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Abstract The asymptotic power of the likelihood ratio test for cointegration is investigated for the error 

correction model with a drift term, which allows for a linear trend in the variables. The likelihood ratio 

test is compared with a detrended version of the test. In the detrended version the variables have been 

corrected for mean and linear trend before testing for cointegration. The two tests asymptotic distributions 

under the null hypothesis of cointegration and under local alternatives are found. By comparing local power 

properties of the two tests, it is argued that the detrending procedure leads to a loss in asymptotic power.1 

1 I would like to thank SlZIren Johansen for his very helpful suggestions and comments. Also thanks to 

Bent Nielsen who kindly modified the simulation program [13] for the power simulations. 



1 Introduction 

Since Granger [3] in 1981 introduced the concept of cointegration much effort has been 

devoted to deriving tests for cointegration. In this paper two such tests are investigated 

for a multivariate system with variables integrated of order one and with a linear trend. 

The one test studied is the likelihood ratio (LR) test for the number of cointegrating 

relations in the p-dimensional error correction model with a deterministic drift term. A 

derivation of this test is found in Johansen [6], where it is shown that the likelihood 

analysis leads to calculation of the canonical correlations between the demeaned first 

differences and the demeaned first lags of the p-dimensional process (possibly corrected 

for short term dynamics). Demeaning refers to correction for the average. 

Another approach is simply to detrend the variables analysed before testing for coin

tegration. That is to correct for both mean and trend by ordinary least squares, and 

then apply the canonical correlations between the first differences and first lags to test 

for cointegration. The test derived this way is referred to as the DLR test and may be 

viewed as one way to apply the principle that "any known deterministic components can 

be subtracted before the analysis is begun" (Engle and Granger p.256 [2]). It is shown 

that the asymptotic distribution of the DLR test is similar with respect to the drift pa

rameter, which is analogous to the idea of Kiviet and Phillips [14]. This contrasts the LR 

test which is not similar with respect to the drift parameter. 

Both tests are consistent in the sense that the asymptotic power tends to one under 

fixed alternatives, and the asymptotic power is therefore derived under local alternatives 

(cf. Pitman [17], ch.7). From the local power properties of the DLR test it will be argued 

that detrending as described leads to a loss in asymptotic power when compared to the 

LR test. This merely reflects the redundant regression performed by th~ detrending .. 

The paper is organized as follows. In Section 2 the LR test and the DLR test for 

the number, r, of cointegrating relations in the error correction model are presented. 

For notational purposes and reference a brief summary of the theory of Johansen [7] is 

given. The two tests asymptotic behaviour under the null-hypothesis of cointegration is 

investigated. Next in section 3 the local power functions of the LR test are derived, and 

the local power of the DLR test is investigated in section 4. Finally section 5 contains some 
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concluding remarks and the two tests are compared by means of local power properties. 

The proofs of the results of this paper are given in the appendix and rely on the theory 

of weak convergence of near-integrated processes, applied in the papers Phillips [15] and 

Johansen [9]. 

2 Testing for Cointegration 

In this section the LR test and the DLR test are presented. The hypothesis of cointegration 

is formulated within the p-dimensional error correction (EC) model with a deterministic 

drift term Il, which allows for a linear trend. The asymptotic distribution of the DLR 

test is derived under the hypothesis of cointegration and Table 1 shows the simulated 

distribution. For the LR test the results are from Johansen [6], [7], [10] and [11], and 

in order to present the notation involved, a summary of the above mentioned likelihood 

analysis is given. 

2.1 The Cointegration Hypothesis 

The model considered is the p-dimensional EC model with Gaussian errors given by 

k-l 

LlXt = ITXt - 1 + 2: fiLlXt - i + Il + et, (2.1) 
i=l 

where t = 1 ... T and et rv iidNp(O, n) . The (p X p) matrix IT is denoted the impact 

matrix and the (p X p) matrices fi are the short term dynamics coefficient matrices. The 

drift term Il is a (p xl) vector and allows for a linear trend. Finally the covariance matrix 

n is assumed to be positive definite. The null-hypothesis H(r) of at most r cointegrating 

relations is given by rank(IT) :S r or equivalently 

H(r) : IT = ap' where a,p are (p X r) matrices. (2.2) 

From Johansen's representation theorem below explicit conditions on the parameters in 

the model (2.1) can be stated for (Xt )t=1...T to be integrated of order at most one and for 

13' X t to be stationary corresponding to the cointegration hypothesis H(r). The assump

tions are given in terms of the characteristic polynomial, A( z) and the matrix 
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Assumption 2.1 Assume that rank(II) = r < p and the roots of A(z) are either outside' 

the unit circle or at 1. Furthermore assume that rank (a~ r,8 .. d = p - r. 

Here and in the following for any (p x r) matrix m of full rank r, mJ.. will be defined to 

mean a (p x (p - r)) matrix of full rank such that m'mJ.. = 0 so that span( m, mJ..) = RP. 

These assumptions provide the necessary and sufficient restrictions on the parame

ters in the model (2.1) to guarantee the above mentioned properties of X t stated in the 

following theorem. 

Theorem 2.1 (Johansen's Representation Theorem) 

Under the Assumptions 2.1 the processes .6.Xt and ,8' X t can be given initial distributions 

such that they become stationary. Furthermore with C = ,8J..(a~r,8J..tla~ ! (Xt )t=1...T has 

the representation 

(2.3) 

where Yt is a stationary process defined in terms of the et)S and ,8' A = o. 

Thus when IT has reduced rank and the assumptions are satisfied, the process X t consists 

of a random walk, a linear trend and a stationary part. The linear trend coefficient is 

given by the term 

(2.4) 

and it follows that if a~fl = 0 the trend is absent. The purpose of this paper is to 

investigate two tests for cointegration in the presence of a linear trend. Hence in the 

following it will be assumed that 

Assumption 2.2 (Linear trend presence) a~fl =I O. 

Note that under H(r) the p-dimensional process Xt can have linear trend in all or some 

of the components, whereas the linear combinations ,8' X t are truly stationary as opposed 

to trend stationary. 

3 



2.2 The Likelihood Analysis 

The statistical models generated by the sequence (H (r) )r=o ... p are nested in the following 

simple way 

H(O) c ... C H(r) C ... c H(p), 

and consider here the likelihood ratio test of H(r) (:::; r cointegrating relations) against 

H(p) (:::; p cointegrating relations). 

In model (2.1) under H(r) the parameters ((fi)i=l...k-l,/1,a,,8,O) all vary freely. By 

regression of 6.Xt and X t- 1 on the lagged differences, (6.Xt- i )i=1...k-1, and the constant 

the likelihood function is concentrated with respect to the parameters ((f i )i=1...k-1, /1). 

Note that the regressions on the constant amounts to correcting 6.Xt and X t - 1 for their 

average, i.e. demean, even though the model allows for a linear trend in Xt. 

From the initial regressions one obtains the residuals Rot and RH, in terms of which 

the concentrated likelihood function is given by 

L::n~~T (a,,8, 0) = 101 exp { T- 1 ~(ROt - a,8' R lt ),O-l(Rot - a,8' RH) } . (2.5) 

For fixed ,8, the maximum likelihood estimators of a and 0 are then found by ordinary 

regression, leading to the definition of the residual product moment matrices 

(2.6) 

By reduced rank regression it follows that ,8 is estimated as the r largest canonical cor

relations between essentially the demeaned first differences and first lags of Xt. More 

precisely the following theorem can be stated. 

Theorem 2.2 (The LR test, Johansen) In the error correction model given by (2.1) 

the LR test of at most r cointegrating relations against the hypothesis of at most p is given 

by 
p 

LR(H(r)IH(p» = -T L In(l- ~i). 
i=r+1 

Here the ordered eigenvalues 1 > ~1 > ... > ~p > 0, solve 

/AS11 - SlOSar} Sal/ = O. 

