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Abstract The asymptotic power of the likelihood ratio test for cointegration is investigated for the error
correction model with a drift term, which allows for a linear trend in the variables. The likelihood ratio
test is compared with ¢ detrended version of the test. In the detrended vérsz’on the variables have been
corrected for mean and linear trend before testing for cointegration. Tﬁe two tests asymptotic distributions
under the null hypothests of cointegration and under local alternatives are found. By comparing local power

properties of the two tests, it is argued that the detrending procedure leads to a loss in asymptotic power.t
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1 Introduction

Since Granger [3] in 1981 introduced the concept of cointegration much effort has been
devoted to deriving tests for cointegration. In this paper two such tests are investigated
for a multivariate system with variables integrated of order one and with a linear trend.

The one test studied is the likelihood ratio (LR) test for the number of cointegrating
relations in the p-dimensional error correction model with a deterministic drift term. A
derivation of this test is found in Johansen [6], where it is shown that the likelihood
analysis leads to calculation of the canonical correlations between the demeaned first
differences and the demeaned first lags of the p-dimensional process (possibly corrected
for short term dynamics). Demeaning refers to correction for the average.

Another approach is simply to detrend the variables analysed before testing for coin-
tegration. That is to correct for both mean and trend by ordinary least squares, and
then apply the canonical correlations between the first differences and first lags to test
for cointegration. The test derived this way is referred to as the DLR test and may be
viewed as one way to apply the principle that ”"any known deterministic components can
be subtracted before the analysis is begun” (Engle and Granger p.256 [2]). It is shown
that the asymptotic distribution of the DLR test is similar with respect to the drift pa-
rameter, which is analogous to the idea of Kiviet and Phillips [14]. This contrasts the LR
test which is not similar with respect to the drift parameter.

Both tests are consistent in the sense that the asymptotic power tends to one under
fixed alternatives, and the asymptotic power is therefore derived under local alternatives
(cf. Pitman [17], ch.7). From the local power properties of the DLR. test it will be argued
that detrending as described leads to a loss in asymptotic power When compared to the
LR test. This merely reflects the redundant regression performed by the detrending. .

The paper is organized as follows. In Section 2 the LR test and the DLR test for
the number, r, of cointegrating relations in the error correction model are presented.
For notational purposes and reference a brief summary of the theory of Johansen [7] is
given. The. two tests asymptotic behaviour under the null-hypothesis of cointegration is
investigated. Next in section 3 the local power functions of the LR test are derived, and

the local power of the DLR test is investigated in section 4. Finally section 5 contains some



concluding remarks and the two tests are compared by means of local power properties.
The proofs of the results of this paper are given in the appendix and rely on the theory

of weak convergence of near-integrated processes, applied in the papers Phillips [15] and

Johansen [9].

2 Testing for Cointegration

In this section the LR test and the DLR test are presented. The hypothesis of cointegration
is formulated within the p-dimensional error correction (EC) model with a deterministic
drift term g, which allows for a linear trend. The asymptotic distribution of the DLR
test is derived under the hypothesis of cointegration and Table 1 shows the simulated
distribution. For the LR test the results are from Johansen [6], [7], [10] and [11], and

in order to present the notation involved, a summary of the above mentioned likelihood

analysis is given.

2.1 The Cointegration Hypothesis

The model considered is the p-dimensional EC model with Gaussian errors given by

k-1
AXt = HXt—l + Z FiAXt—’i + H "I" Ety (21)

1=1

where t =1...T and e; ~ ©2dN,(0,2) . The (p X p) matrix II is denoted the impact
matrix and the (p X p) matrices I'; are the short term dynamics coefficient matrices. The
drift term g is a (p x 1) vector and allows for a linear trend. Finally the covariance matrix
() is assumed to be positive definite. The null-hypothesis H(r) of at most r cointegrating

relations is given by rank(Il) < r or equivalently

H(r) : Il = af’ where «, 3 are (p X r) matrices. (2.2)

From Johansen’s representation theorem below explicit conditions on the parameters in
the model (2.1) can be stated for (X¢)i=1..1 to be integrated of order at most one and for
B'X; to be stationary corresponding to the cointegration hypothesis H(r). The assump-

tions are given in terms of the characteristic polynomial, A(z) and the matrix

[= (-%8).) = I+1-3}' T



Assumption 2.1 Assume that rank(Il) = r < p and the roots of A(z) are either outside

the unit circle or at 1. Furthermore assume that rank (o, T8, ) =p —r.

Here and in the following for any (p X r) matrix m of full rank r, m_ will be defined to
mean a (p X (p —r)) matrix of full rank such that m'm,; = 0 so that span(m,m,) = R?.
These assumptions provide the necessary and sufficient restrictions on the parame-

ters in the model (2.1) to guarantee the above mentioned properties of X; stated in the
following theorem.

Theorem 2.1 (Johansen’s Representation Theorem)

Under the Assumptions 2.1 the processes AX; and B'X, can be given initial distributions
such that they become stationary. Furthermore with C' = f, (¢!, ') e, , (X¢)t=1..7 has

the representation

X;=CXle;+Cut+Y,+ A, (2.3)

where Y; is a stationary process defined in terms of the €;’s and 'A = 0.

Thus when II has reduced rank and the assumptions are satisfied, the process X; consists

of a random walk, a linear trend and a stationary part. The linear trend coefficient is

given by the term

T=Cp=p(4TB) s, (2:4)

and it follows that if o/, 4 = 0 the trend is absent. The purpose of this paper is to

investigate two tests for cointegration in the presence of a linear trend. Hence in the
following it will be assumed that
Assumption 2.2 (Linear trend presence) o/ p # 0.

Note that under H(r) the p-dimensional process X; can have linear trend in all or some

of the components, whereas the linear combinations §'X; are truly stationary as opposed

to trend stationary.



2.2 The Likelihood Analysis

The statistical models generated by the sequence (H(r)),_, _, are nested in the following
simple way

H(O)c...c H(r)C...C H(p),
and consider here the likelihood ratio test of H(r) (< r cointegrating relations) against
H(p) (£ p cointegrating relations).

In model (2.1) under H(r) the parameters ((I';)i=1..k-1, %, @, 8,) all vary freely. By
regression of AX, and X;_; on the lagged differences, (AX;_;)i=1..k—1, and the constant
the likelihood function is concentrated with respect to the parameters ((T';)i=1.. 51, &)-
Note that the regressions on the constant amounts to correcting AX; and X;_; for their
average, i.e. demean, even though the model allows for a linear trend in Xj.

From the initial regressions one obtains the residuals Ry; and Ryq, in terms of which

the concentrated likelihood function is given by

T
LT (0, 8,9) = Q| exp {T‘l Y (Rot — ' Ry)'V (Rot — aﬁ'th)} : (2.5)

max
t=1
For fixed 3, the maximum likelihood estimators of o and {2 are then found by ordinary

regression, leading to the definition of the residual product moment matrices

Sz’j =71 Zip RitR;‘t (27] =0, 1) . (26)

By reduced rank regression it follows that g is estimated as the r largest canonical cor-
relations between essentially the demeaned first differences and first lags of X;. More
precisely the following theorem can be stated.
Theorem 2.2 (The LR test, Johansen) In the error correction model given by (2.1)
the LR test of at most r cointegrating relations against the hypothesis of at most p is given
by
P
LR(H(r)|H(p)) = -T > In(1—X). (2.7)

i=r+1

Here the ordered eigenvalues 1 > A>.> ;\p > 0, solve
’)\SH - 5105661501l - O (28)

Furthermore under H(r) the mazimum likelihood estimator of B is given by (01,...0,),

that is, the suitably normalized eigenvectors corresponding to the r largest eigenvalues.
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The sequential testing strategy is presented in Johansen [7] and -H(r) is accepted .only |
if H(0)...H(r — 1) are all rejected. It is therefore natural to consyider_ the distribution

of the likelihood ratio test for H(r) under the assumption that the rank of II is indeed r

rather than less than or equal r. Invoking the results of Theorem 2.1 then leads to

Theorem 2.3 (Asymptotic distribution of the LR test, Johansen)

Under the Assumptions 2.1 and 2.2 as T — oo,

LR(H()|H(p)) 5 tr { / Lawe( / ' GG du)! / ' GdW'} , (2.9)

where W is a (p — r) dimensional standard brownian motion, and G is given by,

u—1 =1,
Gi(u) = { 2 ' (2.10)

W;(w) =W, i=2,...pr
Here W; = [y Wi(u)du and u € [0,1].

