 
equation for 13 for fixed a and n is 

T 

a'n-1 2],6..Xt - as'Xt-I)X:_1 = O. 
t=1 

Now replace ,6..Xt by aj3'Xt- 1 + Et and we find the equation 

T T 
a'n-1 a(S - 13)' L Xt- 1X;_1 = a'n-1 L EtX;_I' 

t=1 t=1 

Expressed in terms of BT this becomes 

T T 
'n-I B' T- 2 j3' '" X X' 13 'n-IT- I", X' 13 a HaT 1-~ t-I t-I 1- = a H ~ Et t-I 1-. 

~I ~I 

In the limit we find from Table 4 for B equal to the weak limit of BT. 

Hence we find the result for the estimation of 13 that the limit distribution is 
mixed Gaussian: 

with asymptotic quadratic variation given by 

We have given here a very brief summary of the results known for 1(1) models, 
in order to present them in a way that can be generalized to the 1(2) case. Thus 
we shall first find derivatives of the likelihood function and discuss their order 
of magnitude. We then pick out for further study those parameters that are 
consistent of a higher order then usual, that is, of the order of T and higher. 

7 Derivatives of the log likelihood function for the 1(2) 
model 

The likelihood function can be derived from (15) and (16) in terms of the new 
parameters and is proportional to 

12 



L( 7, p,~) = (la' alla~ a, Ilnd In,/) -!T exp { -~tr( nI' t, flt';'+ n;-J t, <u<;,) } , 

(19) 
where tlt and t2t depend on the new parameters. By expanding tlt and t2t we 
find the results in Table 9. 

Table 9 
Derivatives of tlt and t2t with respect to 

the parametersB and their order of magnitude 
Da t lt(a) 
Dr>tlt(k) 
DTtlt( s) 
Da t2t(a) 
Dw t 2t(b) 
De t2t(h) 
Dpt2t(r) 
DTt2t(S) 
D~a t2t( b, a) 
D;Ttzt(r, s) 
D~T tlt( k, s) 

(Daa.L(a))'~2Xt 

-k'r'~Xt-1 
-K,'S'~Xt_1 

(Da(a(a) - a.L(a)w'))'~2Xt 
-b'a~~2Xt 

-h'~Xt-l 

-r'r'Xt- 2 
-p's'Xt- Z 

-b'(Daa.L( a ))' ~z Xt 
-r's'Xt - 2 

-k'S'~Xt_l 

1(0) 
1(0) 
1(1 ) 
1(0) 
1(0) 
1(1) 
1(1 ) 
1(2) 
1(0) 
1(2) 
1(1). 

We find, as in the 1(1) analysis, that asymptotic inference can be conducted 
independently in three blocks. The first block is defined by the variances ,01 and 
,Oz. The second block is defined by the coefficients to the stationary variables, 
that is, (a, w, K,) or in other words those parameters for which the derivative of the 
errors is 1(0). Finally the third block is defined by the parameters (r,p,e) which 
are coefficients of non stationary variables, or those for which the derivative of 
the errors is non stationary, see Table 9. 

We shall apply this result in the following and focus on the parameters (r, p, e) 
, since these parameters are the ones for which "non standard" inference is needed. 

We therefore give the results in Table 10: 
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Table 10 
Derivatives of the log-likelihood function 
with respect to the parameters T, p and ( 

T IDplnL(r) tr{D21r'T'M2E2} 
T-1 Dr In L( t) tr{D21 p't' M2[2} + tr{D11 K,'t'M1E1 } 
T-l De In L( h) tr{D21 h'M1£2} 

-T-1 D;p In L(r, r) tr{D21r'T'M22 TT'} 
_T-l D;p In L(r, t) tr{D21r'T'M22tp} - tr{D21r't'M2E2} 
-T-l D;r In L(t, t) tr{D21 plt'M22t} - tr{D11 K,'t' MntK,} 
-T-l Dle In L(h, h) tr{D21 h'Mnh} 
_T-IDlrlnL(h,t) tr{D21h'MI2tp} 
- T-l DZe In L( h, r) tr{ D21 h' M12 TT' } 

E Op(1) 
E Op(T) 
E Op(T) 
E Op(T) 
E Op(T~) 
E Op(T2) 
E Op(T) 
E Op(T!) 
E Op(T) 