(2.7) 

(2.8) 

Furthermore under H(r) the maximum likelihood estimator of,8 is given by (V1, ... Vr )! 

that is! the suitably normalized eigenvectors corresponding to the r largest eigenvalues. 
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The sequential testing strategy is presented in Johansen [7] and H(r) is accepted only , 

if H(O) ... H(r - 1) are all rejected. It is therefore natural to consider the distribution 

of the likelihood ratio test for H(r) under the assumption that the rank of IT is indeed r 

rather than less than or equal r. Invoking the results of Theorem 2.1 then leads to 

Theorem 2.3 (Asymptotic distribution of the LR test, Johansen) 

Under the Assumptions 2.1 and 2.2 as T ---+ (0) 

where TV is a (p - r) . dimensional standard brownian motion) and G is given by) 

i=l, 

i=2, ... ,p-r 

- 1 
Here W i = fo liVi(u)du and u E [0,1]. 

(2.9) 

(2.10) 

A table with simulations of the nonstandard distribution in (2.9) is found in Johansen 

and Juselius [12]. Note that G consists of a deterministic part reflecting the trend of Xt, 

and of a brownian motion part reflecting the random walk. Also note the correction for 

mean in G which reflects the demeaning in the likelihood analysis. 

It should be emphasized that the limit distribution is dependent on the assumption of 

a linear trend. Indeed if a~f-l = 0, then G should be replaced by W - W. Thus the LR 

test is not similar with respect to the drift parameter, f-l. 

2.3 The DLR statistic 

Assuming that the (observed) process posess a linear trend, the idea of the DLR test is to 

detrend before testing for cointegration. In the framework of section' 2'.2, the statistical 

calculations remain the same except that the residuals Rot, Rlt are replaced by Rot and 

RIt respectively. The latter are obtained by regression of .tJ.Xt and X t - 1 on the lagged 

differences, a constant and a linear trend. That is apart from correction for short term 

dynamics, one detrends. Denoting the residual product moment matrices by Sij, the 

following definition can be given. 
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Definition 2.1 The DLR test 

The DLR test for at most r cointegmting relations is given by 

p 

DLR = -T I: In(l - Xi), (2.11) 
i=r+l 

where the ordered eigenvalues) 1 > ~1 > ... > ~p > 0, solve the eigenvalue problem) 

The asymptotic distribution of the DLR test under the hypothesis of r cointegrating 

relations is given in Theorem 2.4 and it is seen that by construction the asymptotic 

distribution of the DLR test is independent of the drift parameter. As was the case for 

the LR test, the distribution is non standard and quantiles of the simulated distribution 

are listed in Table 1 below. 

Theorem 2.4 (Asymptotic Distribution of the DLR test) 

Under the Assumptions 2.1 and 2.2 as T ---t 00 

(2.12) 

where W is a (p - r) dimensional brownian motion and F(W) is W corrected for mean 

and linear trend. 

For the simulations here and in the rest of the paper a modified version of the simula

tion program [13] was used. The principle of the simulations is the same as in Johansen 

and Juselius ([12]), and amounts to simulating the brownian motion, W by a random walk 

applying Donsker's Theorem (cf. Billingsley [1]) l/VT~~:~l Ci ~ W(u). The number of 

simulations is set to 6000 and the number of steps, T in the random walk is 400 with 

u = O,~ ... ~. 

In order to prove Theorem 2.4 note that because of the detrending, the asymptotic 

analysis can be performed in the EC model (2.1) with fL set to O. That is by construction 

the asymptotic distribution of the DLR test is independent of the drift parameter as 

already noted. To see this, let X t(J1.) be generated by (2.1). Then the process x1J1.) has the 

representation given by Theorem 2.1, 

t 

X t(J1.) = C 2:= Ci + C fLt + Yt(J1.) + A (J1.) 

1 

(2.13) 
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Table 1: 

Quantiles of the asymptotic distribution of the DLR test statistic for l' cointegrating vectors among p 

variables, 

t1' {fa1 dW:F(W)'(J01 :F(W):F(W)' dt)-l fa1 :F(W)dW'} , 

where W is a (p - 1') dimensional brownian motion and :F(W) is W corrected for mean and linear trend. 

The number of simulations is 6000 with the number of observations T set to 400. 

Dimension Quantiles Sample 

p-1' 5% 10% 50% 90% 95% 97.5% Mean Variance 

1 0.9 1.5 4.7 9.8 11.4 13.3 5.2 11.0 

2 6.9 8.1 13.6 20.9 23.4 25.9 14.2 26.0 

3 17.0 18.9 26.7 36.2 39.1 41.7 27.1 46.4 

4 31.2 33.4 43.1 54.8 58.6 61.5 43.8 70.6 

whereas with fl = ° this reduces to 

t 
Xt(O) = C 2: Ei + Yt(O) + A (0) . (2.14) 

1 

Note that C is the same in (2.13) and (2.14), whereas the index on A and Y in (2.13) 

signifies their dependence on the parameter fl. The correction for mean and trend may 

be represented by F, 

F(X ) = X - X - Z~ (x:-X)(t-t) (t - i) 
t t ~; (t-iF ' (2.15) 

where for any X, X = ~ ZXt. It follows that apart from stationary terms F(Xt(O)) = 

F(Xt(Il)) and F(llXt(O)) = F(llXt(Il)). Hence for the asymptotic analysis the process X t 

may be considered as generated by the EC model for Xt(O). In Johansen [11] it is shown 

that in the case of fl = 0, the asymptotic distribution of the LR test is, ~iven b~ Theorem 

2.3, (2.9) but with G replaced by the (p - r )-dimensional brownian motion, W. That is, 

the asymptotic distribution is given by 

(2.16) 

Now the mapping F: D[O, l]P f-7 D[O, l]P, given by 

F( x) ( u) = x( u) - x - J01 [1;)-X][U~1/2]dU [u - 1/2] , 
o [u-l/2] du 

(2.17) 
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which corrects for mean and trend, is uniformly continuous. Here x = f~ x( u )du and 

D[O,l]P denotes the space of p dimensional cadlag functions. Using that F(X[Tu]) = 

F(X[Tu]) and the continuous mapping theorem (see Lemma A.l, Appendix A), the result 

follows by mimicking the proof of (2.16). 

3 The Power Function of the Likelihood Ratio Test 

In this section the power function is found for the LR test given by (2.7). For a fixed 

alternative to the null hypothesis of at most r cointegrating relations the power tends to 

one and the power is therefore investigated in a neighbourhood of the null. This involves 

the theory of local alternatives or near-integrated processes applied in Phillips [15] and 

Johansen [9]. 

3.1 The Local Alternatives 

The alternative considered to the model (2.1) under the null, H(r), is the inclusion of one 

or more additional cointegrating relations. The focus on how well the test captures extra 

cointegrating relations reflects the sequential testing where, as already emphasized, H(r) 

is accepted only if H(O) ... H(r -1) are all rejected. The number s of extra cointegrating 

relations is restricted by s :s; p - r , where rand p refer to H (r) and the dimension of the 

EC system respectively. 

In order to see that the LR test is consistent, consider the fixed alternative of possibly 

s additional cointegrating relations given by 

where (0:1, iJ1) are (p X s) matrices. The LR test for H(r) against H(p) is given in (2.7) 

and amounts to calculate T times the sum of the (p - r) smallest eigenvalues which solve 

the eigenvalue problem IASll - SlOSOC/ SOli = O. Under H(r) and the Assumptions 2.1 

the (p - r) eigenvalues tend to zero at the rate of T, and the result of Theorem 2.3 holds. 

Whereas under H(r+s), assuming that rank(II) = r+s (and the further Assumptions 2.1 

in terms of H (r + s) ), s ofthe (p - r) eigenvalues do not tend to zero, only (p - (r + s)) of 

them do. Hence the LR test tends to infinity under H(r + s), and is therefore consistent. 
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When investigating the distribution of the LR test under local alternatives the param- ' 

eters of interest are IT and f1 in (2.1). Under the null-hypothesis, H(r), IT = aj3', where 

a and 13 are p X r matrices, and f1 is a p-dimensional vector. 