A table with simulations of the nonstandard distribution in (2.9) is found in Johansen
and Juselius [12]. Note that G consists of a deterministic part reflecting the trend of X3,
and of a brownian motion part reflecting the random walk. Also note the correction for
mean in @ which reflects the demeaning in the likelihood analysis.

It should be emphasized that the limit distribution is dependent on the assumption of

a linear trend. Indeed if o/, 4 = 0, then G should be replaced by W — W. Thus the LR

test is not similar with respect to the drift parameter, p.

2.3 The DLR statistic

Assuming that the (observed) procéss posess a linear trend, the idea of the DLR test is to
detrend before testing for cointegration. In the framework of section 2.2, the statistical
calculations remain the same except that the residuals Ry, Ry; are replaced by R,; and
Ry, respectively. The latter are obtained by regression of AX; and X;_; on the lagged
differences, a constant and a linear trend. That is apart from correction for short term

dynamics, one detrends. Denoting the residual product moment matrices by 5’,']', the

following definition can be given.



Definition 2.1 The DLR test
The DLR test for at most r cointegrating relations is given by
p ~
DLR=-T Y In(1-X\), (2.11)
i=r+1

where the ordered eigenvalues, 1 > M>.> jxp > 0, solve the eigenvalue problem,
:\5'11 - 5'105'&)1501’ = 0.
The asymptotic distribution of the DLR test under the hypothesis of r cointegrating
relations is given in Theorem 2.4 and it is seen that by construction the asymptotic

distribution of the DLR test is independent of the drift parameter. As was the case for

the LR test, the distribution is non standard and quantiles of the simulated distribution

are listed in Table 1 below.

Theorem 2.4 (Asymptotic Distribution of the DLR test)
Under the Assumptions 2.1 and 2.2 as T' — oo

DIR % ur{ | LawFEWY( / FW)FWYd) | ' Fw)aw'}, (2.12)

0

where W is a (p — r) dimensional brownian motion and F(W) is W corrected for mean

and linear trend.

For the simulations here and in the rest of the paper a modified version of the simula-
tion program [13] was used. The principle of the simulations is the same as in Johansen
and Juselius ([12]), and amounts to simulating the brownian motion, W by a random walk
applying Donsker’s Theorem (cf. Billingsley [1]) 1/v/T 22[-21‘] g; — W(u). The number of
simulations is set to 6000 and the number of steps, T in the random walk is 400 with

u =0, % . %

In order to prove Theorem 2.4 note that because of the detrending, the asymptotic
analysis can be performed in the EC model (2.1) with u set to 0. That is by construction
the asymptotic distribution of the DLR test is independent of the drift parameter as
already noted. To see this, let Xt(”) be generated by (2.1). Then the process Xt(”') has the

representation given by Theorem 2.1,

t
XM =CY e+ Cut+ ¥ 4 AW (2.13)
1



Table 1:

Quantiles of the asymptotic distribution of the DLR test statistic for r cointegrating vectors among p

variables,
tr { AW EWY (L FW)FWYd)~ [ _’F(W).dW/} ,
where W is a (p — r) dimensional brownian motion and F(W) is W corrected for mean and linear trend.

The number of simulations is 6000 with the number of observations T" set to 400.

Dimension Quantiles Sample
p—r 5% | 10% | 50% | 90% | 95% | 97.5% | Mean | Variance

1 09 | 15 | 47 | 98 (114 | 13.3 5.2 11.0

2 69 | 81 | 13.6 | 209 | 23.4 | 259 14.2 26.0

3 17.0 | 189 | 26.7 | 36.2 | 39.1 | 41.7 | 27.1 46.4

4 312 ) 334 | 43.1 | 54.8 | 58.6 | 61.5 | 43.8 70.6

whereas with g = 0 this reduces to

1
X0 =03 e+ YO+ 40, (2.14)
1

Note that C is the same in (2.13) and (2.14), whereas the index on A and Y in (2.13)
signifies their dependence on the parameter p. The correction for mean and trend may

be represented by F,

= T Xt—j(: t—1 -
F(X) =X, — X — Z%lf(:’%(t -9, (2.15)

where for any X, X = %Y. X,. It follows that apart from stationary terms F (Xt(o) ) =
F(X*") and F(AX{”) = F(AX"). Hence for the asymptotic analysis the process X,
may be considered as generated by the EC model for Xt(o). In Johansen [11] it is shown
that in the case of 4 = 0, the asymptotic distribution of the LR test is given by Theorem
2.3, (2.9) but with G replaced by the (p — r)-dimensional brownian motion, W. That is,

the asymptotic distribution is given by
1 1 1
tr { / dWW'( / WW'dt)™* / WdW’}. (2.16)
0 0 0

Now the mapping F : D[0,1]? — DJ[0,1]?, given by

— [Ma(w)~Fu—1/2]du
Fla)(u) = o(u) —7 — & e - 1/2), | (2.17)



which corrects for mean and trend, is uniformly continuous. Here ¥ = [ z(u)du and
D[0,1]? denotes the space of p dimensional cadlag functions. Using that F(Xry) =
F(Xry) and the continuous mapping theorem (see Lemma A.1, Appendix A), the result

follows by mimicking the proof of (2.16).

3 The Power Function of the Likelihood Ratio Test

In this section the power function is found for the LR test given by (2.7). For a fixed
alternative to the null hypothesis of at most r cointegrating relations the power tends to
one and the power is therefore investigated in a neighbourhood of the null. This involves

the theory of local alternatives or near-integrated processes applied in Phillips [15] and

Johansen [9].

3.1 The Local Alternatives

The alternative considered to the model (2.1) under the null, H(r), is the inclusion of one
or more additional cointegrating relations. The focus on how well the test captures extra
cointegrating relations reflects the sequential testing where, as already emphasized, H(r)
is accepted only if H(0)... H(r —1) are all rejected. The number s of extra cointegrating

relations is restricted by s < p —r, where r and p refer to H(r) and the dimension of the

EC system respectively.

In order to see that the LR test is consistent, consider the fixed alternative of possibly

s additional cointegrating relations given by
H(r+3s): Il =(a,01)(B,6) = af' + a1 81,

where (a1, (1) are (p X s) matrices. The LR test for H(r) against H(p) is given in (2.7)
and amounts to calculate T' times the sum of the (p — r) smallest eigenvalues which solve

the eigenvalue problem ’/\5’11 — 5105501501~ = 0. Under H(r) and the Assumptions 2.1
the (p —r) eigenvalues tend to zero at the rate of T', and the result of Theorem 2.3 holds.

Whereas under H(r+s), assuming that rank(Il) = r+s (and the further Assumptions 2.1
in terms of H(r+ s)), s of the (p —r) eigenvalues do not tend to zero, only (p— (r+s)) of
them do. Hence the LR test tends to infinity under H(r + s), and is therefore consistent.