A formal argument for the above result that we need only consider some of 
the parameters, can be carried out as follows: If (Ji denotes a parameter for which 
DO;Et is 1(i), i = 0,1,2, then 

DOiLogL((J) E Op(Tivt), 

D~;ojLogL((J) E Op(T(i+j)Vl), 

see Table 9. This shows that we should normalize the first derivatives differently 
depending on their order of magnitude, and we should use a block diagonal matrix 
with diagonal elements T-t, T-1and T-2, respectively for the derivatives. The 
(i, j)'th block of the second derivative matrix is then normalized by T-ivt-jVt 
with the result that the order of magnitude of the normalized matrix of second 
derivatives becomes 

(:: n~), 
(J2 0 1 1 

which shows that the normalized matrix is block diagonal, and that inference 
concerning the parameters (J1 and B2, which are coefficients of non-stationary 
variables, can be separated from inference for the parameter (Jo, which is a co­
efficient of a stationary variable. That is, when making inference on (Jo we can 
assume that (J1 and (J2 are known, and vice versa. 

In the asymptotic theory we can thus fix the parameters (w, 00,11" D1 , D2 ) when 
deriving the asymptotic distribution of the maximum likelihood estimators for the 
parameters (T, p, e). 

Thus in the next section we analyse the likelihood function of the 1(2) model 
for fixed values of the parameters (a, w, 11" D1 , D2 ), which means that the remain­
ing parameters that have to be determined simultaneously are (T, p, e). That 
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is, the C(2, 1) vectors 7 have to be determined and among those the (3 vectors 
that cointegrat~ with the differences, that is, the coefficients p. Finally the pa­
rameters e contain information about the linear combinations of the differences 
that are needed to make (3'Xt stationary, see (17).Thus we focus entirely on the 
parameters corresponding to the non-stationary variables. 

8 The normalization of the estimators 

The parameters in the new parametrization are varying freely, but turn out not 
to be identified. Hence it is important to discuss to what extent the model is 
overparametrized, and find suitable identifying normalizations. 

Since the likelihood function of the original model only depends on the pa­
rameters through the products 

ap'7' aI:' a 11,'7' aWK'7' , ~,1., , 

see (17), the parameters are not identified. Specifically we find that for any non 
singular ,( r + s) X (r + s) the matrices 7,-1, , P and, 11, will give the same value 
of the likelihood function as 7, P and 11" and that for any 'ljJ(r X r) the parameters 
a'ljJ, p'ljJ,-1, e'ljJ,-1, 'ljJ-1w, will give the same value of the likelihood function. 

It is therefore important to normalize the parameters in order to obtain esti­
mates and asymptotic distributions. We introduce the two types of normalization 
as discussed in the 1(1) analysis. Thus for instance we define 

( , )-1 
7e = 7 e 7 , 

which is normalized by the condition e'7 = I, and 

- A(-fA)-1 1"=1"1"1" . 

Once 7 has been identified then sp(p) can be estimated, but p also needs a 
normalization. We choose to represent the deviations in the space spanned by 1" 

and find the decomposition 

1"P = (3b1 + (31 b2, 

and define the estimator p = pbI 1 , so that 

1"P - (3 = 1"(p - p) = (31b2bI\ 

which is contained in the space Sp((31)' Finally we define 

Note that the derivative of f.2t with respect to e in the direction h, that is, 
-h'6.Xt - 1 , is 1(0) if sp(h) C Sp(7), whereas it is 1(1) otherwise. This has the 
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consequence that 7'([ - e) satisfy usual asymptotics, and we therefore focus 
on f3~([ - e) below. 

The usual proof for the asymptotic distribution of the maximum likelihood 
estimator involves an expansion of the derivative of the likelihood function around 
the true value, keeping the terms involving derivatives and second derivatives. In 
the case of 1(2) variables it turns out the higher order terms are needed, and 
that a slightly different way of expanding is convenient. We shall simple write 
the equation for the definition of the maximum likelihood estimator and show 
by going to the limit that we can derive the limit distribution of the maximum 
likelihood estimator. 