Consider the local alternatives allowing s extra cointegrating relations, 131, with small 

loadings at/T3 / 2 and with f1 varying unrestrictedly, i.e. 

(3.1) 

The rate at which the alternative HT(r + s) approaches the null H(r) is T~ since for a 

rate less (greater) than T~ the power tends to one (the size of the test). In comparison 

the local alternative for the LR test in the EC model with no drift term 'as treated in 

Johansen [9] takes the normalisation T rather than T 3/ 2 • Thus preliminary this indicates 

that in the model with drift term, the local power of picking up the extra cointegrating 

relations is higher, when compared to the model without drift due to the normalisations 

T 3 / 2 and T respectively. 

As already emphasized the asymptotic distribution of the LR test under the null

hypothesis depends on whether or not C f1 equals zero, or equivalently whether or not 

a~f1 equals zero. The interest is in the case of a linear trend and hence it is assumed 

that a~f1 i- O. Consider now the local alternative where f1 tends to zero in the directions 

corresponding to the extra cointegrating relations, (31. The sequence of local alternatives 

then take the form, 

(3.2) 

where the parameter f1(b) is a s-dimensional vector. Note that under Ht, s has to be 

strictly less than (p - r) in order not to invalidate the assumption that a~f1 i- 0 under 

the null-hypothesis. Furthermore normalising f1 by T 1/ 2 in the s directions corresponding 

to 131 leads to loadings at/T rather than at/T3/ 2 , as was the case under HT. This will 

be clear form the proofs in the appendix, together with the explicit parametrisation of f1 

under Ht given below. 

When deriving the local power of the LR test for the hypothesis of r cointegrating 

relations under the alternatives (3.1) and (3.2), the short term dynamics will for simplicity 

be omitted in the model (2.1). The process will be denoted X t under the null-hypothesis 
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H(r), Xt(T) under HT(r + s), and finally xf,JL) under H~(r + s). Now xf) is given by, 

TI X (T) 
T t-l + f-l + Et , 

TIT 0'.13' + alj3UT3/ 2, 

(3.3) 

(3.4) 

where (0'.,13) are (p x r) matrices, (0'.1,131) are (p X s) matrices and Et are iidNp(O,n). 

Next in order to parametrize the model under H~ introduce some notation. With a, b 

any n X m matrices of full row rank m and such that (b'a) has full rank, let ab = a(b'a)-1 

and bal.. = bl..a.l.' Then (b, al..) spans Rn or equivalently, In = abb' + ba.l. a~. With this 

notation xV,JL) is given by, 

TIT 

f-lT 

TI X (T,JL) + + T t-l f-lT Et, 

aj3' + a1j3UT, 

a(3f-l((3) + j3CX .l. abf-l(b) jTl/2 + j3CX .l. ba.l.!' 

(3.5) 

(3.6) 

(3.7) 

Here a = a~ 0'.1 (p- r x s), b = (j3~ 0'.1..)-1 j3~(31 (p-r x s) and hence T- 1/2f-l(b) = j3~ C f-l, with 

the impact matrix C defined in Johansen's representation Theorem 2.1. Furthermore f-l((3) 

is a r vector, f-l(b) is a s vector corresponding to the s extra cointegrating relations and 

! = a~ a~f-l is a (p - r - s) vector. That a, band b' a above have full rank is a consequence 

of Assumption 3.1 below. For a proof of this see Johansen [9]. 

As in Section 2.1 in addition to the assumptions on the roots of the characteristic 

polynomial, conditions on the parameters (a, (3, 0'.1, (31) are needed to ensure that X t is at 

most 1(1) under both the null and the alternatives. Note that the conditions, which are 

stated below, when compared with Assumptions 2.1 are simplified due to the omission of 

the short term dynamics. 

Assumption 3.1 Assume that the roots of the characteristic polynomial for X t under 

H(r)) HT(r + s) and H~(r + s) are either outside the unit circle or at 1. Furthermore 

assume that 

rank( a) = rank(j3) = r, rank(a~j3_d = p - r, 
(3.8) 
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302 Asymptotics under the local Alternatives, 

When deriving the asymptotic distribution of the likelihood ratio. test under HT(r + s) 
and H~( r + s) the idea is to study the asymptotic behaviour of the processes in a properly 

chosen coordinate system. It follows that under Assumption 3.1 ((3, a..L) spans RP and the 

asymptotics will initially be studied in these two directions. Basicly by the representation 

Theorem 2.1 this separates the behaviour into a ))near-stationary" and a ))near-integrated)) 

direction, each leading to different asymptotics. 

The next Lemma 3.1 states the asymptotic behaviour of xf) and XIT,Il) in the ))near-

stationary)) direction.· 

Lemma 3.1 Under Assumption 3.1) 

(3' Xt(T) = (3' X t + R t(3 , 

(3' xV,!') = (3' X t + Rf(3 

where MaXt~TEIRt(312 and MaXt~TEIRf(312 are bounded by a constant times T- I . 

(3.9) 

(3.10) 

Thus apart from terms which are Op(T- I / 2 ) both processes are asymptotically stationary. 

A proof of the lemma is found in the Appendix. With the notation introduced earlier it 

follows by (3.3) and (3.5) that in the a..L direction, 

a~,6,Xt(T) 

a~ ,6,XiT,Il) 

a(3' X(T)jT3 / 2 + a ' 11. + a' E 1 t-I ..Lt..L t, (3.11 ) 

(3.12) 

For a~ Xt(T) the term given by T = a~f-L dominates, and the asymptotics is therefore 

investigated in the the two directions T and T..L' As for a~ xV, 11) the asymptotics is 

investigated in the a..L direction and in the direction b. Clearly these are not orthogonal, 

but as noted a, band b' a have full rank and therefore (b, a..L) span RP'-'-'1': For ai a~ xV,!') 
the 1 term dominates asymptotically and hence the asymptotics is derived in the 1 and 

the I..L directions. 

Lemma 3.2 As T ---7 00) for u E [0,1] and under Assumption 3.1) then for Xt(T)) 

I X(T) IT W 
a..L [Tu] ---7 TU, 

I I X(T) ITI/2 
T..L a..L [Tu] 

2 
W I b' U + I I B( ) 

---7 T..L a T2 T..L a..L u, 

11 
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while for XY,J.L)) as T ---+ 00 and for 71, E [0,1L 

U(71,) 

"/71,, 

where U is the s-dimensional Ornstein- Uhlenbeck process satisfying) 

dU = (Jl(b) + b1aU) d71, + b'a~dB. 

Here B is a p-dimensional Brownian Motion with covariance matrix n. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

From the previous it follows that the asymptotic behaviour of the process Xt(T) is derived 

in the directions given by, 

(3.19) 

where the normalisations correspond to the rate of convergence. While for Xt(T,J.L) , 

(3.20) 

To investigate the asymptotic behaviour of the likelihood ratio test in Theorem 2.2 the 

asymptotic properties of the product moment matrices (Sijkj=O,1 are needed. Under HT 

the Sij matrices are given by 

1.. ""T (X(T) _ X(T))(X(T) _ X(T)), 
T L--t=1 t-l -1 t-l -1' 

Soo 1.. ""T (~X(T) _ ~X(T))(~X(T) _ ~X(T)), 
TL--t=1 tt, 

1.. ""T (X(T) _ X(T))(~X(T) _ ~X(T)), 
T L--t=1 t-l -1 t , 

(3.21 ) 

(3.22) 

(3.23) 

using the notation that for any process Yt, y = ~ I:T=1 Yt and Y -1 = ~ I:T=1 Yt-l. Sim

ilarly for the product moment matrices in terms of Xt(T,J.L). By the stationarity of j3'Xt 

and ~Xt under Assumptions 2.1 define 

(3.24) 

With the just defined variance and product moment matrices the following holds. 
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Lemma 3.3 With VT defined in (3.19) and (3.20) for X}T)and xV,/-L) respectively! then . 

under Assumption 3.1 and for u E [0,1L as T -+ (0) 

(3.25) 

Here F is (p - r )-dimensional) and for x}T) it is given by 

{ r'r(u-~) 
F(u) = 2 1 _ 

r.l.'ab'r(u ;3) + r.l.'a~(B(u) - B) 
(3.26) 

while for x}T,/-L) ) F is given by 

u(u) -u 

F(u)= "()'(u-~) (3.27) 

l~a~a~(B(u) - B) 

For a proof of Lemma 3.3 see the Appendix, where also a proof of the following lemma is 

found. The lemma gives the asymptotics for the remaining product moment matrices. 