When investigating the distribution of the LR test under local alternatives the param-
eters of interest are II and p in (2.1). Under the null-hypothesis, H (r), I = af', where
a and 3 are p X r matrices, and p is a p-dimensional vector. | |

Consider the iocal alternatives allowing s extra cointegrating relations, 3;, with small

loadings oy /T?%? and with y varying unrestrictedly, i.e.

Hr(r+s): M =af + a1 8/T%?. (3.1)

The rate at which the alternative Hr(r + s) approaches the null H(r) is T3 since for a
rate less (greater) than T 2 the power tends to one (the size of the test). In comparison
the local alternative for the LR test in the EC model with no drift term as treated in
Johansen [9] takes the normalisation T' rather than T7%/2. Thus preliminary this indicates
that in the model with drift term, the local power of picking up the extra cointegrating
relations is higher, when compared to the model without drift due to the normalisations
T3/% and T respectively.

As already emphasized the asymptotic distribution of the LR test under the null-
hypothesis depends on whether or not Cu equals zero, or equivalently whether or not
o/ 1t equals zero. The interest is in the case of a linear trend and hence it is assumed
that o/, u # 0. Consider now the local alternative where y tends to zero in the directions

corresponding to the extra cointegrating relations, f;. The sequence of local alternatives

then take the form,

Hi(r+38): Il =af +ayf;/T and BCu= p® /T2, (3.2)

where the parameter u(® is a s-dimensional vector. Note that under H%, s has to be
strictly less than (p — r) in order not to invalidate the assumption that o/ y # 0 under
the null-hypothesis. Furthermore normalising x by 7%/? in the s-directions corresponding
to By leads to loadings oy /T rather than a;/T?/?, as was the case under Hr. This will
be clear form the proofs in the appendix, together with the explicit parametrisation of p
under Hf given below.

When deriving the local power of the LR test for the hypothesis of r cointegrating
relations under the alternatives (3.1) and (3.2), the short term dynamics will for simplicity

be omitted in the model (2.1). The process will be denoted X; under the null-hypothesis



H(r), Xt(T) under Hr(r + s), and finally Xt(T’“) under Hy(r + s). Now Xt(T) is given by,

AXT = I X+ +e, (3.3)
M = af +af/T, (3.4)

where (o, §) are (p x r) matrices, (ay, #1) are (p x s) matrices and e, are 12dN,(0, Q).
Next in order to parametrize the model under Hj introduce some notation. With a, b

any n X m matrices of full row rank m and such that (¢'a) has full rank, let a; = a(b'a)™?

and b,, = b-l-a_,_' Then (b,a,) spans R" or equivalently, I,, = apb’ + b, a’,. With this

notation X7 is given by,

AXTW = X + pr + e, (3.5)
Or = af' +a1B/T, (3.6)
pr = aﬁ/‘(ﬂ) + ﬂalabﬂ(b)/T1/2 + ﬂou_ baJ.7 . (37)

Here a = o/ oy (p—rx38), b= (BLar) '8 b (p—rxs)and hence T~/2u®) = 3,Cu, with
the impact matrix C' defined in Johansen’s representation Theorem 2.1. Furthermore ;%)
is a r vector, u® is a s vector corresponding to the s extra cointegrating relations and

y=d\ ) pisa(p—r—s) vector. That a,b and ¥a above have full rank is a consequence

of Assumption 3.1 below. For a proof of this see Johansen [9].

As in Section 2.1 in addition to the assumptions on the roots of the characteristic

polynomial, conditions on the parameters («, 3, a1, £1) are needed to ensure that X; is at
most /(1) under both the null and the alternatives. Note that the conditions, which are

stated below, when compared with Assumptions 2.1 are simplified due to the omission of

the short term dynamics.

Assumption 3.1 Assume that the roots of the characteristic polynomial for X; under

H(r), Hr(r + s) and Hy(r + s) are either outside the unit circle or at 1. Furthermore

assume that

rank(a) =rank(f) =r, rank(e/ fL)=p—r, (3.8)
rank(ay) = rank(f1) = s, rank((a, 1) (8,61)L) =p— (r + s).
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3.2 Asymptotics under the local Alternatives -

When deriving the asymptotic distribution of the likelihood ratio. test under Hr(r + s)
and Hf(r+ s) the idea is to study the asymptotic behaviour of thé processes in a properly
chosen coordinate system. It follows that under Assumption 3.1 (B, ) spans RF and the
asymptotics will initially be studied in these two directions. Basicly by the representation
Theorem 2.1 this separates the behaviour into a "near-stationary” and a “near-integrated”
direction, each leading to different asymptotics.

The next Lemma 3.1 states the asymptotic behaviour of X; ™ and Xt(T’“ ) in the ”near-

stationary” direction.-

Lemma 3.1 Under Assumption 3.1,
(3.9)

(3.10)

X" =X+ Ry,
/BIX(TJ") — ﬂ,X +Ré£ﬂ

where Max,; <7 E|Ryg|* and Maxt<TE[R |2 are bounded by a constant times T™1.

Thus apart from terms which are O,(T~'/2) both processes are asymptotically stationary.

A proof of the lemma is found in the Appendix. With the notation introduced earlier it

follows by (3.3) and (3.5) that in the «; direction,

A Ax® = (T)/T‘*/2 +apt e, (3.11)

o AXTH = aBXEPIT + ayp® )T 4+ by + o 6. (3.12)

For afLXt(T) the term given by 7 = o/ p dominates, and the asymptotics is therefore

investigated in the the two directions 7 and 7,. As for a'lXt(T’“ ) the asymptotics is

investigated in the a, direction and in the direction 4. Clearly these are not orthogonal,
but as noted a,b and &'a have full rank and therefore (b,a,) span RF~". For d/, « 1 x(Em)

the v term dominates asymptotically and hence the asymptotics is derived in the y and
the v, directions.

Lemma 3.‘.2 AsT — oo, for u € [0,1] and under Assumption 3.1, then for Xt(T),

A XGHT 5 u, (3.13)

u?
Tl'afLX(T) /Tl/2 5 ab/T?"‘TJ_laiB( u), (3.14)

11



while for X™* | as T — 0o and for u € [0, 1],

Vol XG4 )T 5 U(u) (3.15)
A o XGHIT Sy, | (3.16)
Yia ol Xip ) /T o, d ol B(u) (3.17)

where U 1is the s-dimenstonal Ornstein-Uhlenbeck process satisfying,
dit = (u® + ¥ald) du + '/, dB. (3.18)

Here B is a p-dimensional Brownian Motion with covariance matriz ().

From the previous it follows that the asymptotic behaviour of the process Xt(T) is derived

in the directions given by,

VT = (ﬂ,aJ_T/T, CY_LT_J_/TI/Z) (319)

where the normalisations correspond to the rate of convergence. While for Xt(T’“ ) ,

Ve = (8, arb/TY?, araiy/T,arasy, JTV?). | (3.20)

To investigate the asymptotic behaviour of the likelihood ratio test in Theorem 2.2 the
asymptotic properties of the product moment matrices (.5;;); j=01 are needed. Under Hr

the S;; matrices are given by

(T (T
Su o= 2L, (x@ -X) I -xQy, (3.21)
Sw = 2L (Ax - AXT)(axD- axVy, (3:22)
J— T —
S0 = LD -XD)axD-ax Dy, (3.23)

using the notation that for any process Y;, Y = %Zle Y,and Y_; = %Zf:l Y,_1. Sim-

ilarly for the product moment matrices in terms of Xt(T’” ) By the stationarity of 8'X;

and AX; under Assumptions 2.1 define
Var(AXt) = 23007 V&I‘(/B/Xt) — Eﬁﬁ, COV(AXt,ﬁ/Xt) = EO,@ (324)

With the just defined variance and product moment matrices the following holds.

