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Abstract 

Some examples of the regression method are compared with likelihood 
based inference. It is shown that although the asymptotic theory is dis­
tinctly different for ergodic and non-ergodic processes, the likelihood meth­
ods lead to the result that asymptotic inference can be conducted in the 
same way for the two cases by appealing to classical conditioning arguments 
from statistics using the notion of S-ancillarity or strong exogeneity. It is 
pointed out that the Fisher information can be considered a measure of 
the conditional variance of the maximum likelihood estimator given the 
available information in the sample. 

The purpose of this paper is to discuss conditional inference in connection 
with the usual regression problem in econometrics, and the analysis of the error 
correction model in the presence of cointegration. The starting point is that in­
ference concerning the cointegrating coefficients is mixed Gaussian, see Phillips 
(1991), Reinsel and Ahn (1990) or Johansen (1988). Thus the limit distribution 
itself offers the possibility to make a conditioning argument when deriving the 
asymptotic distribution of the test statistic for hypotheses on the cointegrating 
coefficients. It is the intent to investigate to what extent it is possible to argue 
for the conditioning using ideas of conditioning in the statistical literature. The 
following quotations by Sir R.A. Fisher are taken from the paper hY'Efron and 
Hinkley (1978), who discus~ conditioning in the classical case of i.i.d measure­
ments. 

Fisher(1934): When these [log likelihood] functions are differentiable 
successive portions of the [information] loss may be recovered by using 
as ancillary statistics, in addition to the maximum likelihood estimate 
the second and higher differential coefficients at the maximum. 

*Paper presented as the Frank Paish lecture at the Royal Economic Society Meeting in 
Exeter 1994. 
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Fisher (1925): The function of the ancillary statistic is analogous to 
providing a true, in place of an approximate, weight for the value of 
the estimate. 

Efron and Hinkley find that in models with parameter 1J and an ancillary (or 
approximately ancillary) statistic a, one finds that the inverse information gives 
an approximation to the conditional variance of J given a with a relative error of 
T-1 rather as was to be expected T-t. In case the information itself is ancillary 
we can choose that as the conditioning statistic. 

The idea of applying conditioning in regression is of course not new. Bartlett 
(1939) discusses the concept of conditioning, and notices: 

Consider similarly the test of significance of a regression coefficient. 
The orthodox theory is to consider the conditional statistic bl~~ (Xi - x)2, 
where b is our estimate, and ~1 (Xi - x)2 the sum of squares of devi­
ations of the independent variable x. 

The present paper represents an attempt to apply conditioning ideas to the 
regression and cointegration models for non-stationary variables and contains 
very little new. Its contribution, if any, is to reinterpret the now standard limit 
results about mixed Gaussian distributions. We proceed by examples and strive 
for simplicity to illustrate ideas rather than generality to cover all possible cases. 

1 Regression with deterministic regressors 

As a first example we consider simple linear regression. This establishes some 
notation and serves as a reminder of some well known results. We define the 
process 1";;, t = 1, ... , T by the equations 

(1 ) 

where Xt are deterministic regressors, (3 an unrestricted m-dimensional parameter 
and Et are independent I-dimensional Gaussian variables with mean zero and 
variance (j2, which for simplicity is assumed known. It is well known that ordinary 
least squares coincides with maximum likelihood estimation in this case and that 

T ) -1 T ) 
;1- (3 = (~XtX~ (~ XtEt , (2) 

which is Gaussian with mean zero and variance (j2('E,;=1 XtXD-1. The reason that 
we want the distribution of ;1 is that we want to be able to conduct inference, 
that is, test hypotheses about the coefficients of (3. If we want to test a simple 
hypothesis about (3 then the Wald statistic which is equivalent to the likelihood 
ratio test is 
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T 

(J-2 (~ - (3)' L XtX~ (~ - (3) , (3) 
t=1 

which is distributed as X2 (m). A confidence interval or set for (3 is found from 
(3) as 

T 

{(3/(J-2 (~ - (3)' I: XtX~ (~ - (3) ~ c}, 
t=1 

and for a univariate parameter (m = 1) we usually communicate 

1 1 

~ ± 2Var (~) 2 = ~ ± 2& (~r xn -2. 

Thus in this case the distribution of the test statistic and the confidence 
limit is derived directly from the distribution of the estimated parameter. The 
di$tribution theory is standard in the sense that only X2 or F- tables are needed. 

We now give an analysis of the likelihood function: 

) 1 () 1 2 1 -2..{-., (. , 2 logL((3 = --Tlog 21T - -Tlog(J - -(J ~ Yt - (3 Xt) . 
2 2 2 t=1 

We find 

T 

OlogL ((3) /8(3 = (J-2 L (Yt - (3'Xt) x~, 
t=1 

T 

JT ((3) = -821ogL ((3) /8(32 = (J-2 L XtX~. 
t=1 

The negative second derivative is the observed information about (3 in the 
whole sample, which in this case is also the expected information h ((3) = 
E (JT ((3)) since the regressors are deterministic. The Wald test for a simple 
hypothesis about (3 can be calculated in three forms which in the present context 
are identical 

Wvar = (~- (3)' Var (~)-1 (~- (3), 

Wexp = (~- (3)' iT ((3) (~- (3) , 

Wobs = (~ - (3)' JT (~) (~- (3) . 