Lemma 3.4 With VT and F given in Lemma 3.3 then for u E [O,lJ and as T -+ (0) 

v'T V~{ SlO _ Sl1II~} ~ [ ~ (0, L,(3(3 ® D) ] 
foFdB' 

Furthermore with L,oo and L,(30 defined in (3.24)) 

ClOO .!:." " 0, Lioo, 

(3.28) 

(3.29) 

(3.30) 

These lemmae provide the necessary background for the main Theorem 3.1 of this section, 

in which the asymptotic distribution of the LR test for r cointeg~ating ~elation~ is stated 

under the local alternatives. 

Theorem 3.1 (Local Power of the LR test) Under Assumption 2.2 and Assumption 

3.1 the asymptotic distribution of the LR test for the hypothesis H(r) against H(p)) is 

under the local alternatives HT and HIj.) given by 

(3.31 ) 
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Under HT the (p - r) -dimensional process Z is given by 

Cl u; + Tt£( u) i=l, 

Zi(U) = C2 ~ + Wi(u) i=2, (3.32) 

Tt£(u) i=3, ... ,p-r, 

while F equals Z - Z) but with Zl(U) - Zl replaced by the linear trend (u - ~). The 

(p - r) dimensional process W is a standard brownian motion and for any process Y, 
- 1 
Y = fa Y(u)du. The scalar constants in Z are defined as 

(3.33) 

where C = ,Lh(a~/htla~ and ~ = aJ..(a~naJ..tla~. 

Under H~ the (p - r) -dimensional process Z satisfies the stochastic differential equation 

and F equals 

F 

(u - ~) 

b'(Z - Z) 

l~a~(Z - Z) 

The parameters in Z and F are given by; 

ft(b) = (3~ C wiT 

a = (a~naJ..rl/2a = (a~naJ..rl/2a~al 

b = (a~naJ..)+1/2b = (a~naJ..)+1/2((3~aJ..rl(3~(3l 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

Under HT and H~ it follows that the asymptotic power depends "on how the extra loadings 

(a1) and cointegrating relations ((31) are related to the a and j3 assumed under H(r)" (cf. 

Johansen [9]). And apart from the dependence on the number of dimensions (p - r) for 

the extra cointegrating relations to hide in, the power depends on the term j3~ C ft. The 

term represents the angle between ft and (31 and is different from zero as (31 cannot lie in 

the space spanned by (3. 
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Table 2: 

Asymptotic power of the LR test for r cointegrating vectors among p variables under the local alternative 

of s extra cointegrating vectors. The distribution of the LR test under HT (r + s) is given by, 

tr {fo1 dZF' [f~ F F' du]-l fo1 FdZ'} , 

where the (p - r )-dimesional processes F, Z are defined in Theorem 3.1. For each simulated distribution 

under HT(r + s) identified by the parameters (Cl, C2, (p - r)), the power is found as the tail probability 

ofthe 95% quantiles of the distribution under H(r). A table with simulated 95% quantiles under H(r) is 

given in J ohansen and J uselius ([12]). The number of simulations is 6000 with the number of observations 

T set to 400. 

The Power of the LR test under HT at a 5% level: 

p-r=1 

Cl = 0 Cl =-3 Cl =-6 Cl =-9 Cl = -12 Cl = -15 Cl = -18 

C2 = 0 4.5 13.9 41.8 73.2 93.0 99.1 99.9 

p-r=2 

Cl = 0 Cl =-3 Cl =-6 Cl =-9 Cl = -12 Cl = -15 Cl = -18 

C2 = 0 4.8 7.7 19.6 42.6 69.9 90.5 98.2 

C2 = 4 11.0 14.9 29.0 51.4 77.2 93.5 98.8 

C2 = 8 39.7 44.1 57.1 75.3 88.5 96.7 99.5 

C2 = 12 76.3 78.7 85.6 91.1 96.5 99.1 99.8 

C2 = 16 93.8 95.0 95.9 98.0 99.3 99.8 99.9 

p-r=3 

Cl = 0 Cl =-3 Cl =-6 Cl =-9 Cl = -12 Cl = -15 Cl = -18 

C2 = 0 4.6 6.4 13.4 28.3 52.8 77.1 93.2 

C2 = 4 8.5 10.6 18.6 35.7 58.9 81.1 94.9 

C2 = 8 25.9 29.5 39.6 56.8 75.7 . 90.8 
,--. 97.4 ... 

C2 = 12 61.7 63.9 72.4 81.9 91.2 96.9 99.2 

C2 = 16 88.2 88.8 91.7 95.6 97.8 99.2 99.0 

C2 = 20 97.9 98.0 98.8 99.1 99.8 99.9 100.0 
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Under HT it is clear that the scalar parameters Cl and C2 depend on the length of f-l, the 

size of a1 and that they are independent of the choice of a.l and Ih. The limit distribution 

is non standard except for the case (p - r) = 1, where the distibution is a noncentral xi 
with noncentrality parameter Jh. Thus in order to investigate the distribution for the 

case where (p - r) > 1 the distribution is simulated. For each simulated distribution 

under HT (r + s) identified by the parameters (Cl, C2, (p - r)), the power is found as the 

tail probability of the 95% quantiles of the distribution under H(r). For each set of 

parameters (Cl, C2, (p - r)) the number of simulations is set to 6000, and Table 2 shows 

a selection of the simulated power function. It is clear from the table that the power 

decreases as the dimension (p - r) increases which confirms the result of Johansen [9]. 

Note that by definition C2 2:: 0 and that the distribution is symmetric in Cl' The symmetry 

in Cl follows by the invariance to change of sign of the brownian motion. 

Under Hf} there are too many parameters for a tabulation of the power function in 

the general case. Instead only the case with (p - r) = 2 and s = 1 is tabulated in Table 4 

in section 5. This is used for a comparison of the LR and the DLR test. 

4 The power function of the DLR test 

The discussion in Section 3.1 regarding the fixed alternative of s additional cointegrating 

relations immediately carries over. Thus also the DLR test is consistent and the power of 

the test is investigated in a neighbourhood of the null-hypothesis. 

But as was argued section 2.3, the correction for mean and trend in X t implies that 

the parameter f-l plays no role in the asymptotics and can be ignored. This influences 

the normalisation of the local alternatives, and as mentioned in Section 3.1, it follows 

by Johansen [9J that the normalisation is T for the EC model without f-l. That is, the 

sequence of local alternatives to be considered is given by 

HT(r + s) : IIT = af3' + alf3UT. (4.1 ) 

Thus for a normalisation greater than T, e.g. T 3/ 2 as was the case before for the LR test 

under HT, the power of the test tends to the asymptotic size of the test and the DLR 

test has therefore less (local) power than the LR test against alternatives with f-l varying 
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unretrictedly. However under Hfj. or equivalently in the neighbourhood of the paraIIleter ' 

point where p is zero in the directions corresponding to the additional cointegrating 

relations /31, the rate of convergence is the same for both tests .. A further discussion of 

the simulated asymptotic power of the DLR test compared with the LR test is given in 

Section 5. 