12



Lemma 8.3 With Vr defined in (3.19) and (3.20) for Xt(T)land Xg(T’“) respectively, then
under Assumption 3.1 and for u € [0,1], as T' — oo,

5 0 |
o . | (3.25)
0 fog FFldu ,

ViSuVr 5 (

Here F is (p — r)-dimensional, and for Xt(T) it is given by

rr(u=3) (3.26)

TJ_’ab’T—L(uQ;l) + 7'/ (B(u) — B)

Fu) = {

while for X | F is given by |
Ulu) -U

Flu) =1 vy(u—13)
v\ o) (B(u) — B)

For a proof of Lemma 3.3 see the Appendix, where also a proof of the following lemma is

(3.27)

found. The lemma gives the asymptotics for the remaining product moment matrices.

Lemma 3.4 With V; and F given in Lemma 3.3 then for u € [0,1] and as T' — oo,

V(0,555 @) J . | (3.28)

VT Vi{S1o— Sullyp} % |~
o FdB'

Furthermore with Yoo and Xgo defined in (3.24),
(3.29)

SOO z) ZOO)
EN (3.30)

B'S1o
These lemmae provide the necessary background for the main Theorem 3.1 of this section,
in which the asymptotic distribution of the LR test for r cdinteg-fafiné relations is stated
under the local alternatives.

Theorem 3.1 (Local Power of the LR test) Under Assumption 2.2 and Assumption
3.1 the asymptotic distribution of the LR test for the hypothesis H(r) against H(p), is

under the local alternatives Hr and HF, given by

tr { /0 gl /0 lFF’duj“l /O leZ'} . (3.31)

13



Under Hy the (p — r)-dimensional process Z is given by
oy + Wiu) i=l,
Zi(u) = { % + Wi(u) i=2,
Wi(u) i=3, ...,pr,

(3.32)

while F equals Z — Z, but with Z,(u) — Z; replaced by the linear trend (u — 1). The

(p — r) dimensional process W is a standard brownian motion and for any process Y,

Y = [y Y(u)du. The scalar constants in Z are defined as
— 7 1/2
& = (WSH) (WS BCH), e = {(WOB) (@S (BiCk) — ), (3.33)

where C = B, (1) /| and ¥ = a, (e, Qay ).

Under Hj the (p — r)-dimensional process Z satisfies the stochastic differential equation
dZ = (ab'Z + a(¥'a) " u®)du + dW, (3.34)

and F equals

F = V(Z-7) (3.35)
18 (Z - Z)
The parameters in Z and F are given by,
p®) = pCuNT (3.36)
a= (o/iﬂal)_l/za = (alﬂal)"lﬂalal (3.37)
b= (a Qay )t = (o Qo )2 (BLar) ™81 By (3.38)
(3.39)

o
T=a ap

Under Hr and Hf it follows that the asymptotic power depends ”on how the extra loadings
() and cointegrating relations (By) are related to the o and B assumed under H(r)” (cf.
Johansen [9]). And apart from the dependence on the number of dimensions (p — r) for
the extra cointegrating relations to hide in, the power depends on the term B;Cu. The

term represents the angle between p and f; and is different from zero as f; cannot lie in

the space spanned by 5.

14



Asymptotic power of the LR test for » cointegrating vectors among p variables under the local alternative

Table 2:

of s extra cointegrating vectors. The distribution of the LR test under Hp(r + s) is given by,
tr{ [y dzF' ([ FF'du]™" [} Faz'}

where the (p — r)-dimesional processes F', Z are defined in Theorem 3.1. For each simulated distribution
under Hrp(r + s) identified by the parameters (c1, ¢z, (p — 7)), the power is found as the tail probability
of the 95% quantiles of the distribution under H(r). A table with simulated 95% quantiles under H(r) is

given in Johansen and Juselius ([12]). The number of simulations is 6000 with the number of observations

T set to 400.
The Power of the LR test under Hr at a 5% level:
p—r=1
ci=0|e1=-3|cag=—6|ci=—-9|eaa==-12|¢,=-15| ¢ =-18
ca=10 4.5 13.9 41.8 73.2 93.0 - 99.1 99.9
p—r=2
c1=0|c;=-3]|cg=—6|c1=—9]|c1=-12 | ¢c;=-15| ¢y =—18
c2=0 438 7.7 19.6 42.6 69.9 90.5 98.2
co=4 11.0 14.9 29.0 51.4 77.2 93.5 98.8
=38 39.7 44.1 57.1 75.3 88.5 96.7 99.5
cp=12 | 76.3 78.7 85.6 91.1 96.5 99.1 99.8
ca=16 | 938 95.0 95.9 98.0 99.3 99.8 99.9
p—r=3
c1=0|ca=-3|a=-6|la=-9]ca==12]¢c=-156]| ¢ =-18
=0 4.6 6.4 13.4 28.3 52.8 77.1 93.2
ca=4 8.5 10.6 18.6 35.7 58.9 81.1 94.9
;=8| 259 29.5 39.6 56.8 5.7 908 | 974
¢ =12 | 61.7 63.9. 72.4 81.9 91.2 96.9 99.2
ca=16 | 88.2 88.8 91.7 95.6 97.8 99.2 99.0
c2=201] 979 98.0 98.8 99.1 99.8 99.9 100.0
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Under Hr it is clear that the scalar parameters ¢; and ¢; depend on the length of p, the
size of a; and that they are independent of the choice of a; and 8. The limit distribution
is non standard except for the case (p — r) = 1, where the distibution is a noncentral x?
with noncentrality parameter _c\/i_E Thus in order to investigate the distribution for the
case where (p — r) > 1 the distribution is simulated. For each simulated distribution
under Hr(r + s) identified by the parameters (ci, ¢z, (p — 1)), the power is found as the
tail probability of the 95% quantiles of the distribution under H(r). For each set of
parameters (cy, ¢, (p — 7)) the number of simulations is set to 6000, and Table 2 shows
a selection of the simulated power function. It is clear from the table that the power
decreases as the dimension (p — r) increases which confirms the result of Johansen [9].
Note that by definition ¢, > 0 and that the distribution is symmetric in ¢;. The symmetry
in ¢; follows by the invariance to change of sign of the brownian motion.

Under HJ there are too many parameters for a tabulation of the power function in

the general case. Instead only the case with (p —r) = 2 and s = 1 is tabulated in Table 4
in section 5. This is used for a comparison of the LR and the DLR test.

4 The power function of the DLR test

The discussion in Section 3.1 regarding the fixed alternative of s additional cointegrating
relations immediately carries over. Thus also the DLR test is consistent and the power of
the test is investigated in a neighbourhood of the null-hypothesis.

But as was argued section 2.3, the correction for mean and trend in X, implies that
the parameter p plays no role in the asymptotics and can be ignored. This influences
the normalisation of the local alternatives, and as mentioned in Section 3.1, it follows

by Johansen [9] that the normalisation is T' for the EC model without x. That is, the

sequence of local alternatives to be considered is given by

Hr(r+s) :1r = af’ + a1 B}/ T. (4.1)

Thus for a normalisation greater than T, e.g. T%? as was the case before for the LR test
under Hr, the power of the test tends to the asymptotic size of the test and the DLR

test has therefore less (local) power than the LR test against alternatives with p varying
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unretrictedly. However under Hf or equivalently in the neighbourhood of the parameter
point where u is zero in the directions corresponding to the additional éointegrating
relations f;, the rate of convergence is the same for both tests. A further discussion of

the simulated asymptotic power of the DLR test compared with the LR test is given in

Section 5.
The local power function of the DLR test is stated in Theorem 4.1 below and the

simulated power is given in Table 3. The result in Theorem 4.1 follows as in section 2.3
by mimicking the proof of Johansen [9], where the power function is investigated for the

likelihood ratio test in the model with 4 = 0. It is shown that LR(H(r)|H(p)) under
Hr(r + s) is asymptotically distributed as -
1 1 1
tr { [azz|[| 2z | Zdz'}, (4.2)
0 0 0
with Z given in Theorem 4.1 below.
Theorem 4.1 (Local Power of the DLR test)
Under the Assumption 2.1 and the Assumption 3.1 in terms of I;i’(r) and Hr(r + s), the

asymptotic distribution of the DLR test for the hypothesis of r cointegrating vectors is
under the local alternative, Hy(r + s) (cf. (4.1)), given by

of | 1 Fz) / F2)F@z d | lf(Z)dz'} . (4.3)
0 0 0 ’
The (p—r)—dimensional Ornstein-Uhlenbeck process Z satisfies the stochastic differential

equation,

dZ = &b Zdu + dW, (4.4)

and F(Z) is Z corrected for mean and linear trend. The (p —r) X s matrices a, b are

defined in Theorem 3.1 and W is a (p — r) dimensional standard brownian motion.
Note the resemblance between the Z given by (4.4) and the Z Agi\‘fAeﬁby (334) under
HY. The difference is the drift term involving p®, which by construction the DLR test

does not depend on.