A detailed analysis in the next section of the likelihood function shows how 
the estimators should be normalized in order to give a limit distribution. We give 
below the results and show in section 10 how this choice leads to an asymptotic 
solution of the likelihood equations. 

Table 11 
Normalization of the estimators 

BOT T f3~ ([ - e) (p - r - s) X r 
BIT T pi Cf5 - p) s X r 
B2T T 2f3Hi" - 7)(p + p.lpiCf5 - p)) (p - r - s) x r 
VT Tf3~(i" - 7)P.lf3~f31 (p - r - s) X S 
UT T 2f3Hi"-7)p (p-r-s)xr. 

From Table 11 we find that 

T - 7 = T-2!J2UTP' + T-I!J2VT(f3~f3ltlpi, 
since i" - 7 E SP(f32)' Further since 7((5 - p) E Sp(f3I) it holds that 

(20) 

(21) 

since f3~ 7 = pif'T = pi. This can be interpreted as follows: The estimator i" 
deviates from the true value 7 in the direction of f32 = 71... In this direction 
there are still two different orders of magnitude. That is, f3~ (i" - 7) P has to be 
normalized by T2, whereas f3~(i" - 7)P.l should be normalized by T. 

For the orthogonal complement of (5 which will also be used below, we can 
use the expansion 

~ , (f3'f3)-I( ~)' T- I ' (f3'f3)-IB' P.l = P.l - 7 7p P - P P.l = P.l - 77p IT· 

To see this note that from (21) it follows that 

p'7'7(j5 - p) = T- If3'!JIBIT = 0, 

so that 
j5'7'7P = p'7'7P = f3'f3. 
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Hence 
P'P.1 = P'P.1 - pT'Tp(f3'f3t1(p - P)'P.1 = O. 

This choice of normalization has implications for the estimators of the other 
parameters of interest, in particular 13 = TP, 131 = fp.1, and 132 = T.1. We derive 
expressions for the estimators of these parameters and expressions in terms of 
VT, UT and BT. 

8.1 Estimator for /3 
We then find 

S - 13 = ip - Tp = (i - T)(p - p) + T(p - p) + (i - T)p. (22) 

Since i - T E Sp(T.1) it follows that 13'(+ - T) = 0 and f3f(+ - T) = 0 so that 

f3'(S - (3) = f3'T(p - p) = Tf3'PI B1T = 0, 

and 

Tf3~(S - (3) = Tf3~T(p - p) = f3~P1B1T = B1T, 

see (21). Finally from (20). 

= UT + VT(f3~f31t1 BlT + Op(T-1) = B2T + Op(T-1), 

where the last equality follows from the definition of B2T. Note that (22) repre­
sents the estimator of 13 as a product of two terms which gives three terms in the 
expansion. Even though the first term is a product of two small terms and the 
others only contain one small term it still holds that there is a direction, /32, in 
which the first and the third term have the same order of magnitude. Note also 
that the definition of p implies that in the direction /3 the estimator S - /3 has 
no component. This will turn out to be different for Sl below. 

8.2 Estimator for /32 
As an estimator of 132 = T.1 we apply 

S2 = T.1 - T(i'Tt1i'T.1, 

which satisfies i'S2 = i'T.1 - i'T(i'T)-li'T.1 = 0, so that, since i'T = T'T, 

f3~ 13 ~ ( ')-1(~ )' 2 - 2 = T.1 - T.1 = -T TT T - T T.1 
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= -f(T-2pU~ + T-1p.d(3~(3d-1V~). 
From this expression we find the relations 

T2(3'(~2 - (32) = -UT, 
T(3H~2 - (32) =-V~ + Op(T-1), 
(3~(~2 - (32) = o. 

8.3 Estimator of /31 
The distribution of (31 is found from ~1 = f ( f' f) -1 P.i. Since 

~,~ , (~ )'(~ ) rr=rr+ r-r r-r 

it follows that 

and 

Thus 

( ~'~)-1 _ ( I )-1 (' )-1(~ )'(~ )(' )-1 + 0 (T-4) rr - rr - rr r-r r-r rr p . 

~1 - (31 
= (f - r)(r'r)-lp.i + f(p.i - P.i) - f(T - r)'(f - r)(r'r)-lp.i 

+(f - r)( r'r )-l(p.i - P.i) + Op(T-3). 