(4) 

(5) 

(6) 

Here Wvar has the estimated variance of ~ as the normalizing matrix, whereas 
Wexp has the estimated expected information as weight matrix. In Wobs this 
is replaced by the observed information, or Hessian matrix, evaluated at the 
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maximum point of the likelihood function. In the present case all these measures 
are the same because the regressors are non-stochastic and JT ((3) = !y ((3) = 

Var (~) -1. 

The derivations behind these Wald tests is, apart from some regularity con­
ditions, the following. In a statistical problem with the parameter (3 we expand 
the derivative of the log-likelihood function around the maximum likelihood es­
timator ~, see Cox and Hinkley (1974), and find 

(7) 

An expansion of the likelihood function around ~ gives 

Under suitable conditions on the observations one can prove that the normed 
score function T-~ 8logL ((3) /8(3 is asymptotically Gaussian, that T- 1 JT ((3) = 
-T-182logL ((3) /8(32 and its expectation converge to a quantity I ((3), the infor­
mation per. observation, which is also the variance in the asymptotic distribution 
of T-t 8logL ((3) /8(3 as well as the inverse of the asymptotic variance of the max-

imum likelihood estimator Var (~) -1. The relation (7) implies that 

and (8) shows that 

-2log[L((3)/L(~)] ~x2(m). 

The reason for listing these well known results is that as we relax the con­
ditions on the regressors, some of these results are still valid, while others are 
valid asymptotically, and still others are incorrect. Note that it is Wobs that ap­
pears in the expansion of the likelihood ratio test, and that Wexp and W var are 
approximations to Wobs. 

2 Regression with ergodic regressors 

Consider model (1) but assume now that {Xd is an ergodic and stationary se­
quence which is independent of the sequence {Et}. Equation (1) has the inter­
pretation as an expression for the conditional distribution of Yt given X t = Xt 

and the past. The regression estimator can be calculated as before and (2) again 
holds. The exact (marginal) distribution depends on the properties of the se­
quence Xt, but the conditional distribution given {Xd is the same as before: 
For fixed values of the sequence {Xt} the sequence {Yt} is define by the model 
(1) with deterministic regressors Xt = Xt. Thus for fixed values of {Xt} the 
distribution of ~ is Gaussian with conditional mean (3 and conditional variance 
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0-2(''Li=1 X t XD-1. Whatever the distribution of the sequence of regressors we 
thus find that 'the assumption of independence between errors and regressors 
implies that /3 conditionally on the sequence {Xt} is Gaussian with mean (3 
and variance 0-2 (L'f:1 X t XD-1, and hence that the marginal distribution of /3 is 
mixed Gaussian. Note that the conditional distribution of /3 given all the x's 
is the same as the conditional distribution given only the observed information 
0--2~f XtX;' Thus we call ~r XtX; ancillary if it has exactly the property that 
Fisher (1925) suggested. It is easily seen that the asymptotic distribution of 

Tt (/3 - (3) is Gaussian with mean zero and variance given by I ((3rt, where 

1((3) = 0--2 E (XtX;.) = 0--2 P lim T-l Li=1 XtXr 
The Wald statistic derived from the conditional distribution is 

. T 

_2(' )'''' ,(A ) Wobs = 0- (3 - (3 L-XtXt (3 - (3 . 
t=1 

This statistic is not only asymptotically X2 , but the actual distribution is X2 
since if we condition on the sequence {Xt} then the exact conditional Gaussian 
distribution of Yt implies that Wobs is exactly X2 (m) distributed, and since this 
conditional distribution is the same for any value of the conditioning process 
{Xt }, the result also holds unconditionally. 

Another way of writing the distributional result is that for any vector e it 
holds that 

T 

[((LXt X;)-1et tw (/3 - (3)] (9) 
t=1 

is distributed as N (0,0-2 ). This result for e equal to a unit vector, e1 say, gives 
a way of testing the value of a single coefficient, (31, by evaluating the devia­
tion between the estimated value /31and the true value (31, by a measure of its 
variation. 

Note that o-W(L'f:1 X tXn-1e] t is not the standard deviation of /31 but rather 
a consistent estimate of this parameter. It is, however, not really necessary 
with this asymptotic interpretation, since in this case we have that it is the 
exact conditional standard deviation. Thus if we could appea1.to a ."principl~ of 
conditionality" we can make exact inference. . 

