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Some Paradoxes Related to Sequential Situations 

Summary. A classical "paradox" in statistical inference concerns a sit
uation where a measurement of a quantity (a physical constant, say) is 
performed by an instrument selected at random among two - an ex
tremely accurate intrument and an extremely inaccurate one. Orthodox 
Neyman-Pearson theory fails in this case, and the example is a stan
dard argument for conditioning on ancillary statistics whenever this is 
possible. 

More complex sequential situations of this kind are discussed. Several 
measurements are performed, and the accuracy of each measurement is 
a function of previous measurements. It is argued that such situations 
should be handled by ignorance of their sequential nature. One such 
situation is equivalent to a simplyfied version of a problem from econo
metrics, that of testing autoregression coefficient = 1 in an AR( 1) process 
with mean 0; here the "non-sequential" approach represents a technical 
simplification, when compared with existing methods. However, if the 
"principle of ignoring the sequential sampling plan" is followed strictly, 
other wellknown "paradoxes" appear. 
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o. Introduction. 

The following is a slightly modified version of an example due to Cox 
(1958). 

SITUATION NO. 1 

A measurement of an unknown quantity f-l is performed with one of two 
instruments) a very inaccurate instrument with (normal) error variance 
1) and a very accurate one with (normal) error variance 1/1000. The 
instrument to be used is selected at random by a coin-toss. 

This example has become widely known because it illustrates so very 
clearly how orthodox Neyman-Pearson theory breaks down if it is used 
blindly. It would be an exaggeration to call this a paradox, since there 
is essentially no disagreement today about how to handle a situation 
like this. Clearly, as anyone who is not a theoretical statistician can 
see immediately, the circumstance that we might have used another in
strument is entirely irrelevant for our conclusions from the measurement 
that we actually performed. The example is often cited as a standard 
argument for the principle that one should condition on an ancillary 
statistic whenever such is present. 

It is well known how this conditionality principle, together with a princi
ple of similar intuitive appeal, the sufficiency principle, can be shown to 
imply the so called strong likelihood principle (see Birnbaum 1962) which 
in the present context can be expressed as follows: If two experiments 
for determination of an unknown quantity result in the same likelihood 
function, then the conclusions from these two experiments should be 
identical. 

Unfortunately, this principle questions most of the activities in which 
theoretical and applied statisticians are involved. Only purely Bayesian 
methods are consistent with the strong likelihood principle, and since 
these methods have a tendency to question themselves by their depen
dence of a prior distribution, "the statistical science really has a problem 
here. The philosophical justification of what we are actually doi.J?-g is s~ 
week and self-contradictory, that one would probably tend to give up 
the whole idea, if it wasn't for the fact that statistical methods are so 
unavoidable and very useful in practice. 

The purpose of the present paper is not to review the long discussion 
of the many obvious principles one can set up for statististical inference 
and their tendency to contradict each other. This has been done by 
many other authors, and we would like in particular to draw attention 
to the rather complete review by Berger and Wolpert (1984). Our aim is 
more modest. We shall indicate - without much discussion of abstract 
principles - how some of these "paradoxes" come up in a class of simple 
sequential measurement settings, where the interpretation of a given 
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situation as "sequential" sometimes is made impossible because it forces 
us to do absurd things in conflict with common sense. Furthermore, 
we shall show how one such situation comes up in a (simplified version 
of a) problem from econometrics, where the presence of the "paradox" 
questions the relevance of existing methods. 

By making inconsistencies visible, not only in imagined situations but 
also in statistical practice, we hope to contribute to the general con
fusion, which we assume to be the necessary driving force behind the 
thought-breaking ideas that someone is hopefully going to put forward 
sooner or later. 

1. A simple sequential experiment. 

We proceed with an example which is merely Cox's example once more 
in a sequential dress. 

SITUATION NO. 2 (a sequential version of Cox's example) 

A measurement of an unknown quantity f-l is performed with error vari
ance 1. A coin is flipped. If head comes up) 999 additional measurements 
are performed) otherwise no further measurements are taken. 

(Remark: Here and in the following, "measurements" are subsumed to 
be normally distributed). 

Clearly, this is essentially our first situation. The equivalence becomes 
even more clear if the coin-tossing is assumed to be done before the first 
observation, so that we are merely selecting the number of observations 
to be taken at random, by external randomization. However, this appar
ently innocent change of the order in which things are done is a crucial 
point in the examples to follow. 