This gives 

In the direction (31, however, the situation is different: For the first term we have 
(3{ (f - r)(r'r)-lp.i = 0, since f - r is contained in SP((32)' The second term 
becomes 

T(3~f(p.i - P.i) = p~(r'rtlr'r(rlrt1(r'r)p((3'(3tlB~T = o. 
Finally we find for the third term 

T2(3{f(f - r)'(f - r)(r'r)-l p.i 
= P'.L( r'r )-1(T-1pUT + P.i((3{(3)-lV~)fi f.i VT((3{(31)-lp'.L (r'r )-1 P.i + Op(T-1) 

= V~((3~(32)-1 VT + Op(T-1). 

Thus we get the results for the three estimators in the three directions which 
we summarize in Table 12. 
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Table 12 
The no'rmalization of the estimators of the cointegrating 

relations in the various directions 

/3-(3 
/31 - (31 
/32 - (32 

o 
-T-1BfT 

T-2 BfT((3f(31)-1 VT - T-2 B~T 

T-1B 1T 
- T-2VT((3~(32)-1 VT 

-T-1VT 
We have here discussed the normalization of the parameters so that they can 

be estimated. We have also given the results of how fast the various components of 
the parameters estimates converge to their limits, and in section 10 we wil~ apply 
all that to the likelihood equations, with the purpose of deriving the asymptotic 
distribution of the estimated parameters e, (3, (31 and (32, but first we consider the 
question of consistency. 

9 The consistency of the maximum likelihood estimators 

The likelihood function (19) derived from (15) and (16) depends on the param­
eters '"'I = (T, p, e) and a maximum likelihood estimator '1 satisfies L( '1) ~ L( '"'10) 
for all '"'10. Thus '1 is a point in the set 

ST = {'"'I/qb) = -2log(Lb)jL('"'Io)) ~ O}. 

We can also consider the likelihood function a function of the parameters 
'"'1* = (T,(3,e) where these parameters vary freely. In this case -2logLb*) is 
quadratic in '"'1* with a positive definite second derivative, so that 

is convex and compact. Since ST C Sf also ST is compact, and hence that the 
maximum likelihood estimator exists and is contained in ST. 

We prove below a result for a quadratic likelihood function, where it is shown 
that the order of magnitude of the second derivative determines how fast the 
estimator converges to its true value. 

Lemma 1 Let AT(p x p), ET(p x 1) and CT(l x 1) be random matr:ir;es and,DT 
a non random (p x p) matrix with the property that 

D D ,-1A D-1 wAD,-lE W E G W C T ----+ 00, T T T ----+ , T T ----+ , T ----+ • 

We further assume that AT and A are positive definite. Assume that eT zs a 
sequence of estimators satisfying 

e~ATeT + iJ~BT + CT ~ 0, 

then 
fj A P 

T- DT(}T ----+ 0, for all 5 > O. 
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Proof: From the inequality 

T 2S(T-S DTOT )'(D!r1 ATD:/ )(T-S DTOT) + TS(T-S DTOT )'(D!r1 ET) + eT ::; 0, 
(23) 

it follows that if T-s DTOT does not converge to zero then the first term of (23) 
will tend to 00, which violates the inequality. More precisely the first term is 
larger than 

T 2S IT-S DTOTI2 Amin(D!r1 ATDT1). 

If IT- s DTOTI does not go to zero in probability then T 2S IT- s DTOTI2 ~ 00, and by 
the weak convergence of D!r1 ATDTl to a positive definite limit the third factor 
does not tend to zero. This shows that the first term of (23) tends to 00 and since 
it dominates the other terms the inequality is violated for large enough values of 
T. 

We apply this lemma to the likelihood function (19) derived from (15) and 
(16) by investigating the second derivative of q(r) with respect to the various 
parameters in the various directions. 