The reason that we normalize by W(L;=1 X tXn-1e]t is thus not to achieve 
an asymptotically valid result but because we can exploit the mixed Gaussian 
distribution in this way. A stronger way of saying this is that we make no use of 
the actual distribution of the estimator, but rather of its conditional distribution 
given {Xt} or equivalently Li=l XtX;. Thus in the case of regression with ergodic 
regressors independent of the Gaussian errors we need the conditional distribution 
given the regressors or equivalently the product moments, not the distribution 
of the estimator itself. It is of course very difficult to tell the difference because 
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the implementation of both methods is the same, because of the convergence 
of the estimated variance to its population value. The problem arises in this 
simple model, but becomes important only in the next models we consider. See, 
however, the paper by Efron and Hinkley (1978) for a more careful discussion of 
the interpretation of the information as an approximate ancillary statistic in the 
i.i.d case. 

A likelihood analysis of this model is somewhat more complicated, since we 
need to specify the joint density of {Yt} and {Xt}. The assumption of indepen­
dence between {Xt } and {Et} allows us to calculate the conditional distribution 
of {Yt} given {Xt} by the Gaussian likelihood, and we can then choose any class 
of distributions we want for the distribution of the process {Xt }, as long as the 
process is ergodic. The only other requirement is that the parameter {) in the 
distribution of {Xt} is variation independent of the parameter (3, that is, they 
vary without restrictions in a product space. If this is the case then X t is strongly 
exogenous for (3, see Hendry and Richard (1983) and the whole analysis is as in 
Section 1. That is, we have 

Ly,x ((3, {)) = LYIX ((3) Lx (t?), 

which shows that 

f)[ogLy,x ((3) /8(3 = f)[ogLYI X ((3) /8(3, 

Thus the observed information about (3 is 

T 

JT ((3) = (J"-2 2: XtX;, 
t=l 

and the expected information is 

Thus all calculations can be performed in the conditional distribution pro­
vided we assume Gaussian distribution and variation independence between the 
parameters. 

We can replace the observed information (J"-2 L';=l XtX; in Wobs by the ex­
pected information h ((3) to get WeXP1 but this expectation should then be calcu­
lated in the distribution of Xt. If we estimate it by the natural estimate namely 
JT ((3) then we get Wobs again. One could in principle calculate 

T 

Var (~) = E[Var(~I{Xt})] = (72 E[(2:XtXn-1], 
t=l 
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but again a natural estimator is JT (13f l and W var is then also equal to Wobs. 

Thus the difference between Wobs, W var , Wexp is small and not very important 
asymptotically. 

3 Ancillarity and exogeneity 

At this point it becomes important to remind about the conditionality arguments 
that have been discussed in statistics. In a statistical model given by the densities 
f (z, rJ), rJ t e for the random variable Z we call the statistic t (Z) ancillary if the 
density of Z factorizes into a product of the conditional density given t(Z) and 
the marginal density of t( Z) which does not depend on the parameter: 

f (z, rJ) = g[t (z)Jh[zJt (z), rJ], {) t e. 
That is, the marginal distribution does not depend on the parameter and in 

this sense the observation of t (Z) does not contain any information about the 
parameter {). This is a precise definition and an interpretation which tries to 
capture the meaning of the word ancillary that Fisher alluded to in the above 
quotations. In econometrics we rarely meet this concept because the models 
considered are very complicated. 

Another way of approaching the topic is the notation of S-ancillarity Barndorft'­
Nielsen (1978) or strong exogeneity Hendry and Richard (1983). Let f (z, i.p,..\) , 
(i.p, ..\) t e define a statistical model. The statistic t (Z) is called S-ancillary for 
r (i.p) if 

f (z, i.p,..\) = g[t (z), ..\Jh[zJt (z), i.p], (i.p,..\) t A x B. 

Thus the marginal distribution of t (Z) does contain parameters, but they 
have "nothing to do with" the parameters of interest. Note that a consequence of 
S-ancillarity is that the maximum likelihood estimator for i.p can be derived solely 
from the conditional distribution given t (Z). This is just a consequence of the 
decomposition of the likelihood function. The principle of conditionality, on the 
other hand, asserts that since the distribution of t (Z) contains no information 
about the parameter of interest r (i.p) the variation in the data due to the variation 
of t (Z) is irrelevant for inference concerning r (cp), and hence_ the, e~.timato~ of 
r should be evaluated in the distribution conditional on t (Z);Thus confidence 
intervals for r should be based upon the conditional variance of f given t (Z), 
not the marginal variance of f. 

With this terminology we see that in the situation with ergodic regressors 
independent of the errors tt, the process X t is strongly exogenous or S- ancillary 
and inference can and should be conducted conditionally on the process {Xt }. 

It is an important aspect of strong ancillarity that it requires the correct 
parameterization. That is, sometimes the strong exogeneity is only valid after 
the model has been reparameterized into variation independent parameters, and 
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conversely if t (Z) is strongly exogenous for some parameter T (c.p) in a model with 
parameter (c.p, A) it need not be ifwereparametrize into (c.p, ,) where, = ,(c.p, A). 

4 Regression with non-ergodic regressors 

In the next example we consider equation (1) and let the process {Xt } to be non­
ergodic and independent of the error {Et}. In this case the regression estimator 
again satisfies (2), and the conditional distribution given the sequence {Xt } is 
the same as before. Hence again tests on (3 can be conducted in the conditional 
distribution using the X2 distribution, since {Xt } is strongly exogenous. 