In our next scenario, again we perform a number of measurements of 
a quantity f-l with variance 1. But the coin-tossing of situation 2 is 
replaced with a decision based on the first measurement. 

SITUATION NO. 3 (simple sequential scheme) 

A measurement Yi of an unknown quantity f-l is perfor~ed with error 
variance 1. If Yi is less than a (pre-determined) constant c) 999 addi
tional measurements are performed) otherwise no further measurements 
are taken. 

This is a proper sequential situtation, and things are less transparent 
here. However, it is possible to argue that an experiment like this should 
also - once it is performed - be interpreted as if the number of mea
surements (here 1 or 1000) had been decided in advance. One of the 
more convincing arguments goes as follows. Consider 
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SITUATION NO. 4 

We intend to do as follows. A coin is flipped. If head comes up; we 
simply perform 1000 measurements. If tail comes up; we follow the 
scheme of situation 3. 

However; since we cannot find a coin right away; we decide to perform 
the first measurement (which is to be done anyway); while somebody else 
is taking care of the search for a coin. This results in a value Y1 < c. A 
coin is still not available) but since the next 999 measurements are to be 
performed anyway; we proceed with these. 

Having performed the 1 +999 = 1000 measurements; we proceed with the 
final task; which is to find a coin and flip it. 

This situation is, of course, absurd. No person with his or her common 
sense in behold could possibly be persuaded to regard the final coin
tossing as an important or informative matter. The problem is that 
the coin is supposed to tell us how to interpret our 1000 measurements. 
If we are not willing to flip the coin, we are forced to admit that the 
outcome of this is irrelevant, hence that the distinction between the two 
interpretations of our 1000 measurements is irrelevant. 

It should be noticed, that situation 3 is a simplified version of situations 
that are not at all artificial or irrelevant. In medical trials, for example, 
the idea of a small pilot study before the big mashinery is turned on, 
is a commonly accepted idea. Also situations like situation 4 could 
occur in practice. Suppose we know that a research fund will certainly 
support the long and expensive part of the study if the pilot investigation 
indicates a positive result, whereas other funds mayor may not be willing 
to support the entire study without asking for a pilot investigation; then, 
impatience can easily force us into a situation similar to situation 4. 

2. A general sequential scheme. 

Situation 3 is a special case of a more general situation, which we may 
explain in terms of an "instrument manager". The instrument man
ager is the person who decides for us which instrument to use next and 
when to stop the sequence of measurements. The decisions of the instru
ment manager may be based on our previous measurements, and also, 
if desired, on external randomization (but not on knowledge about p" 

of course; assume that the instrument manager knows no more about p, 
than we do). We can formalize this situation as follows ( disregarding the 
possibility of external randomization, which is not an important point). 
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SITUATION NO. 5 (general sequential scheme) 

A sequence' 

Yi EN (p, (Ji) 
Y2 EN (p, (Ji(Yi)) 
13 EN (p, (J; (Yi, 1'2)) 

of measurements are performed. The variance of each measurement is 
a (known) function of previous measurements, and the normal distribu
tions specified are conditional on previous observations. The number of 
observations n is a stopping time. 

The last condition can formally be build into the functions d, (Ji, 
by the assumption that we have (Jt = +00 from a certain stage with 
probability 1. However, if this seems too complicated, it suffices to 
think of the case where n is fixed. 

Again, we can argue that inference from this experiment should be per
formed exactly as if the variances (Jr, (J~, . .. and the number of obser
vations n were known in advance. An argument similar to our argument 
for the same principle in the special case of situation 3 goes as follows. 
Consider the following situation. 

SITUATION NO. 6 

A coin is flipped. If head comes up, we perform ten measurements with 
pre-determined instruments of error variances (Jr, ... , (Jro' If tail comes 
up, we proceed as in situation 5, fo'llowing the scheme of the instrument 
manager. 

However, a coin is not available right away. We ask the instrument 
manager what his first choice would be (just in case); Most surpr.isingly, 
he claims that his first choice would be the instrument with error variance 
(Jr. We persuade him ~ since a meaurement with that instrument is to 
be performed in any case - to let us perform that measurement, while 
others are trying to find a coin. 

After the observation of Yi a coin is still not available. We ask the 
instrument manager what his next choice would be. Most surprisingly 

. .. and so on and on and on until . .. 

we observe YiD, and the instrument manager claims that this zs where 
he would like to say stop. 
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Finally; a coin is found and flipped. 