As noted in Johansen [9] a tabulation of the power function involves 2(p —r)s parame-
ters, but by rotation of the brownian motion W as described in Johansen [9] the following

Corollary can be stated for the simple case, where the number of extra cointegrating
relations, s equals 1.
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Table 3:
Asymptotic power of the DLR test for r cointegrating vectors among p variables under the local alternative
of 1 extra cointegrating vector. The distribution of the DLR test under I;TT(T + 1) is given by,
tr{ 342 F(2) Uy F(2)F (2 da] ™ [y F(2)dz'}
where the (p — r)-dimesional process Z is defined in Theorem 4.1, and F corrects for mean and linear
trend. For each simulated distribution under ﬁT(r + s) identified by the parameters (fi, fa, (p —r)), the
power is found as the tail probability of the 95% quantiles of the asymptotic distribution of the DLR. test

under H(r). Table 1 shows the simulated quantiles. The number of simulations is 6000 with the number

of observations T set to 400.

The Power of the DLR test at a 5% level:

p—r=1
fi=0 =3 fi=-9|=-16| fi=-21| fi=-27| f =-30
fo=0 5.0 6.9 16.9 39.8 69.1 89.4 94.8
p—r=2 |
[i=0 ] i==3|fi=-9|fi=-16|fi==-21|f1i=-2T| f1i=-30
fo=0 5.0 6.0 10.3 20.2 36.1 56.0 65.2
fo=6 9.0 11.0 15.0 25.3 40.4 59.0 67.5
fo=12 36.4 35.0 33.0 40.1 53.2 68.7 75.8
fo=18 | 73.5 71.4 64.3 65.6 72.5 81.5 86.4
p—r=3
Hi=0 i==3|fi=-9|f=-1f=-21|f/i=-2T| f1i=-30
fo=0 5.0 5.9 8.2 13.3 22.3 35.8 43.0
fa=6 8.2 8.9 11.1 16.3 25.8 38.0 45.0
fo=12 | 29.2 27.4 23.8 27.1 354 46.4 52.5
fo=18 | 61.0 59.0 48.6 46.8 51.8 60.3 65.3
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Corollary 4.1 Under the Assumptions in Theorem 4.1 the assymptdtz’c distribution of

the DLR test under the alternative of one extra cointegrating vector, Hy(r + 1), is given
by (4.3) with |

—f1 fo Zi(v)dv + Zy(u) = Wh(u) i=l,

Ziw) = { —f [* Z(v)dv + Zo(u) = Walu) i=2, (4.5)
Zi(u) = Wi(u) i=3,...pr.
The scalars fi, fa are given by
fi = @b <o, (4.6)
(4.7)

fo= (@l e,
with the vectors &, b defined in Theorem 8.1.

The power function derived from simulations of the distribution in Corollary 4.1 is given
in Table 3. As before, for each distibution, identified by the parameters (f1, f2, (p — 1)),
the power is found as the tail probability of the 95% quantiles of the simulated distribution

under H (r), given in Table 1. It is clear from the table that the power decreases as (p—r)

increases, which was also the case for the LR test.

5 Concluding Remarks

The LR and the DLR tests asymptotic properties under the null-hypothesis of cointegra-
tion and under local alternatives of s extra cointegrating relations have been investigated.
It follows that the LR test is asymptotically most powerfull under local alternatives where
the drift parameter, y varies unrestrictedly. This is demonstrated by the fact that the
extra cointegrating relations have loadings of order T-%? for the LR test, whereas the
loadings are of order 7! for the DLR test. Thus under local alternatives of s extra
cointegrating relations with loadings appoaching zero at the rate of 7', the LR test has

asymptotic power 1, while the DLR test has power less than 1 determined by the param-

eters given in Theorem 4.1.
An important role for the power properties of the LR test is played by the drift term

in the directions corresponding to the extra cointegrating relations given by f;Cu. This
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reflects the fact that the LR test is not invariant with respect to y and contrasts the DLR
test which by construction is asymptotically invariant. Therefore the LR tests asymptotic
behaviour was studied under local alternatives with loadings oy /T and B,Cu = pu® /T2,
From the Example 5.1 below it follows that also under these alternatives the LR test is
asymptotically most powerfull.

However it should be emphasized that this investigation is based on asymptotic anal-

ysis and therefore only gives an indication of the performance for finite samples.

Example 5.1 In this example the case of p —r = 2 and s = 1 is studied for the two
tests under local alternatives where the trend tends to zero in the f; direction. Thus let
a=0=(,00,0=1 0 =(0,...,0,7) and B = (0,...,0,1)". This choice is the
simplest system compatible with the parameters given in Theorem 3.1 and Corollary 4.1.

From the choice of parameters above let (z,y) denote the last p — r = 2 components

of X; under the alternative H} and consider the process given by
(5.1)
(5.2)

A.’Et = 1+51‘t
i
Ay, = Tyt—1+ﬂ/Tl/2+6yt~

The power of the DLR test is by Corollary 4.1 determined by the parameters

fl = 6,3277

fo = (@abb—n)"?=0.

The power of the LR test is by Theorem 3.1 given by the parameters

In Figure 1 the simulated power functions are shown as functions of (7, ), and Table 4

gives the simulated power of the LR test. The LR test is seen to be asymptotically most

powerfull.
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Figure 1:

The power function of the LR test and the DLR test under the local alternative of one extra cointegrating

relation and the trend tend to zero in the direction corresponding to the extra cointegrating relation, cf.

Example 5.1.°
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The power of the LR test (—) is shown as a function of 7 for different values of . The power of the DLR

test (— —) is independent of y, and is shown as a function of 7.
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Table 4:
Asymptotic power of the LR test for r cointegrating vectors among p variables under the local alternative
of s = 1 extra cointegrating vector in the case where p — r = 2. The distribution of the LR test under
HPE is given by,
tr{ [y dzF' [y PF'du)™ [} Fdz'}

where the (p — r)-dimesional processes F', Z are defined in Theorem 3.1. For each simulated distribution
under H7 identified by the parameters (, t, (p—r) = 2) (cf. Example 5.1), the power is found as the tail
probability of the 95% quantiles of the distribution under H(r). A table with simulated 95% quantiles

under H(r) is given in Johansen and Juselius ([12]). The number of simulations is 6000 with the number

of observations T set to 400.