The local power function of the DLR test is stated in Theorem 4.1 below and the 

simulated power is given in Table 3. The result in Theorem 4.1 follows as in section 2.3 

by mimicking the proof of Johansen [9], where the power function is investigated for the 

likelihood ratio test in the model with p = O. It is shown that LR(H(r)IH(p)) under 

HT(r + s) is asymptotically distributed as 

tr {la1 dZZ' [101 ZZ'dut1 101 ZdZ'} , (4.2) 

with Z given in Theorem 4.1 below. 

Theorem 4.1 (Local Power of the DLR test) 

Under the Assumption 2.1 and the Assumption 3.1 in terms of H(r) and HT(r + s)) the 

asymptotic distribution of the DLR test for the hypothesis of 1" cointegmting vectors is 

under the local alternative) HT(r + s) (c! (4.1))) given by 

tr {101dZF(Z), [101F(Z)F(Z),dut1 101F(Z)dZ'}. (4.3) 

The (p - 1") - dimensional Ornstein- Uhlenbeck process Z satisfies the stochastic differential 

equation} 

dZ = ab'Zdu + dW, (4.4) 

and F(Z) is Z corrected for mean and linear trend. The (p - 1") X s matrices a} bare 

defined in Theorem 3.1 and W is a' (p - 1") dimensional standard brownian motion. 

Note the resemblance between the Z given by (4.4) and theZ given by (3.34) under 

Hfj.. The difference is the drift term involving p(b), which by construction the DLR test 

does not depend on. 

As noted in Johansen [9] a tabulation of the power function involves 2(p - r)s parame

ters, but by rotation of the brownian motion W as described in Johansen [9] the following 

Corollary can be stated for the simple case, where the number of extra cointegrating 

relations, s equcals 1. 
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Table 3: 

Asymptotic power of the DLR test for r cointegrating vectors among p variables under the local alternative 

of 1 extra cointegrating vector. The distribution of the DLR test under Fh(r + 1) is given by, 

tr{Jo1dZ:F(Z)' [fol:F(Z):F(Z)'du]-l Jo1:F(Z)dZ/} , 

where the (p - r)-dimesional process Z is defined in Theorem 4.1, and :F corrects for mean and linear 

trend. For each simulated distribution under HT (r + s) identified by the parameters (h, 12, (p - r)), the 

power is found as the tail probability of the 95% quantiles of the asymptotic distribution of the DLR test 

under H(r). Table 1 shows the simulated quantiles. The number of simulations is 6000 with the number 

of observations T set to 400. 

The Power of the DLR test at a 5% level: 

p-r=l 

h =0 !1 =-3 !1 =-9 !1 = -15 h = -21 !1 = -27 !1 = -30 

12 = 0 5.0 6.9 16.9 39.8 69.1 89.4 94.8 

p-r=2 

h=O !1 =-3 !1 =-9 !1 = -15 h = -21 !1 = -27 !1 = -30 

i2 = 0 5.0 6.0 10.3 20.2 36.1 56.0 65.2 

12 = 6 9.0 11.0 15.0 25.3 40.4 59.0 67.5 

i2 = 12 36.4 35.0 33.0 40.1 53.2 68.7 75.8 

12 = 18 73.5 71.4 64.3 65.6 72.5 81.5 86.4 

p-r=3 

h =0 !1 =-3 !1 =-9 !1 = -15 h = -21 !1 = -27 !1 = -30 

i2 = 0 5.0 5.9 8.2 13.3 22.3 35.8 43.0 

12=6 8.2 8.9 11.1 16.3 25.8 38.0 45.0 

12 = 12 29.2 27.4 23.8 27.1 35.4 46.4 52.5 

i2 = 18 61.0 59.0 48.6 46.8 51.8 60.3 65.3 
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Corollary 4.1 Under the Assumptions in Theorem 4.1 the assymptotic distributiQn of 

the DLR test under the alternative of one extra co integrating vector) HT(r + I), is given 

by (4.3) with 

- f1 Iou Z1(v)dv + Z1(U) = W1(u) i=l, 

-hIoU Z1(v)dv+Z2(u)=W2(u) i=2, 

Zi( u) = li1ii( u) i=3, ... ,p-r. 

The scalars f1' f2 are given by 

Z/b<O" 

(Z/al/b - f{)1/2 , 

with the vectors ay b defined in Theorem 3.1. 

(4.5) 

(4.6) 

(4.7) 

The power function derived from simulations of the distribution in Corollary 4.1 is given 

in Table 3. As before, for each distibution, identified by the parameters (It, f2, (p - r», 

the power is found as the tail probability of the 95% quantiles ofthe simulated distribution 

under H(r), given in Table 1. It is clear from the table that the power decreases as (p - r) 

increases, which was also the case for the LR test. 

5 Concluding Remarks 

The LR and the DLR tests asymptotic properties under the null-hypothesis of cointegra

tion and under local alternatives of s extra cointegrating relations have been investigated. 

It follows that the LR test is asymptotically most powerfull under local alternatives where 

the drift parameter, fl varies unrestrictedly. This is demonstrated by the fact that the 

extra cointegrating relations have loadings of order T- 3/ 2 for the LRtest, whereas the 

loadings are of order T- 1 for the DLR test. Thus under local alternatives of s extra 

cointegrating relations with loadings appoaching zero at the rate of T, the LR test has 

asymptotic power 1, while the DLR test has power less than 1 determined by the param

eters given in Theorem 4.1. 

An important role for the power properties of the LR test is played by the drift term 

in the directions corresponding to the extra cointegrating relations given by (3~ C fl. This 
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reflects the fact that the LR test is not invariant with respect to jJ, and contrasts the DLR 

test which by construction is asymptotically invariant. Therefore the LR tests asymptotic 

behaviour was studied under local alternatives with loadings adT and /3~ C jJ, = fl(b) /T1/ 2. 

From the Example 5.1 below it follows that also under these alternatives the LR test is 

asymptotically most powerfull. 

However it should be emphasized that this investigation is based on asymptotic anal

ysis and therefore only gives an indication of the performance for finite samples. 

Example 5.1 In this example the case of p - r = 2 and s = 1 is studied for the two 

tests under local alternatives where the trend tends to zero in the /31 direction. Thus let 

a = /3 = (Ir,O)', n = I, a1 = (0, ... ,0,7f)' and /31 = (0, ... ,0,1)'. This choice is the 

simplest system compatible with the parameters given in Theorem 3.1 and Corollary 4.l. 

From the choice of parameters above let (x, y) denote the last p - r = 2 components 

of X t under the alternative H~ and consider the process given by 

1 + Cxt 

7f / 1/2 T Yt - 1 + jJ, T + Cyt. 

The power of the DLR test is by Corollary 4.1 determined by the parameters 

The power of the LR test is by Theorem 3.1 given by the parameters 

(5.1) 

(5.2) 

In Figure 1 the simulated power functions are shown as functions of (7f,/-l), and Table 4 

gives the simulated power of the LR test. The LR test is seen to be asymptotically most 

powerfull. 
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Figure 1: 

The power function of the LR test and the DLR test under the local alternative of one extra cointegrating 

relation and the trend tend to zero in the direction corresponding to the extra cointegrating relation, cf. 

Example 5.1.· 
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The power of the LR test (-) is shown as a function of 7r for different values of /-l. The power of the DLR 

test (- -) is independent of /-l, and is shown as a function of 7r. 
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Table 4: 

Asymptotic power of the LR test for r cointegrating vectors among p variables under the local alternative 

of 8 = 1 extra cointegrating vector in the case where p - r = 2. The distribution of the LR test under 

H~ is given by, 

tr{Jo1dZFI[folFF1du]-1 J;FdZI}, 

where the (p - r )-dimesional processes F, Z are defined in Theorem 3.1. For each simulated distribution 

under H~ identified by the parameters (7r, fJ, (p - r) = 2) (cf. Example 5.1), the power is found as the tail 

probability of the 95% quantiles of the distribution under H(r). A table with simulated 95% quantiles 

under H(r) is given in Johansen and Juselius ([12]). The number of simulations is 6000 with the number 

of observations T set to 400. 