The likelihood formulation in this case is exactly as in section 2 in that the 
model so far only specifies the distribution of {Yt} given {Xt } , If we choose 
as before a class of distributions for {Xt } parameterized by {) which is variation 
independent of (3, then the observed information is as before: 

T 

JT ((3) = (J'-2 L: XtX;, 
t=l 

and the expected information becomes 

The variance of the estimator for (3 is calculated as 

T 

Var (;3) = E[Var (;3I{Xt })J = (J'2E[(L:Xt XD- 1J. 
t=l 

We investigate the Wald test statistics (4), (5) and (6) in order to see how 
they are related in the non-ergodic case. Consider for simplicity that X t is a 
random walk so that the model becomes 

6Xt = E2t, 

where Et, t = 1, .. " T are independent Gaussian in 1 + m dimensions with mean 
zero and variance matrix 

In this case the asymptotics is a bit more tricky. It holds that 

[Tu) 

T- t ~ Et ~ B (u) , 
t=l 
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where B = (B1' B~)' is an 1 + m dimensional Brownian motion such that B1 and 
B2 are independent. It follows, see Phillips and Durlauf (1986), that 

(10) 

T 1 

T-1 E Xtct ~ fa B2 (dB l ) . (11) 

The first result involves an ordinary integral of the continuous Brownian mo­
tion and the second. integral involves a stochastic integral. It is not important to 
understand the exact definition of a stochastic integral for the present presenta­
tion. It suffices to think of it as a limit of the sums 

N 

L B2 (tk) [BI (tk+1) - Bl (tk)], 
k=l 

where 0 < tl < ... < tN < tN+1 = 1 is a fine partition of the unit interval. Thus 
the stochastic integral mimics the definition of the sums on the left hand side of 
(11). 

From the results (10) and (11) we find the asymptotic distribution 

T (~- (3) ~ [fa1 B2 (u) B2 (u)' dU] -1 fal B2 (dB l ). 

This distribution is also mixed Gaussian. The reason for this is that if we con­
dition on B2, then f5 B2 (u) B2 (u)' du is a constant and fo1 B2 (dB l ) is Gaussian 
with mean zero and variance 0'2 f5 B2 (u) B2 (u)' du, since Bl and B2 are inde­
pendent. To see this consider ~f B2 (tk) [B1(tk+1) - B1(tk)] which is Gaussian 
with mean zero and conditional variance ~fB2 (tk) B2 (tk)' 0'2 (tk+1 - tk)' This, 
however, is approximately 0'2 fo1 B2 (u) B2 (u)' duo Hence the limit distribution is 
mixed Gaussian with mixing parameter 0'2 f5 B2 (u) B2 (u)' du . 

The difference between the ergodic case and the non-ergodic case is that in 
the ergodic case the asymptotic distribution is mixed Gaussian with a degenerate 
limiting mixing parameter, whereas in the non-ergodic case of a random walk the 
limit distribution is mixed Gaussian with a non-degenerate mixing-distribution. 
Thus the asymptotic distribution of the estimator is mixed Gaussian and not well 
suited for making inference about /3, see for instance Phillips (1994). The Wald 
statistic Wvar derived from the marginal distribution of ~ is 

The asymptotic distribution of this can be derived by the above results but is 
clearly rather complex. There is, however, also no reason to conduct this test, 
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since we have available the more natural Wald test statistic Wobs derived from 
the likelihood function, for which we can find the limit distribution. 

We find 

Wobs = (J-2 (/3 - (3)' '£;=1 XtX; (/3 - (3) 

(J-2T (/3 - (3)' [T-2 '£;=1 XtX;]T (/3 - (3) 

~ (J-2 fo1 (dB1) B~ [fo1 B2 (u) B2 (u)' du] -1 fo1 B2 (dB1) . 

For given B2 this has the form Z'Var (Z)-l Z, where Z is Gaussian with 
mean zero, and hence distributed as X2 (m). This is not surprising since the exact 
distribution is also X2. Conditionally on ~r XtX; the statistic Wobs is X2 (m) and 
hence also unconditionally. 

Finally we consider 

Wexp = (J-2 (/3 - (3)' E ['£;=1 XtX;] (/3 - (3) 

= tT (T + 1) (J-2 (/3 - (3)' ~ (/3 - (3) . 

Again the limit distribution can be derived but is non-standard and depends 
on nuisance parameters. Note that the asymptotic properties of the three different 
forms of the Wald statistics are entirely different in the non-ergodic case. The 
only manageable one is Wobs, whereas W var and Wexp have very difficult limit 
distributions. 