The Power of the LR test under H} at a 5% level:

p—r=2s=1
r=0|r7=-3|7=-9|7=-15|7=-21 |7==-27 | 7=-30
n= 4.7 54 11.6 27.6 50.2 74.4 83.5
p=>5 4.7 8.5 16.3 32.3 54.8 77.4 85.8
p=10| 5.2 33.9 36.6 49.8 68.1 85.2 91.1
p=151 5.0 814 77.8 77.6 85.9 93.7 96.1
p=20| 438 99.2 98.7 96.7 97.0 98.4 99.1
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Appendix

A  Weak Convergence and some Matrix Results

The proofs in the paper rely on results from the theory of weak convergence on the p
dimensional product space of cadlag functions endowed With the Skorokhod topology,
(D[0,1]7, D®P). An introduction to the theory can be found in Billingsley [1]. From the
definition of the Skorokhod topology it follows that ”..it relativized to C' coincides with the
uniform topology” (Billingsley [1], p.112). Here (C = C[0,1]?,C®P) denotes the product
space of continuous functions endowed with the uniform topology. As a consequence the

following corollary to the Continuous Mapping Theorem can be stated.

Lemma A.1 (Continuous Mapping Theorem)

If (Zr) is a sequence of random elements of the p-dimensional space of cadlag functions,
(D[0,1]7,D®?), and Z a random element with support on the space of continuous func-
tions, (C[0,1]?,C®?), then -

Zr 5 7 implies F(Zr) = F(Z) (A1)

if the mapping F is continuous in the uniform topology. Here F : D[0,1]P + D[0,1]? or
F : D[0,1]P — RP*?, the space of (p X p) matrices.
The next lemma provides the necessary result for convergence of autoregressive pro-

cesses under local alternatives to the Ornstein-Uhlenbeck process. A result presented in

e.g. Jacobsen [5].

Lemma A.2 (Weak Convergence to the Ornstem-Uhlenbeck process)

Consider the s-dimensional near-zntegmted process (Zt )t_l T, given by Z( ) =0 and

Az = Dz T + 6/TV? + ¢, (A.2)

where § is a s-vector and D a (s x s) matriz, while ; are 11dN,(0,%). Then as T — oo,

T-Y27T % 7, (A.3)
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where ZT is the cadlag version of ZT) and Z is the Ornstein-Uhlenbeck process, solving

the stochastic differential equation,
dZ = (6+ DZ)du + dB.

Note that Z(u) = [5'exp((u — s)D)(6ds + dB(s)). The process B is a s-dimensional
brownian motion with covariance matriz X. The result extends to the case where the error
process is replaced by any error process (1;), with the property that T~*/? Z£ﬂ ne — B(:),
as T — oo on D[0,1]°.

The continuous mapping theorem and Lemma A.2 provide the background of the
proofs in combination with the invariance principle and the theory of weak convergence

of product moment matrices of linear processes to stochastic integrals as presented in e.g.

Johansen [8], Hansen [4] and Phillips and Durlauf [16].

Lemma A.3 (Brownian Motion and the Stochastic Integral)

Suppose that the p-dimensional processes Uy and V; are given by

Ui=C(L)ey =3 Ciermi , Vi=D(L)ey =350 Digrs
where €; are 1tdN,(0,9Q) and C(z),D(z) are convergent for |z| < 14§ for some § > 0.
Then the invariance principle states that

-2y U, % 0(1)B(u), (A4)
where B is a p-dimensional brownian motion with covariance matriz ). Furthermore

7 Tt Sz UiV 5 C(1) fy BAB'D(1) + A, (A.5)

where ¥ = $°5°, Cov(Uy, Vigr). The result (A.5) extends to the case with % U; replaced
by the near-integrated process, Zt(T) giwen in (A.2) and the limit differs.

The idea in the proofs of the lemmae in Section 3 is to evaluate the difference between

the process X; under H(r) and the alternatives. In order to do so, some results on matrices

are needed. With A a (p; X p;) matrix, |A|| = /tr{A’A} denotes the norm. Similarly for
a a p vector, the norm is given by |a| = v/a’a. The following lemma is from the Appendix

in Johansen [8].
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Lemma A.4 (Powers of Small Matrices)

If the eigenvalues (X;)i=1..p of the (p X p) matriz A, are less than one in aasolu,te value,

then for A = maz;| A,

[IA™|| < ChA™, (A.6)
© AT =(I—-A)"T (A.7)
where Cy is a positive constant.
Finally the binomial formula for matrices.
Lemma A.5 (The Binomial Formula)
With A, B (p X p) (noncommautative) matrices
(A.8)

(A + B)n = E;:O Zi1+...+im+1=n_m Ail BA”B e BAim+1
where m equals the number of times B occurs in the inner sum. The inner sum is over

. . n
Uy - oy tml € [07 ERR n] and Zi1+...+im+1=n—m = (m) .

25



B Local Asymptotics

With the notation introduced in Section 3.1 it follows that with A = (I + af’),
Br =T7%2q,8 and BY = T 'y 3,

X, =S5 Ailei + ) (>
X = S5 A+ B+ 1) (52
X = SN A+ B (e + ) | .

where XéT) = X(ET’“ ) = X, = 0. The next Lemma gives bounds for the matrices in the
formulae above. These preliminary results are used when deriving the weak convergence

results for the process in the following.

Lemma B.1 With A = (I + af'), By = T™*?q 8, and BY = T~ oy, and under

Assumption 3.1, then

|A°]| < Ca, (B.4)
18" A% < C\\°, (B.5)
I8 (A+ Br)' — B'A*|| < Gyl B, (B.6)
| St St timprmiom AP Br ... Bp A1 || < Cyp o T|| Br || (B.7)

where A € (0,1) and C4,C\,Cp, (Capn)n=0..i are positive constants. The results also hold

with By replaced by Br.

Proof: First note that #’A* = (I + f'a)'’ and that o/, A’ = o/,. Under Assumption 3.1
the roots of the characteristic polynomial for X; under H(r) are outside the unit circle or
at 1, and as a consequence the eigenvalues of (I + ') are inside the unit circle. Thus
(A.6) imply that || A’|| < Cy A%, which is the result of (B.5).
As to (B.4) use that I = (ag, fur)(B, 1)’ then

1A = ll(ag, Bar (L + B'a)'BY, ar )|l < lap(I + B'a) Bl + || Bares]] < Ca
To prove (B.6) use the binomial formula and the just proved results to get,

I8 (A+ Br)' = BAY| = |01 Disttimgrmiom B/ AT BrA=Br ... Br A+

S 2in=l ”BT”mOZlC/\ Zi1+...+im+1=i—m /\il
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Shes | Brllm O30y iy N (7i271)

' =11 —~i-m )i
Y | Br|[™C Oy Gl iy A
< ||Br||CaCh int, UBlCali=)"

VAN

< ||Br||CaCyexp(CaT||Brl) < Cpl| Br,
since T'|| Br|| is bounded. The constant C; is obtained by using that A" is summable. As
to (B.7),

” E;{n:n Zz‘1+.,.im+1=z’—m All BT e BT‘Azm-I-l ” S Z:n:n IIBTIImOE+1;ﬂ'
< T||Br||"K exp(T'Cal|Br|)

where K is a constant. The proofs hold for By replaced with Bf. O i

Next follow the proofs of the results in Section 3.