The Power of the LR test under H~ at a 5% level: 

p - r = 2,8 = 1 

7r=0 7r =-3 7r =-9 7r = -15 7r = -21 7r = -27 7r = -30 

fJ=O 4.7 5.4 11.6 27.6 50.2 74.4 83.5 

fJ=5 4.7 8.5 16.3 32.3 54.8 77.4 85.8 

fJ = 10 5.2 33.9 36.6 49.8 68.1 85.2 91.1 

fJ = 15 5.0 81.4 77.8 77.6 85.9 93.7 96.1 

fJ = 20 4.8 99.2 98.7 96.7 97.0 98.4 99.1 
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Appendix 

A Weak ,Convergence and some Matrix Results 

The proofs in the paper rely on results from the theory of weak convergence on the p 

dimensional product space of cadlag functions endowed with the Skorokhod topology, 

(D[O, l]P, 1)®P). An introduction to the theory can be found in Billingsley [1]. From the 

definition of the Skorokhod topology it follows that" .. it relativized to C coincides with the 

uniform topology" (Billingsley [1], p.112). Here (C = C[O, 1]P,C0P) denotes the product 

space of continuous functions endowed with the uniform topology. As a consequence the 

following corollary to the Continuous Mapping Theorem can be stated. 

Lemma A.I (Continuous Mapping Theorem) 

If (ZT) is a sequence of random elements of the p-dimensional space of cadlag functions, 

(D[O, l]P, 1)®P)) and Z a random element with support on the space of continuous func

tions) (C[O,l]P,C®P)) then 

ZT ~ Z implies F( ZT) ~ F( Z) (A.l) 

if the mapping F is continuous in the uniform topology. Here F: D[O, l]P 1---* D[O, l]P or 

F: D[O, l]P 1---* RPXP) the space of (p X p) matrices. 

The next lemma provides the necessary result for convergence of autoregressive pro

cesses under local alternatives to the Ornstein-Uhlenbeck process. A result presented in 

e.g. Jacobsen [5]. 

Lemma A.2 (Weak Convergence to the Ornstein-Uhlenbeck process) 

Consider the s-dimensional near-integrated process (Zt(T»)t=1...T, given by zf) = ° and 

(A.2) 

where 8 is a s-vector and D a (s X s) matrix) while et are iidNs(O,~). Then as T ---+ (0) 

(A.3) 
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where ZT is the cadlag version of Z(T) and Z is the Ornstein- Uhlenbeck process! solving 

the stochastic differential equation) 

dZ = (8 + DZ)du + dB. 

Note that Z(u) = Jouexp((u - s)D)(8ds + dB(s)). The process B is as-dimensional 

brownian motion with covariance matrix I;. The result extends to the case where the error 

process is replaced by any error process ('I}t)! with the property that T- I / 2 L~~'I 'l}t ~ B(·)! 

as T --+ 00 on D[O, 1]8. 

The continuous mapping theorem and Lemma A.2 provide the background of the 

proofs in combination with the invariance principle and the theory of weak convergence 

of product moment matrices of linear processes to stochastic integrals as presented in e.g. 

Johansen [8], Hansen [4] and Phillips and Durlauf [16]. 

Lemma A.3 (Brownian Motion and the Stochastic Integral) 

Suppose that the p-dimensional processes Ut and Vt are given by 

where Et are iidNp(O,n) and C(z)!D(z) are convergent for Izl ~ 1 + 8 for some 8 > 0. 

Then the invariance principle states that 

T- I / 2 '\"'[T.] U ~ C(1)B(u) 
~t=1 t , (A.4) 

where B is a p-dimensional brownian motion with co variance matrix n. Furthermore 

(A.5) 

where I; = Lh=1 Cov(Ut , Vt+h)' The result (A.5) extends to the case with Li Ui replaced 

by the near-integrated process! Zt(T) given in (A.2) and the limit differs. 

The idea in the proofs of the lemmae in Section 3 is to evaluate the difference between 

the process X t under H(r) and the alternatives. In order to do so, some results on matrices 

are needed. With A a (PI X P2) matrix, IIAII = Vtr{A'A} denotes the norm. Similarly for 

a a p vector, the norm is given by lal = #a. The following lemma is from the Appendix 

in Johansen [8]. 
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Lemma AA (Powers of Small Matrices) 

If the eigenvalues (Ai)i=l ... P of the (p X p) matrix A} are less than one in absolute value) 

then for A = maxi lAd} 

IIA nil s C).An , 
I:~o An = (1 - A)-l 

where C). is a positive constant. 

Finally the binomial formula for matrices. 

Lemma A.5 (The Binomial Formula) 

With A, B (p x p) (noncommutative) matrices 

(A.6) 

(A.7) 

(A.S) 

where m equals the number of times B occurs in the inner sum. The inner sum is over 

il, ... ,im+l E [O, ... ,n] andI:i1 + ... +im+1 =:n-m = (:,). 
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B Local Asymptotics 

With the notation introduced in Section 3.1 it follows that with A = (I + aj3'), 

BT = T-3/20:1j3~ and B~ = T-I0:1j3~, 

X t = ~~-1 Ai (Ct-i + f-l), 
xf) = L:~-l(A + BT)i(Ct_i + f-l), 
Xt(T,/t) = L:~-l(A + B~)i(Ct_i + f-lT) 

(B.1) 

(B.2) 

(B.3) 

where X~T) xf,/t) = Xo O. The next Lemma gives bounds for the matrices in the 

formulae above. These preliminary results are used when deriving the weak convergence 

results for the process in the following. 

Lemma B.t With A = (I + 0:j3')) BT 

Assumption 3.1) then 

IIAill:::; CA, 

IIj3' Ai 11 :::; C»).i, 

IIj3'(A + BT)i - j3' Ai 11 :::; Cf3l1BTII , 

11 L:~=n L:il+ ... im+l=i-m Ail BT ... BTAim+lll :::; CAB,nTnIlBTlln 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

where). E (0,1) and CA, C)., Cf3 , (CAB,n)n=O ... i are positive constants. The results also hold 

with BT replaced by B~. 

Proof: First note that j3'Ai = (I + j3'o:)ij3' and that o:~Ai = o:~. Under Assumption 3.1 

the roots of the characteristic polynomial for Xt under H(r) are outside the unit circle or 

at 1, and as a consequence the eigenvalues of (I + j3' 0:) are inside the unit circle. Thus 

(A.6) imply that 1Ij3'Aill :::; C).).i, which is the result of (B.5). 

As to (B.4) use that 1= (0:13, j3a.1)(j3, 0:.1)' then 

To prove (B.6) use the binomial formula and the just proved results to get, 

1Ij3'(A + BT)i - j3' Ai 11 11 L:~=1 L:il+ ... +im+l=i-m j3'Ail BTAi2 BT . .. BTAim+lll 

< L:~=1 II BTllmcA'C). L:il+ ... +im+l=i-m ).il 
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< ",i liB Ilmcmc (i_l)m-l ",~-m )Jl 
um=1 T A'\ (m-I)! uZl=O 

< IIBT 11 CA Cl I:!;;:~o (IIBTIIC~V-l))m 

since TIIBTII is bounded. The constant Cl is obtained by using that Ail is summable. As 

to (B. 7), 

where K is a constant. The proofs hold for BT replaced with Bfj,. 0 

Next follow the proofs of the results in Section 3. 