In the previous cases the very strong assumption about independence between 
the difference Yt - (3' X t and the regressor X t makes the results of limi ted use in 
practice and they are of course only given as an excuse for the discussion of the 
mixed Gaussian distribution. It is known that even in the ergodic case the lack of 
independence implies a bias in the regression estimator, and this carries in some 
sense over to the non-ergodic case, see Phillips (1991). What happens is that 
the limit distribution of the regression estimate becomes rather complicated and 
it is not so obvious how one should modify the regression estimator in order to 
avoid the bad properties, see Phillips and Hansen (1990) and Park (1992). We 
therefore turn to the likelihood method that has the advantage that it almost 
automatically compensates for complications in the dependence structure in the 
model by suggesting a new estimator. 

In the non-ergodic (1(1)) case the observed information JT ((3) grows like T2, 
as does the expected information h ((3), but T-2 JT ((3) does not converge to 
the same limit as T-2 h ((3), but to a stochastic limit. Thus even in the limit 
the observed information about (3 is random. This means that in the classical 
case of inference for stationary processes the information per observation in a 
long series of observations, is roughly the same for every series, whereas for the 
case of inference for non-stationary processes, the information normalized by 
T2 is random even in the limit. This shows that there are sample paths or 
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series of realized values that sometimes contain very little information about 
the parameter.' We can see why. A random walk usually exhibits a trending 
behavior which shows that the information, as measured by the cumulated sum 
of squares, is very large, but clearly a random walk can by accident in a given 
sample :fluctuate around the value zero, in which case the information never 
builds up. Thus we should be aware that for some realizations there is little 
information about f3 in the sample, whereas for others there is a lot of variation. 
This is reflected in the choice of Wobs based upon the observed information, where 
deviations of /3 from f3 are measured by the cumulated information in the actual 
sample rather than by the expected information. 

It is therefore argued that for non-stationary variables the proper choice of 
Wald statistic is not the usual Wvar based on a measure of the variance of the 
estimator, but rather Wobs which takes into account the actual information in 
the sample that one has obtained. Another way of saying this is that the ~sual 
approximation that leads from Wobs to W var is not valid for non-ergodic processes. 
A consequence is that for the univariate case (m = 1) a confidence set is not given 

1 

by /3 ± 2Var (/3) 2" which would correspond to choosing Wvar as the test statistic, 
A 1 

but rather to f3 ± 2JT (f3t2" corresponding to Wobs as the test statistic. 
The conditions for applying the likelihood methods is that one needs to specify 

a full model for all the variables in the model and we thus have to be more precise 
in the formulation and checking of the model. A class of models that have proved 
useful in the analysis of macro data is the class of vector autoregressive models 
and the next two examples will deal with such models and investigate to what 
extent the problem of correlation between error and regressor can be formulated 
and solved within this framework. 

5 Non-ergodic regressors which are correlated with the 
error 

The first example of the type of problem that can be solved by analyzing the 
likelihood function and which leads to a modified estimator is 

. (12) 

(13) 

We assume that Et = (Elt, E~t)' are independent 1 + m-dimensional Gaussian 
with mean zero and variance 

( (/2 WII:) 
I:w I: . 

Note that correlation between Elt and E2t implies a correlation between the 
regressor X t and the error Elt. The parameters are (f3,w, I:) which vary freely. 
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This model was discussed in detail by Phillips (1991) and is useful as an example 
of the problems that can arise. A property of (13) is that X t is a random walk and 
(12) then shows that Yt is non-stationary even though the combination Yt - f3'Xt 
is stationary. This is an instance of cointegration between Yt and Xt, which are 
called integrated processes, see Engle and Granger (1987). The expectation of Yt 
given X t and the past is given by 

E (YtIXt,past) = f3'Xt + w'..6..Xt. 

Thus we can replace equation (12) by the regression equation 

(14) 

where E1.2t = Elt - WE2t is independent of E2t and has variance (}r.2 = (}2 - Wf~W. 

It is seen that a regression of Yt on Xt and ..6..Xt will yield consistent estimates of 
13 and w. Since the distribution of X t only depends on ~, all information about 
13 has been extracted by the above regression which also gives the maximum 
likelihood estimator. Thus the modification given by an analysis of the model, 
that is, the maximum likelihood estimator, is to include ..6..Xt in the regression. 
Note that {Xt } is still strongly exogenous if we reparametrize the model by 
(13, w, (}i.2) and~. This serves as a justification for conditioning on the process 
{Xd when making inference about 13. Due to the strong exogeneity we can 
condition on the process {Xt} and then (14) just expresses a regression equation 
for Yt which shows that the distribution of ~ is Gaussian if we condition on {Xt}. 
Thus the conditional Gaussian distribution that we meet here is again a result 
of a structure whereby ~ is Gaussian conditionally on the strongly exogenous or 
S-ancillary statistic {Xt}. It is not enough here to condition on Sxx, but we need 
also SD..D.. and SxD.. corresponding to the information in the conditional model. 
Note that the information in the conditional experiment depends only on the 
conditioning variable, and that the information is therefore deterministic in the 
conditional distribution rather than stochastic. 