Proof of Lemma 3.1: Consider first ﬂ’Xt(T) which by the representation (B.1) is given
by '
XD = BSIZN(A+ Br)(eei+u) |
2o B A (i + 1) + Tiso(B'(A+ Br)' — A (eri + 1)
= ﬂ/Xt + Rtﬁ

Denote by A; the term §'(A + Br)' — f'A* and henceforth let (K;);=1. 10 denote positive
constants. Then E(Ri) = >4 " A;u and by application of (B.6) it follows that

|E(Rip)| < K1 T Brll|pl (B-8)
Next Var(Rys) = S5 A;QA] and again by (B.6) it follows that
[[Var(Rys)l| < KT|| Bz
Hence by
(B.9)

E|Rip|* = tr{Var(Rip)} + [E(Rup)[* < pl|Var(Rus)|| + | E(Rep) [

it follows that |E(Rss)|> dominates and (3.9) follows. However with By replaced by
Bf the argument gives that [E(R};)|* is of order 1, since T'||Bf|||ur| is bounded by a
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constant. This shows that a more careful evaluation of the mean of I}, is needed, where

the parametrization of 7 is used. Application of the binomial formula gives,
R = 1 Zm.—l Zil'i‘ Aimyp1=t—m ﬂ,A“ B“’AW A’ime}I‘;Aim+1 (Et—’i + /’LT)

By the decomposition I = agf’ + f,1 ¢/, this may be represented as the sum of Ry and

RY, where
Rf = YL Se DA AMBIA® L Bifrd) (eimi + p1)
RQL — 1_1 Zz - S B/AleﬂAzz Bé"_‘aﬁﬂlAim+1 (St—i + NT) .

Regarding RY note that by definition B}B,1 ¢/, ur = T~ ey f;Cur, where C is the impact

matrix given by 31 (a/ 81)7'e/,, cf. Theorem 2.1. Then by mimicking the proof of (B.6),
|E(RY)] = | i) Shey D AT BRA® .. Aman B Cpr T

< Ks||B1Cpr|| exp(TCal| Brl|) < Kal| BiCur||

Thus applying the parametrization of pr given in Section 3.1 (cf. (3.7)), BiCur =
p®/T=1/2 and therefore |E(RY)| is of order T~/2, Next ,
|E(R3)| = |£i01 ey B AYBEA™ . BlagB' A+ g
S 1{5 Zz_l :li‘nzl Zi1+..,+im+1=i—’m Ai1+im+l IIB%”mCA -
= Ks X2t NUIBE + s | B[O T (TR N
i m—1(i=2)™"2 i1+

KallBA + Kr S5 L | BAlrop st s ki
< Kol Brl| + KsT||Br||* exp(TCal| Brll) < Kol BE I,

IN

using that ¢\’ is summable. Finally
|E(Rip)| < [E(RY)| +|E(Ry)| < KT ™2,
and the result (3.10) follows by (B.9). O

Proof of Lemma 3.2: Consider first o/, X @) which by the representation (B.1) and the
binomial formula is given by,
X = DS o X A" Br... BrAT™ (e + pr)
Zf;é A"(et-i + 1) + S S0 AV BrATI (e + 1)
+ A S AUBr ... BpAmti(e,_; + )
= X, +Y, D+ RD, (B.10)
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Now o/, A" = /| and therefore

o Xiry = o T8 Voo + ol plT] = o Sz + 7[Tu]. (B.11)

The invariance pi‘inciple and the continous mapping theorem applied on the mapping

@ > max,cr|e, imply that T~*?max,c7|S;| = O,(1). Therefore suP, eyl Sz Lo,

and it follows that
T X S dpu=r1u.
Henceforth let B denote a brownian motion with covariance {). Multiplication by 7, in

(B.11) leads by the invariance principle to the result,
T~ l/leaJ_X[Tu] = 71d) B(u).
For the Y;(T) apply the decomposition I = agf’ + B¢/, and get

C&Y[(T) = o) Br ngf ;—%) A1 ey + 1)
= o) Br [ap DI I gAY 4 By ST ol | (e + 1)

= Y;lt + aJ_BTﬂa.L 22_1 ia{].(s[Tu]—i + N) . (Blz)
Using (B.7) and mimicking the proof of Lemma 3.1, maxi<rE|e/, Vi[> = O(T ') and
therefore T~'/?max;Y;; = 0. By definition Br equals T—3/2cy B1 and hence,
2 2
. (B.13)

T Vi) % ofonfiBasap - = abr .

Finally the results (3.13) and (3.14) follow by showing that

T-"’max,RY 5 0.

To see this note that (B.7) with K a constant, IRg()I < K(T7* YT |ei]+|u]), and the result
immediately follows since the €; are identically and independently N,(0,() distributed.
Regarding o, X" it follows by (3.12) that

alJ_o./S_AX(T’“) =7+ alalet, (B.14)

from which (3.16) and (3.17) follow. For the b direction,
Vo' AXITW = TWaf X" + 77200 + b’als
T abay XTI+ 7717250 1 Vol e + TV aBasf XY,
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using the definition of . Then the result (3.15) follows by Lemma A.2, with Zt(T) =
b’a'J_Xt(T’“) ,6 = p® D = Va and finally

ne = b e, + Vapflasf X T. (B.15)

That T-1/2 E ¢ — b'o/| B(+), where B is a p-dimensional brownian motion with covari-
t= 1 Ui 1

ance {1}, follows by the invariance principle if
U s P
T=/25up, o) Yict A X1 5 0.

As before T3/ 2supue[oyl] Z,g;] B X1 Lt 0, by the invariance principle and the con-
tinous mapping theorem. Finally T~ 2SUP,eo1] Z?:{] Ry L 0, since by Lemma 3.1,

max, E|Rig|* = O(T"). O

Proof of Lemma 3.3: From the definition of S;; and Lemma 3.1 it follows that under

Hr,
BSup =AY [F(X, —X) + Ry — By| [(X, — X) + Ryp — By ,

using the notation that for any process ¥;, Y = T~ "7 ;. By Lemma 3.1, max,<7 E|Rys|*
is O(T~") and hence T-'Y(Ris — Rp)(Ris — Rs) 5 0. Likewise the cross product
terms involving Rs tend to zero by Holder’s inequality using that max<r E|3'X:|? is
O(1). Finally the law of large numbers for ergodic processes implies that 3'S;14 EiN Ysg.
Similarly under Hr.

As for the other directions let Vy = (8, VT), where Vp = (on_T/T, a_LTJ_/Tl/Z) under
Hr and Vg = (a_Lb/Tl/2,OfJ_a_L")’/T’ aJ_a_,_'y_L/Tl/2> under Hy. Then by the Continuous
Mapping Theorem applied on the mapping (z — fi (2(u)— fi 2(s)ds)(2(u)— i z(s)ds)'du),

the results in Lemma 3.2 immediately gives

ot o T/T o T T/T T T T/T T
VisuVe = #2000 (VX = 7 S0 Xa)| [(XE) = 5 220 X)) V]
2 F(w)F(u) du. (B.16)

It remains to be shown that

f/}Suﬁ = %ZT f/:,'w(X(T) _ y(T))(ﬂ,(Xt(T) _ y(T))),
= TEI VT( (T) Y(T))(IB/Xt—f'Rtﬁ)/ z) 0.
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To see this apply first the result that /T ‘71{*% A0¢ @ _x™ )(B'X;) is Op(1) by Lemma |

A.3. Next note that max,<r E|a/} X;|? is O(T?) but maxicr E|7] o/, X;|? is only O(T). Also
max;<rE IR(T)I2 is O(1) and finally max;<rE lozf,_Y;(T)P is O(T). Application of Hélder’s
inequality then gives that the remaining terms tend to zero. Similarly for X, Tm g

Proof of Lemma 3.4: Concentrating the likelihood function with respect to the drift

parameter p, leads to
AXO— AP = (X" - XD) + (60 - 7),
and therefore under Hr,
S10— Sully = 257X - XYY (e —2) = 22T (XT - XD)e = 1. (BAT)

As previously noted Vr = (8, 7(N/T) Consider first the B direction, where by the Central

Limit Theorem for Martingale Differences

VT S1e = 57 [B'(Xies — X-1) + Recap — Bp| €b/VT 5N (0,859 Q) ,  (B.18)
since Y7 (Ry_15 — Rp)el/v/T 5 0. Next in the V direction by Lemma A.3,
VTV = S (VX — X D)elrg/VT 2% J3 FdB'. (B.19)
As to (3.29) rewrite Soo as
(B.20)

So0 = See + Sl + 7Sy + Sy 1017,

where II; = af’ + ay 8, /T%/? under Hy. Applying the Law of Large Numbers for ergodic
processes it follows that S.. £ Q. Furthermore B'S11 5 Ygp and ('Si. £ 0. For the
term ;.51 use again the decomposmon I, = 0B + Bar L Lemma 3.1 and Lemma 3.2
to see that 3]5;. is dominated by ¥/, Si.. Hence by Lemma, 3.2 T -3/ zﬂlSls tends to zero.
Likewise 134! 5118 tends to zero. This implies Spo 5 aXigpe! + Q = Yo . Applying

similar arguments,

B'S10 = B Sully + 551 i Yppa’ = Ygo, (B.21)

and (3.30) follows. Similarly under Hf. O
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Proof of Theorem 3.1: The underlying structure of the proof is the same as presented
in Johansen [7], p.1569 Proof of Theorem 2.1. The proof is split into three parts, where

the first part contains results valid under both Hr and Hf.