Proof of Lemma 3.1: Consider first (3'xf) which by the representation (B.1) is given 

by 

(3'I:;:6(A + BT)i(Ct_i + IL) 

I:;:~ (3' Ai( Ct-i + IL) + I:;:~ ((3'( A + BT)i - (3' Ai)( Ct-i + IL) 

(3'Xt + Rt(3 

Denote by Ai the term (3' (A + BT)i - (3' Ai and henceforth let (Ki )i=1...l0 denote positive 

constants. Then E(Rt(3) = I:~-1 AiIL and by application of (B.6) it follows that 

(B.8) 

Next Var(Rt(3) = I:~-1 AinA~ and again by (B.6) it follows that 

Hence by 

(B.9) 

it follows that IE(Rt (3)1 2 dominates and (3.9) follows. However with BT replaced by 

B~ the argument gives that IE(Rf(3)12 is of order 1, since TIIBfj,II lILT I is bounded by a 
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constant. This shows that a more careful evaluation of the mean of Ri(3 is needed, where 

the parametrization of f-lT is used. Application of the binomial formula gives, 

By the decomposition I = a(3f3' + f3cd. a~, this may be represented as the sum of Ri and 

R~, where 

Ri Lt:t L~=l L f3' Ail B~Ai2 ... B~f3C1.l a~ (Ct-i + f-lT) , 

R~ Lt:t L~=l L f3' Ail B~Ai2 ... B~a(3f3' Aim+l (Ct-i + f-lT) . 

Regarding Ri note that by definition B~f3C1.la~f-lT = T-lalf3~Cf-lT' where C is the impact 

matrix given by f3.l( a~f3.ltla~, cf. Theorem 2.1. Then by mimicking the proof of (B.6), 

/E(Rn/ 

Thus applying the parametrization of f-lT given in Section 3.1 (cf. (3.7)), f3~Cf-lT 

f-l(b) /T- 1/ 2 and therefore /E(Rn/ is of order T-1/ 2. Next, 

/E(Rn/ 

J{5L~:t ["i-li"B~" + L~=2 "B~"mCA-IL (i-i1::::t-2) "il+im+l] 

< J{6"B~" + J{7 L~:~ L~=2 "B~"mCA-l (\~~~~2 Li1+im +19-m "il+im+l 

< J{6"B~" + J{8T"B~"2 exp(TCA"B~") :::; J{9"B~" , 

using that i"i is summable. Finally 

/E(Ri(3)/ :::; /E(Ri)/ + /E(Rn/ :::; J{lOT- 1/ 2, 

and the result (3.10) follows by (B.9). 0 

Proof of Lemma 3.2: Consider first a~XY) which by the representation (B.1) and the 

binomial formula is given by, 

",t-l Ai( . + ) + ",t-l ",i-l AjB Ai-j-l( . + ) ui=O Ct-, f-l ui=l uj=O T Ct-, f-l 

+ ",t-l ",i '" Ail B B Aim+l ( . + ) ui=2 um=2 uT, .. T Ct-, f-l 

(B.10) 
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Now C\:'~Ai = C\:'~ and therefore 

C\:'~X[Tuj = C\:'~ I:~Tu] Et + C\:'~IL[TuJ = a~S[Tu] + 7[TuJ. (B.11) 

The invariance principle and the continous mapping theorem applied on the mapping 

x f-+ maXtsT/X/, imply that T-l/2maXtsT/St/= Op(l). Therefore sUPuE[O,1]T-1S[Tu] ~ 0, 

and it follows that 

T - 1 , X w, 
. C\:'..L [Tu] ---+ a..LIL u = 7 U. 

Henceforth let B denote a brownian motion with covariance D. Multiplication by 7..L in 

(B.11) leads by the in~ariance principle to the result, 

For the Yt(T) apply the decomposition 1= a(3(3' + (3Ci..La~ and get 

, y;(T) 
a..L [Tu] 

, B ",[Tu]-l ",i-l A i -1-j( +) 
a..L T L-i=l L-j=o E[Tu]-i IL 

, B [rv ",[Tu]-l ",i-l (3'Ai- 1-j + (3 ",[Tu]-l.,] (E + 11.) 
a..L T <-<(3 L-i=l L-j=o Ci..L L-i=l· za..L [Tu]-i r 

y, , B (3 ",[Tuj-1., ( ) 
1t + a..L T Ci..L L-i=l za..L E[Tuj-i + IL . 

Using (B.7) and mimicking the proof of Lemma 3.1, maxtsTE/a~Y1t/2 

therefore T-1/2maXtYlt ~ 0. By definition BT equals T-3/2C\:'1(3~ and hence, 

2 2 
T -1/2 , y;(T) w , (3'(3 , U _ b' U 

C\:'..L [Tu] ---+ a..L a1 1 Ci..La..LIL 2 - a 72 . 

Finally the results (3.13) and (3.14) follow by showing that 

(B.12) 

(B.13) 

To see this note that (B. 7) with J{ a constant, /Rii)/ ~ J{(T- 1 I:f /Ei/+ /IL!), and the result 

immediately follows since the Ei are identically and independently Np'(O; D) distributed. 

Regarding a~Xf'f.t) , it follows by (3.12) that 

(B.14) 

from which (3.16) and (3.17) follow. For the b direction, 

T-1b'a(3~xr5t) + T- 1/2IL(b) + b'a~Et 
T-lblab'a~XF:t)+ T- 1/ 2IL(b) + b'a~Et + T-1b'a(3~C\:'(3(3'Xr!.t), 
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using the definition of b. Then the result (3.15) follows by Lemma A.2, with zf) = 

b' CY~ Xt(T,Il) , [) ;.t(b), D b' a and finally 

(B.15) 

That T- 1/ 2 L:~~'I 'T}t ~ b'cy~B(·), where B is a p-dimensional brownian motion with covari

ance n, follows by the invariance principle if 

T - 3/ 2 ",[Tu] Q'X(T,Il) P 0 
sUPuE[O,l] L..d=l fJ t-l --+ . 

As before T-3/2suPuE[0,1] L:!~~] (3' X t - 1 ~ 0, by the invariance principle and the con

tinous mapping theorem. Finally T-3/2suPuE[0,1] L:~~~] Rrf3 ~ 0, since by Lemma 3.1, 

maxtE/Rrf3/2 = O(T-l). 0 

Proof of Lemma 3.3: From the definition of S11 and Lemma 3.1 it follows that under 

HT, 

using the notation that for any process Yt, Y = T- 1 L:i Yt. By Lemma 3.1, maxt::;TE/Rtf3/2 

is O(T-1 ) and hence T- 1 L:(Rtf3 - R(3)(Rtf3 - R(3)' ~ O. Likewise the cross product 

terms involving Rtf3 tend to zero by Holder's inequality using that maxt::;TE/,B'Xt/2 is 

0(1). Finally the law of large numbers for ergodic processes implies that (3' S11(3 ~ L,f3f3. 

Similarly under H~. 

As for the other directions let VT = ((3, VT ), where VT = (CY.lT/T,CYl..T.l/T1/2) under 

HT and VT = (CY.lb/Tl/2,CY.la.lI/T,CY.la.lI.l/Tl/2) under H~. Then by the Continuous 

Mapping Theorem applied on the mapping (z f-+ J01(z( u)- J~ z(s )ds )(z( u)- Jo1 z(s )ds )'du), 

the results in Lemma 3.2 immediately gives 

V~S11 VT ~ L:;:~~/T [V~(X[\;~l - ~ L:~~i/TX[\;~)l [(X[\;~l - t L:~~i/TX[\;}])'VT] 
~ J~ F(u)F(u),du. (B.16) 

It remains to be shown that 

t L:i Vf(Xf) - X(T))((3'(Xf) - X(T))), 

t L:i Vf(Xf) - X(T)) ((3'Xt + Rt(3)' ~ O. 
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To see this apply first the result that JTVT~ ~f(xY) _X(T)) (f3'Xi)' is Op(l) by Lemma' 

A.3. Next note that maxtsTEla~Xtl2 is 0(T2) but maxtsTEITla~Xtl2 isonly O(T). Also 

maxtsTEIR~i) 12 i,s 0(1) and finally maxtsTEla~ Yt(T) 12 is O(T). Application of Holder's 

inequality then gives that the remaining terms tend to zero. Similarly for xY,f.L). 0 