The distribution of the estimators follows from the relation 

which gives 

Here T-1 Sxx = T-2~r XtX; ~ Jo1 B2 (u) B2 (u)' du, and SxD.. = T-1 ~r X t..6..X; 
and S D..D.. = T-1 ~r ..6..Xt..6..X; are of the order of magnitude of a constant, whereas 
S D..Q.2 = T-1 ~r ..6..XtE1.2t tends to zero, since ..6..Xt = E2t is independent of El.2t· 

Finally SX£1.2 ~ J~ B2 (dB1.2). Thus we find that 
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(15) 

~ [la1 B2(U)Bdu)'du]~llal B2(u)(dB1.2). 

Here B = (Bl' B~)' is a Brownian motion generated by ft and B1.2 = Bl -wB2 
with variance O'i,2 = 0'2 - w'2::w is independent of B2. We note that again the 
limi t distribution is mixed Gaussian, because of the independence of the Brownian 
motions B2 and B1.2. 

As a comparison consider what would happen if the regression is carried out 
in equation (12) without taking into account the correlation between the 'errors. 

We would then find 

f30ls = S;;; Sxy, 

which is different from /J, and that 

where B1 is generated from fIt. Now in general Bl and B2 are dependent and 
hence the expectation of the limit distribution given B2 is different from zero. 
This implies that the natural Wald statistic given by 

T 

W = 0'-2 (f3ols - 13) L XtX; (f3ols - 13) , 
t=l 

will not follow a X2 distribution but a mixed non-central X2 distribution. 
What has been achieved by the analysis of the model, rather than the straight 

forward regression, is that the estimator is modified so that the limit distribution 
of the estimator is mixed Gaussian and hence usual X2 inference is possible. 

Above we have analyzed the model by finding the conditional expectation and 
variance of It given X t and LiXt'in order to split up the likelihood function. A 
direct analysis of the likelihood function would yield 

logL (13, w, 2::) = -!T log O'i.2 - !Tlog 12::1 
-! L-;=1 (It - f3Xt - wLiXt)2 o'1.~ -! L-;=1 ~Xi2::-1~Xt 

where O'L = 0'2 - w'2::w with derivatives 

OlogL (13, w) /813 = L-;=1 (It - 13' Xt - w'LiXt) X: o'1.~ , 
OlogL (13, w) /8w = L-;=dIt - f3'Xt - w' ~Xt) ~X:o'1.~ , 
-82IogL(f3,w)/8f32 =L-;=lXtX:O'1.~, 
-82logL (13, w) /8w2 = L-'{=lLiXtLiX:O'1.~, 
-82logL (13, w) /8f38w = L-;=1 XtLiX:O'1.~. 
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Thus if O"~~ and L; were known 

and the information in the likelihood profile or the "marginal" information about 
{3 is 

JT ({3) = T (Sxx - SXC1S~~SC1x) O"~~ = TSxx.C1O"~~. 
We can then interpret the result (14) as saying that 

(16) 

Hence even in the non-ergodic case the information matrix is the proper nor­
malization of the deviation between ~ and {3. A similar formulation of the limit 
result can also be found in Kramer (1986), even though the general framework 
there does not allow the calculation of information matrices. Note that JT ({3t1 

is not an estimator of Var (~). It is the conditional variance of ~ given the 
strongly exogenous variables or equivalently the information in the sample, and 
in fact (16) is an exact rather than a limit result since {It} given {Xt} is Gaussian. 
The Wald statistic Wobs is calculated as 

Wobs = TO"~~ (~- (3)' Sxx.C1 (~- (3) 

which by (15) converges to 

O"~~ 11 (dB1.2) B~ [11 B2( U )B~( u )du] -1 11 B2 (dB1.2)' 

which by the conditioning argument is X2 distributed, since B2 and B1.2 are 
independent. Again (16) is exactly X2 since it can be interpreted a the Wald 
statistic in the conditional model for {It} given {Xt }. 

We see that the Wald statistic given by Wobs is the statistic that makes in­
ference easy, in the sense that we can apply the usual X2 tables, whereas Wvar 

and Wexp which are interpreted without appeal to the conditionality argument 
are difficult to handle. 

6 The cointegration mo del 

As the final example we consider the simple cointegration model for a p = (1 +m) 
-dimensional process Zt = (It, XD' 

(17) 

where again El, ... , ET are independent Nm+1 (0, D) and the (a, (3) are parameters. 
We assume for simplicity that D is known and that there is only one cointegrating 
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relation. If we solve for yt, that is, let j3' = (1, - B') then the cointegrating relation 
IS 

(18) 

where Ut is a stationary process with properties derived from the above equations, 
that is 

00 

Ut = L (1 + j3'a)i j3'ft-i, (19) 
i=O 

provided as will be assumed /1 + j3'a/ < 1. Thus if we consider (18) as a regression 
equation the regressor is correlated with the error Ut-

The likelihood analysis of the model leads to a reduced rank regression as first 
derived by Anderson (1951). This procedure is treated in detail by many authors, 
see Johansen (1988), Ahn and Reinsel (1988), Reinsel and Ahn (1990) and will 
not be reported here. Instead we discuss the likelihood equations and indicate 
how the limit distribution for ~ can be derived from the likelihood equations. 