Theorem 1 Let TT, PT) and eT be maximum likelihood estimators) which are in 
the set ST, and normalize them as described above to TT, PT, and IT. Let further 
()o be the value under which probabilities are calculated. Then with respect to the 
probability measure Peo , and for any b > 0 

T 1- S(- ) P 0 PT - P -t , (24) 

T 2- S (3' C ) P 0 2 TT-T p-t , (25) 

T 1- S(3'C ) P 0 2 TT - T p~ -t , (26) 

T 1- S (3~(tT - e) ~ O. (27) 

These results show the superconsistency of the estimators of the parameters 
corresponding to the non stationary variables. Most of the results are of the same 
form as for 1(1) variables but (25) shows that for 1(2) variables we can get even 
faster convergence. 

Proof: We consider the function q(r) at the point iT = (TT, PT, tT) and 
replace ID by I' Then 

where 
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Thus q( iT) is essentially quadratic in iT - ,. The quadratic term is easily 
found as expressed by M ij , and we find that 

(3~Mll(32 E Op(T) implies Tl-6(iT - T) ~ 0, 

(3~Mll(32 E Op(T) implies T l- 6 (3HeT - e) ~ 0, 
T'M22T E Op(T) implies Tl-6(PT - p) ~ 0, 

(3~M22(32 E Op(T3) implies T 2- 6 (3Hi - T)p ~ 0. 

This completes the proof of the consistency of the estimators. The general 
rule that can be extracted from this is that the second derivative of the likelihood 
function determines the speed of convergence of the estimator. 

10 The asymptotic distribution of the maximum likeli­
hood estimators 

Below we give the asymptotic distribution of the estimators for the parameters 
e,~, ~l' and ~2' These results will then be applied to find the distributions of the 
estimators of (3, (31 and (32 normalized by matrices c, Cl and C2 respectively . 

. In order to describe the asymptotic distributions we define the mixed Gaussian 
distributions of B = (Bb, BL B~)' 

(28) 

and 

where H = (Hb, HL H~)' is given in Table 5. 

Theorem 2 The asymptotic distribution of the matrices {, ~ J S1andS2 zs gzven 
by 

T(3~(e - e) ~ Bo 

T(3~(~ - (3) ~ B1 

T2(3~(~ - (3) ~ B2 

T(3'(~1 - (31) ~ -B~ 

T2(3~ (~1 - (31) -7
w 

- V'((3~(32tl V 

T (3~(~1 - (31) ~ v 
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T/31(~2 - (32) 3, - V' 

T2/3'(~2 - (32) 3, -B~ + B~(/3~/31t1V'. 
Thus apart from ~2 in the direction /3 and ~1 in the direction /31 the estimators 

are all asymptotic mixed Gaussian. 

We only give the asymptotic distribution of { in the direction /32 since in the 
direction r = (/3, (31) the normalization is Tt, which means that in this direction 
the asymptotic distribution should be determined simultaneously with the other 
parameters (a, w, "', ,01, ,02). 

Proof: The maximum likelihood estimator satisfies the first order condition 
DrlnL(t) = 0, for all t where p, 7 and ( are inserted, that is, from Table 10 we 
get 

At the maximum point we have 

O ~n-1((-' -, )~,.r l'M ~'~'M) + n-1(-'~,.r '~'M) = p~ '2 a - wa 1- 1V102 - <" 12 - P r 22 "'~ '1 a 1-1V101 - '" r 11 
= P'o21 (Mt22 - ({ - e)'M12 - (~- (3)'M22) + ",,011 (Mq1 - ""(7 - r)'M11), 

see (15) and (16). Now insert the expansion of ~ - /3 and use Table 12: 

( - e = 1h/3~({ - e) + fr'({ - e) = T-1 ~2BoT + fr'({ - e)· 

We then find that 

0= P'o21 [Mt22 - T-1BbT~~M12 - ({ - e)'rf'M12 - T-1BiT~iM22 - T-2 B~T~~M22] 
+",,011 [Mq1 - ""(7 - r)'M11]. 

(30) 
We multiply by the matrix T- 1 ~2 from the right and find that some of the 

terms tend to zero in probability: 

since {, and 7 are consistent, and T-1f'M12~2' Mq1~2 and T-1~~M11~2 are 
bounded in probability, see Table 5. The remaining terms from (30) are 
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where we have cancelled p'O;;l, Hence the limit E = limT-+ooET has to satisfy, 
see Table 5, 

1 . 1 

= la (dW2)H~ - E'la HH~dt. (31 ) 

Multiplying by 131 from the right in (30) we obtain similarly the equation 

0= la1 (dW2)H~ - E' la1 HHfdt. (32) 

The derivative with respect to e is also zero at the maximum point and we 
get from Table 10 

= 0;-1(M(21 - ([ - O'Mll - (~- /3)'M21 ). 