Proof of Lemma 3.4: Concentrating the likelihood function with respect to the drift 

parameter 11, leads to 

~X(T)_ ~X(T) = IT (X(T) - X(T)) + (£ - z) t T t-1 -1 t , 

and therefore under fh, 

S S IT, - 1 '\'T(x(T) X(T))( -)' - 1 '\'T(x(T) X(T)), - S 
10 - 11 T - T u1 t-1 - -1 et - £ - T u1 t-1 - -1 et = le' (B.17) 

As previously noted VT = (13, VT)' Consider first the 13 direction, where by the Central 

Limit Theorem for Martingale Differences 

since ~'[(Rt-1f3 - R(3)e~/VT .!." O. Next in the VT direction by Lemma A.3, 

(B.19) 

As to (3.29) rewrite Soo as 

(B.20) 

where ITT = af3' + a1f3UT3/2 under HT' Applying the Law of Large Numbers for ergodic 

processes it follows that See'!'" n. Furthermore 13' Sl1f3 .!." ~f3f3 and 13' Sle .!." O. For the 

term f3~Slc; use again the decomposition, Jp = af3f3' + f3al..a~, Lemma 3.1 and Lemma 3.2 

to see that f3~Sle is dominated by b'a~S1e- Hence by Lemma 3.2 T~3/2f3~Sle tends to zero. 

Likewise T-3 f3~ Sl1f31 tends to zero. This implies Soo .!." a~f3f3a' + n = ~oo. Applying 

similar arguments, 

(B.21 ) 

and (3.30) follows. Similarly under H~. 0 
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Proof of Theorem 3.1: The underlying structure of the proof is the same as presented 

in Johansen [7], p.1569 Proof of Theorem 2.1. The proof is split into three parts, where 

the first part contains results valid under both HT and H~. 

Proof of Theorem 3.1: (Part 1) From (2.7) it follows that the likelihood ratio test 

of H(r) against H(p) is given by -TL:f=r+1ln(l - ~i) ,where (~di=r+1...p are the (p - r) 

ordered smallest eigenvalues solving the eigenvalue problem (2.8) 

(B.22) 

From Johansen [7] it follows that the eigenvalues are continuous functions of the coefficient 

matrices. Post and premultiplication in (B.22) by VT = ((3, VT ) then gives by application 

of Lemma 3.3 and 3.4 that (~i)i=1...p converge to the ordered eigenvalues of 

(B.23) 

Thus the (p - r) smallest eigenvalues tend to zero, corresponding to the near-( co )integra

ted and the non-stationary components. Next define p = AT. 

Post and premultiplication in (B.22) with ((3, T1!2VT) gives as T --+ 00 by Lemma 3.3, 

that the (p - r) smallest eigenvalues normalized by T satisfy in the limit 

p [ 0 0 ]_ wlim {((3, T1!2VT)' SlOSOol SOl ((3, T1!2VT)} = O. 
o f FF'du 

(B.24) 

By (3.29), (3.30) and the formula for the determinant of a block matrix (B.24) can be 

rewritten as 

(B.25) 

with 

SOO.f3 = S;;ol - Sm} SOl (3 ((3 SlOSm} SOl(3t1 (3' SlOSOol 

P ,,-1 "-1,, (" "-1,, )-1" ,,-1 ( 'n )-1' --+ ~OO - ~OO ~Of3 ~f30~oo ~Of3 ~f30~oo = a.l a.l Ha.l a.l , 

where the last equality follows from Johansen ([7] Lemma A.I, p.1567). Hence what is of 

interest is 

wlim { T1!2V;Slea.l } + wlim { T1!2V;Sl1II~a.l } 

fa1 FdB' a.l + wlim {T1!2V;Sl1II~a.l} , (B.26) 
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by Lemma A.3, see (B.17). This and the remaining part of the proof will be treated 

seperately for HT and H~ in the next two parts. 

Proof of Theorem 3.1: (Part 2) Under HT it follows that 

(B.27) 

by the continuous mapping theorem and using the decomposition, Jp = a{3{3' + (3ex1..a~, to 

see that T-1/2{3~X[~21 equals T-1/2b'a~ X[~21 + op(l). Hence with the (p - r) dimensional 

process 2 defined by 
2 

2(u) = ab'7~ + a~B(u), 
2 . 

(B.28) 

it follows that (B.26) equals f01 Fd2'. Note that F equals (cf. (3.26», 

~(u) = 2__' { 
7'7( u - .1) i=l 

71..'(2i - 2i) i=2, ... , p-r, 
(B.29) 

where for any process Z, Z = f~ Z (u )du. By definition 'oex.L = a~ !tal.. is the covariance 

of 2 and alltogether by (B.25), p satisfies in the limit, 

/p f~ FF'du - f~ Fd2''o~~ f~ d2F'/ = O. (B.30) 

Equivalently, 

Jp f(NF) (NF)' du - f(NF)d(M2)'(M!tex.LM')-1 f d(M2) (NF),J = 0, (B.31) 

for any square (p - r) matrices of full rank, which shows that linear transformations of 

F, 2 are allowed. The process F is only dependent on 2 through the linear combinations 

71..'2, which are independent of the linear combination 7''o~~ 2. Thus decompose 2 into 

two independent processes given by, 

The process 22 has quadratic trends in the direction given by cP = 71..' ab' 7 and none in 

the orthogonal directions cPl... As before cP~ 7~2 is independent of the linear combination 

cP'(7~'oex.L 71..t17~2 , and the decomposition of Z becomes 

7',0-1 Z ex.L ' 

""7 '2 'f/ 1.. , 
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where the 2 1 ,22 and 23 are independent. Summarising, define M as, 

(B.32) 

and next N by, 

(B.33) 

Furthermore set F = NF, Z = (MnaJ.. M')-1/2 M2 and finally denote the (p - r) dimen

sional Brownian Motion (MnaJ..M')-1/2Ma~B(u) by W(r). Then p in the limit satisfies 

Ip f F F'du - f FdZ' f dZF'1 = 0, 

where 

while 

Z(u) = 

i=l, 

i=2, 

i=3, ... , p-r, 

(u - ~) i=l, 

F(u) = (if'(TJ..'naJ..T.d-1if)1/2(u2~t) + (VT'i(u) - Wi ) i=2, 

(Wi(u) - Wi) i=3, ... , p-r. 

(B.34) 

(B.35) 

(B.36) 

where the impact matrix C equals Ih(a~f3J..)-la~. Furthermore using the definition of if 

and the decomposition, Ip-r = naJ..TJ.. (TlnaJ.. TJ..t1Tl +T(T'n;;;~T)-lT'naJ..' it follows that, 

c~ (if' (TJ..'naJ.. TJ..t1 if) 1/2 

(fL'Cf31)(a~~a1)(f3~CfL) - ci· 

Hence by -T~f=r+1ln(1- ~i) = ~f=r+1 T~i + op(l), using p = TA the result (3.31) in 

Theorem 3.1 follows. 
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Proof of Theorem 3.1: (Part 3) Under H; it follows as in (B.2q) that 

wlim{ Tl/2V;SlOa.L} = J F(a~dB + aUdu)', 

where the s-dimensional process U satisfies, (cf. (3.18)) 

dU = (Il(b) + b1aU) du + b'a~dB, 

and the (p - r )-dimensional process F equals (cf. (3.27)), 

U(u) -U 

F(u) = ,',(u - ~) 

,~a~a~(B(u) - B) 

(B.37) 

(B.38) 

(B.39) 

The p-dimensional brownian motion, B has covariance matrix n. Define the (p - r)

dimensional process, Z, by b' Z = U. Then 

and by J Fdu = 0, the limit in (B.37) equals J FdZ'. And F equals, 

b'Z(u) - Z 

F(u) = ,',(u - ~) 

,~a~aHZ(u) - Z) 

The result in Theorem 3.1 follows by setting Z = (a~ na.l)-1/2 Z. 0 
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