We find the derivative with respect to j3 to be 

T 

810gL (a, (3) /aj3 = a'n-1 L (~Zt - aj3' Zt-l) Z:_l 
t=l 

which shows that the maximum likelihood estimator satisfies 

T 

&'n-1 2: (~Zt - &~' Zt-1) Z:_1 = o. 
t=1 

Inserting the expression for ~Zt from the equations (17) we find the relation 

T 

&'0-1 2:[(aj3' - &~')Zt-l + ftJZ:_1 = o. (20) 
t=l 

The above model only identifies a and j3 up to a constant factor. Any choice 
of maximum likelihood estimator ~ can be decomposed as 

~ = j3b + a1-C, 

with b = (at (3)-la' ~ so that we define a normalized maximum likelihood estimator 

~ A -1 -1 
j3 = j3b = a1-cb . 

with the property that 
~ - j3 E sp( a1-). 

The proper normalization of ~ - j3 is by T and not Tt as is usually the case, and 
if we let 
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then ET converges weakly. We shall find the limit distribution of ET and hence 
that of 13 and from this the distribution of /:J for any other normalization. 

The estimator Ci = &/:Jla (f3la )-l is also consistent and Ci = a+T-tAT where 
AT is weakly convergent. Hence we find that 

af3' - Ci13' = - (Ci - a) 13' - a(13 - 13)' - (Ci - a) (13 - 13)', 

which inserted into (20) gives 

-tn-lT-1 "T zt ( ,(")-1 )E' (T- 2"T 'z Z' ) + 0 (T-!.) a a L.Jt=l ft t-l a.L = a HaT L.Jt=l a.L t-l t-l a.L P 2. 

From Granger's representation theorem we find 

so that 

t T-!'Z 'T-!.,,[Tu] + 0 (T_l) w 'W() F() a.L 2 [Tu] = a.L 2 L.Jt=l fi P 2 -7 a.L U = U, 

and 
In-lT-!.,,[Tu] . w ,n-lw() - G( ) a ~ G 2 L.Jt=l f, -7 a ~ G U - U, 

say. This implies that in the limit we have 

and 

a'n-lT-l~r=l ftZ;_l a.L ~ a'n-l 10\ dW)W' a.L = 10\ dG)F', 

and hence 

This shows that the limit distribution is constructed as a mixed Gaussian 
distribution with the permanent shocks F( u) = a~ W( u) as mixing distribution, 
and the transitory shocks G( u) = a'n-l W( u) describing the stochastic variation 
in the conditional limit distribution. 

The information is found from 

T 

JT (13) = -fPlogL (a, 13) / fJf32 = a'n-la L Zt-lZ;_l E Op (T2) , 
t=l 

whereas it is seen that 
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, T 

JT (a) = -821ogL (a, (3) /8a2 = n-1 (3' ~ Zt-1Z;_1(3 E Op (T) , 
t=l 

JT ((3, a) = -821ogL (a, (3) /8(38a E Op (T). 

This shows that the marginal information about (3, which can be derived from 
the concentrated likelihood function, is given by 

JT ((3) - JT ((3, a) JT (a)-l JT (a, (3) 

T 

~ JT ((3) = a'n-1a L Zt-1 Z;_1' 
t=l 

Thus the Wald statistic Wobs which appears as an approximation to the like­
lihood ratio test is approximately equal to 

T 

Wobs ~ (/3 - (3)' L Zt-1 Z;_1 (/3 - (3) (a'n-1 a) . 
t=l 

By (21) we find that 

Wobs ~ 101 (dG)F'[101 F(u)F(u)'dut1 101 F(dG)'(a'n-1a)-1 (22) 

For fixed F( u) = a~ W( u) this is just a X2( m) distributed since G( u) = 
a'n-1 W( u) is independent of F( u), hence also unconditionally the limit of Wobs is 
x2(m). Thus inference in the cointegration model concerning (3 involves the same 
conditioning argument as in the regression model with non-ergodic regressors. 

Note that T-2 JT ((3) ~ a'n-1aT-2~i Zt-1Z;-1 is convergent and that 

T- 2 EJT ((3) ~ (a'n-1a)T-2 E (~f Zt-1 Z;_1) 

is convergent but not to the same value. The first converges to a random variable 
and the second to a constant. Note also that the asymptotic variance of /3 is not 
given by the inverse limit of T-2 EJT ((3), the normalizedexpeded ,information. 
Thus again we find that in the non-ergodic case it holds thatWobs, Wvar and 
Wexp behave rather differently. 