We cancel 0;-1 and multiply by 132 from the right to get in the limit 

o = la 1 (dW2)H~ - E' la1 H H~dt. (33) 

The equations (31), (32), and (33) prove that the limit of ET is given by the 
mixed Gaussian distribution (28). 

In order to find the limit distribution of VT and UT we multiply equation (30) 
by p 1.. from the left such that the terms that were leading before now vanish. We 
then get 

and 

o = p~(p - P)021 [M(2 2 - ([ - e)'M12 - (~- /3),11122] 
+P~KOl1 [M(ll - K'(7 - T)'MllJ. 

Multiplying by 132 from the right we can apply the results from Table 5 
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and get in the limit 

o = B10'21(J~(dW2)H~ - B' J~ HH~dt)+ 
pi ",0,11 (J01( dWl)H~ - ",, P1-(/Ji/Jl)-l V' J~ HoH~dt). 

The first term is zero by (33) and the relation can then be solved for V: 

V = [10 1 HoH~dtr1 101 Ho(dWl)'0'11""p1-[P~",0'11",lp1-r1(/J~/J1)' 
The results of Theorem 2 now follow from Table 12. 

Corollary 1 The limit distribution of ~ is found from 

where F = (F{, F;)', 

and 
G = (a' - wai)W = (aO-1a)-la'0-1W. 

This limit distribution is the same as the limit distribution for the reduced 
rank estimator of /J suggested in Johansen (['ll) Theorem 5 with c = ~.) 

Proof: We use 731 and 732 to normalize the estimator in order to make the 
result comparable with that of Theorem 5 in the above mentioned publication. 
The expression for Fi is now the same and the expression for G can be checked 
by the identity 

-I -I _ ( n-1 )-1 In-1 a - wa 1- - aH a a H , 

which is proved by multiplying by the full rank matrix (a, 0-l a1-). 
This result shows that the two step estimation procedure suggested in Jo­

hansen [7] is efficient for the estimation of /J, that is, when estimating /J one can 
disregard the second reduced rank condition and simply fit the 1(1) model as 
given by the restriction (5). Paruolo [10] contains a discussion of the efficiency 
of the two step procedure for the estimation of the remaining parameters. 

Finally we give the result for the normalized parameters /Jc, /J1c, and /J2c which 
are estimated from (4) with the constraints (5) and (6). 

Theorem 3 Let /J, /J1, and /J2 be normalized by c, Cl and C2 respectively) and let 
~Cl ~lC' ~2C denote the maximum likelihood estimators in the 1(2) model (4)) then 
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Proof: The likelihood function derived from (4) can be concentrated with 
respect to rI, ... , r k-2 and give the regression equation 

where the residuals Rit are indexed by the order of integration. Since the resid­
uals are corrected for stationary variables .0.2X t _ l , ... .0.2X t _ k+2 the asymptotic 
properties of product moments derived from the residuals R2t and Rlt are the 
same as those derived from Xt - 2 and .0.Xt - 1 , and we can apply the results derived 
in previous sections. Consider first the estimation of (3 normalized by c so that 
(3'c = I. We define the estimator A = S( CIS)-l and find the expansion 

(/lc - (3) = ((3 + ((3 - (3)) (c'(3 + c/(S - (3)t1 = (I - (3c')(S - (3) + Op(T-2 ), 

since we have assumed that c' (3 = I. From the representation 

we see that 
T(/Jc - (3) = (I - (3C/)P1B1T + op(1), 

which shows the first result. The results for ((31, (32) follow in the same way. 
Note that for the results in Theorem 3 we have disregarded the component ofthe 
limit distribution which is of order T-2. This gives a simpler formulation, but 
there may be cases where the relation between the normalization and the vectors 
((3, (31) (32) is such that one needs the component of (S - (3) in the direction (32, 
for instance. In such a case one can derive the distribution from the results in 
Theorem 2. 
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