Proof of Theorem 3.1: (Part 1) From (2.7) it follows that the likelihood ratio test
of H(r) against H(p) is given by —T'>}_, 4 In(1 — 5\1) ,where (j\i)izﬂ_l”_p are the (p —r)

ordered smallest eigenvalues solving the eigenvalue problem (2.8)
IASH - 51050_01501l = O . (B22)

From Johansen [7] it follows that the eigenvalues are continuous functions of the coeflicient
matrices. Post and premultiplication in (B.22) by Vg = (8, Vr) then gives by application

A

of Lemma 3.3 and 3.4 that (\;)i=1.., converge to the ordered eigenvalues of
AP X FF dul|AS 55 — Y0800 Sog| = 0. (B.23)

Thus the (p—r) smallest eigenvalues tend to zero, corresponding to the near-(co)integra-

ted and the non-stationary components. Next define p = AT
Post and premultiplication in (B.22) with (8, T1/2VT) gives as T — oo by Lemma 3.3,

that the (p — r) smallest eigenvalues normalized by T satisfy in the limit

0 0
0 [FFdu
By (3.29), (3.30) and the formula for the determinant of a block matrix (B.24) can be

— whim {(ﬂ, T1/2‘~/T)/5105&)1501 (ﬁ, T1/2‘~/T)} =0. (B24)

rewritten as
155055 Sosl | / FF'du — wlim {TY* V3 S10S5 5 Sn TV } | = 0 (B.25)
with
So0.s = Sao' = So0 So18(BS10560 o1 8) ™ 8" S10S00
5 T — Zoo Tos(Z0 50 Tog) " BpoTo = au (e Na) M,
where the last equality follows from Johansen ([7] Lemma A.1, p.1567). Hence what is of

interest is
wlim {Tl/zf/fSloal} = whm {TI/ZVJQS’lsal} + wlim {Tlﬂf/jﬁsuﬂépal}
1 .
_ /0 FdB'ay + wlim {TV* V.5, }, (B.26)
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by Lemma A.3, see (B.17). This and the remaining part of the ~prdof will be treated
seperately for Hr and H% in the next two parts.

Proof of Theorem 3.1: (Part 2) Under Hr it follows that

TV S llhay = 2ViSupia’ 5 fy F(u)udu(ab't), (B.27)

by the continuous mapping theorem and using the decomposition, I, = agf’ + B/}, to

see that 7~/ zﬁ{X[gZ] equals T~/2¥ af,_X[(gg] + op(1). Hence with the (p —r) dimensional

process Z defined by

2
Z(u) = ab’T%-+afLB(u), (B.28)
it follows that (B.26) equals [ FdZ'. Note that F equals (cf. (3.26)),
! 1 ':1,
T'r(u—3) i (B.29)

Fi(u) = _
(2= Z;) i=2, ..., pr,
where for any process Z, Z = [y Z(u)du. By definition Q,, = o/, Qa, is the covariance

of Z and alltogether by (B.25), p satisfies in the limit,

o fy FF du— f§ Fd2'Q;} [ dZF| = 0. (B.30)

Equivalently,
lp [(NF)NF) du— [(NF)A(MZ)(MQ, M) [dMZ)NF)| =0, (B.31)
for any square (p — r) matrices of full rank, which shows that linear transformations of

F, Z are allowed. The process F is only dependent on Z through the linear combinations

7,.'Z, which are independent of the linear combination 7’ Q;}_Z . Thus decompose Z into
two independent processes given by,

Z = T'Q;iZ ,

Z, = 1.'Z.

The process Z; has quadratic trends in the direction given by ¢ = 7,’ab'7 and none in

the orthogonal directions ¢,. As before ¢, 7| Z is independent of the linear combination
¢'(71Qq, 71)7 11 Z , and the decomposition of Z becomes
zZ = 70;1Z,
Zy = (1) Q7)) M2,
Z3 = ¢'1.'Z,
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where the Z;, Z, and Z3 are independent. Summarising, define M as,
/!
M = (Q;iﬁ TL(7L Qo 71) 70, 71¢¢) ; (B.32)

and next N by,

"(r,! . =1 \=1/2 11 ! -1
diag{(r’r)’l, (¢( L Q’ou_ J_) ¢) 925( L QaJ_T.L) } (B.33)
CARINEIT I )

Furthermore set F' = NF, Z = (MQ,, M')""/2?M Z and finally denote the (p —r) dimen-
sional Brownian Motion (M, M')~Y2M o/, B(u) by W(r). Then p in the limit satisfies

|p [ FF'du — [ FdZ' [dZF'| =0, (B.34)

where

Q- r i PO ab T + Wi(u i=1, .
al o) 2

Z(w) =3 (11D, 71) ') P 2 L W) i=2, (B.35)
Wi(u) i=3, ..., pr,
while
(u=13) i=1,
F(u) = { (¢(r'Qe, 1) )2 50 L (Wiu) - W) =2, (B.36)
(Wi(u) — W) i=3, ..., pr.

With ¥ = ay(o/, Q, @1) e/, and using the definitions of 7,a and b,
caq = (T’Q;JI_T)_lﬂT,Q;}_ab,T
= (WEp)TV?(W'Sen) (B Cp),

where the impact matrix C equals 3, (¢/, #,) "'/, . Furthermore using the definition of ¢

and the decomposition, I,_, = Qq, 71 (7] Qo 71)7'7) +7(7'Q; 1 7)1 1'Q, , it follows that,
_1,\1/2
¢ = (‘ﬁ'(ﬂ'ﬂalﬁ_) 1¢)
= (WCP)(d)Zan)(BCp) — .

Hence by —T'Y%_, ;1 In(1 — X)) = 1 TX; 4 0,(1), using p = TA the result (3.31) in

Theorem 3.1 follows.
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Proof of Theorem 3.1: (Part 3) Under Hj it follows as in (B.27) that |

wlim {TY* VS0 } = / F(o/dB +alhduy, (B.37)
‘where the s-dimensional process U satisfies, (cf. (3.18))

dU = (,u(b) -+ b'aU) du + b’/ dB, | (B.38)
and the (p — r)-dimensional process F equals (cf. (3.27)),

Ulu) -U
Fl)=9y1w-3 (B.39)
Toese (B(w) — B) |
The p-dimensional brownian motion, B has covariance matrix 2. Define the (p — r)-

dimensional process, Z, by 8Z = U. Then
dZ = ab/ Zdu + ayp®du + o/, dB, (B.40)
and by [ Fdu =0, the limit in (B.37) equals { FdZ'. And F eQuals,

YZ(u)—Z
Flu) =9 yv(u—3) (B.41)

Yidiel (Z(u) - Z)

The result in Theorem 3.1 follows by setting Z = (o, Qo )Yz, o
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