This has implication for the simulation studies that are performed to study 
the small sample behavior of the estimator for (3, see Bewley, Orden, Yang and 
Fisher (1993). In a given simulated set of data generated form equations (17) 
and (20) one should calculate /3 and /3 - (3 but also the information in the sample 
given by "LT=l Zt-1ZL1' Some samples will have a lot of information about (3 
and others very little, thus a histogram of the calculated /3 values will be a 
histogram of many stochastic quantities with a varying precision. This aspect 
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is lost if one calculates say 13 = N-1 L~l /3i and N-1 L~l (/3i - 13) (/3i - 13)' on 

the basis of many simulated values /31, ... , /3N' Instead if one is interested in a 
linear combination e (3 one should calculate the quantities 

T 

[t(i: Zt-1 Z;_lt1tt te (/3i - (3) , 
t=l 

which will be asymptotically Gaussian. 
It is seen that again the conditioning argument in the limit distribution in­

volves conditioning on the (continuous analogue) ofthe common trends a~ I:!=l Ci. 
This can be interpreted by saying that inference on the variation around the 

attractor set sp((3.d as measured by (3' Zt should be conducted conditionally on 
the common trends that move the process along the attractor set. 

It is the purpose of this paper to investigate to what extent this idea can be 
made precise in the cointegration model using the notion of strong exogeneity. 

One possible solution to the problem is to consider a different model where a 
is known, then only (3 is unknown and the equations take the form 

Ci' ~Zt = (3' Zt-l + Ci' Et, 

a~ ~Zt = a~ Et. 

We see that now a~ ~Zt = a~ Et or a~ I:J=l Ei is strongly exogenous and that 
(3 can be determined by regression of Ci' ~Zt on Zt-1 and a~ ~Zt like in Section 
2. 

If a is unknown such a precise result does not hold. Instead we shall make 
the following approximate argument which also works in the general cointegration 
model 

~Zt = a(3' Zt-1 + I:7::-1 ri~Zt-i + Et· 

We let f20'0' = a'f2a and let w = a'f2a.L(a~f2a.d-\and f20'0'.0'.L = a'f2a­
a'f2a.L (a~ f2a.L)-la~ f2a. We denote Rot and Rlt the residuals after regressing 
~Zt and Zt-1 on Ut = (~Zt-l' ... , ~Zt-k+1)' The residuals satisfy 

Rot = &/3' Rlt + Et, 

so that 
A' R A/ A 
a.L ot = a.L Et. 

Theorem 1 In the general cointegration model the process &~ I:!=l ROi is approx­
imately strongly exogenous in the sense that 

1. 
T -1. A' ,,[TU)R T-1., ,,[Tu) P 0 

2 a.L ui=l Oi - 2 a.L ui=l Ei -+ . 

2. The distribution of T-t a~ I:~~~)Ei depends only on f2O'LO'.L· 
3. The distribution of {Zt} depends on the parameters (a, (3, r 1, ... , rk-I, w, f2O'O'.O'L) 

which vary independently of the marginal variance a~ f2a.L. 
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Proof: Let 'It = (LlZ:_l' ... , LlZ:_k+l)' then 

Rot = LlZt - ~'{=lLlZtU:[~'{=lUtUn-lUt 

and 

T - 1 AI ~[TulR _ T- 1 AI ~[TulA 
2a.1~t=1 Ot - 2a.1~t=1 Et 

_ AI (T_l~[Tul _ [T-l~T U'][T-l~T U U']-lT-l~[Tulu - a.1 2 ~t=l Et ~t=l Et t ~t=l t t 2 ~t=l t 

Now &.1 ~ a.1 and T-t~~:~lUt and T-1 ~r=l UtUf are bounded in probability, 

whereas T-l ~r=l EtU; ~ 0, so that the first statement is proved. 

The distribution of T-1 ~~:~lEt depends only on the covariance as indicated, 
and the conditional distribution has the parameters as described. Finally it is 
a well known result that for the Gaussian distribution the marginal variance is 
variation independent of the regression coefficient and the conditional variance. 

This result is not terribly satisfactory since the relation between weak con­
vergence and conditioning is not so clear. The result indicates that one can 
consider the common trends approximately weakly exogenous for inference on 
the cointegrating relations. 

This means that the conditioning argument made in the asymptotic distribu­
tion in order to prove the asymptotic X2 distribution of Wobs can in some sense be 
considered a consequence of strong exogeneity or S-ancillarity. Note that asymp­
totically we only need condition on the variable a~ f5 W(u)W(u),dua.1 which is 
the weak limit of the stochastic part of the information concerning f3. 

Thus in the asymptotic sense described above we can say that inference con­
cerning f3 should be conditional on the available information on f3 which is mea­
sured by the cumulated variation of the common trends. 

7 Conclusion 

By a few examples we have illustrated some results from inference for ergodic 
and non-ergodic processes. It is argued that the classical result that the inverse 
information measures the variance of the maximum likelihood.esti;D1,~tor is .not 
the correct formulation in the non-ergodic case. What holds heteis that the infor­
mation measures the conditional variance of the maximum likelihood estimator 
given the available information in the sample. Thus it is argued that an analysis 
of the likelihood function suggests that the information should be considered an 
ancillary quantity in the sense of Fisher (1934). Hence inference should be con­
ducted conditional on the information. Thus the proper basis for inference on f3 
is not the distribution of the estimator but the conditional distribution given the 
information. 
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