Again, we find ourselves in the totally absurd situation of being forced 
to let a coin decide for us how to interpret our ten measurements. While 
others are continuing the search for a coin, we might even proceed with 
two parallel statistical analyses and the writing of two final reports, being 
willing, of course, to drop the irrelevant one in the paper basket when the 
coin has told us which one it is. No reasonable person can be expected 
to believe that this kind of behaviour has any relevance in the scientific 
world. Suppose we are measuring the velocity of light or the mass of a 
new nuclear particle, what could a coin possibly know about that? We 
are forced to accept, that the final coin toss is irrelevant. Hence, we 
are forced to accept that our final analysis of the measurements must 
be independent of the coin toss. Hence we are forced to admit, that 
the sequence of measurements may as well be interpreted as if head had 
come up, i.e. as if the ten instruments had been selected in advance. 

It is well known that this attitude creates other problems. This will be 
recalled briefly in section 4. However, let us first take a look at one of 
the consequences of this "principle". 

3. Testing autoregression coefficient = 1 in the AR(l). 

Consider the following problem, which is a simplified version of a pro
blem studied intensively by econometricians in the context of "cointe
gration", see e.g. Johansen (1991). 

Let (Xo, Xl ... Xn) be an autoregressive process of order 1 with mean 0 
and known prediction error variance 17 2 . By this we mean the following. 
Xo = Xo can be regarded as fixed, since we are going to condition on it 
anyway. For convenience, we assume Xo -=I O. Xl, ... ,Xn are generated 
recursively as 

where the "normalized prediction errors" UI , ... , Un are i.i.d. N(O,l). 
Our concern is estimation of a and, in particular, test of the hypothesis 
a=1. 

It is easy to transform this to a special case of situation 5. If we de
fine Yi = X;f Xi-I, we have (conditionally on previous observations 
Xl, ... ,Xi-I) 

Yi E N (a, ;: ). 
z-l 

Thus, we can think of each Yi as a measurement of a with a variance 
(J"2/Xf-1 = (J"2/(XoYIY2 ... Yi_I)2 which is a function of the previous 
observations. Following the principle that these variances should be 
regarded as predetermined, we obtain (by weighted averaging of our 
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measurements with their inverse variances as weights) the estimate 

X5Yi + XiY2 + ... + X~_1 Yn 
a= 

X5 +Xi + ... +X~_1 
XOXl + X 1X 2 + ... + X n- 1X n 

X5 +Xi + ... +X~_1 

(which is just the ordinary least squares estimate of a, obtained by 
regression of the variate Xl, ... ,Xn on its first lag X o, ... ,Xn-d. For
mally, the variance of this estimate is obtained by the rule for addition 
of precisions, 

( 2) -1 (2 )-1 
var(&)-1 = ;5 + ... + X~_1 ' 

l.e. 
(52 

var(&) = X 2 +X2 + ... +X2 
o 1 n-l 

and a test for a = 1 can be based on the statistic 

&-1 
U = ~===;==;= 

.Jvar(&) 

which is N(O, 1) under the hypothesis. 

However, this is not the way things are usually done. First of all, in 
a real example (52 would usually be unknown, and the autoregression 
equation would probably contain (at least) a constant term. The extra 
parameter (52 can be dealt with. In fact, we could have assumed in all 
our examples that variances were known only up to a common scale 
factor, that would not have made much difference. A constant term 
(and, perhaps, terms corresponding to periodic trends or covariates) 
can also be dealt with, though it makes things more complicated. The 
important difference comes from the fact that the sample distribution 
of U above, even under our assumptions (i.e. (52 known, no additional 
terms), is not a normalized normal distribution when a = 1, not even 
in the limit as n -7 00. This is so because the random walk behaviour 
of the AR(l) for a = 1 implies a random behaviour of the denominator 
in the expression for & which is not compensated by the law of large 
numbers. In the sequential measurement setting, we can explain this 
random variation as a variation of the total information ( = the sum of 
the inverse variances), and our interpretation of the variances as pre
determined implies a sort of "conditioning on the information". But this 
is not a conditioning in the usual sense of this word, since that would 
involve (more or less) a conditioning on the observations themselves. 
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4. Discussion. 

Conceptually, this kind of "conditioning" , or whatever it is, is wellknown 
in time series analysis. The interpretation of a lagged variable as fixed 
when it occurs on the right hand side of a regression equation, even 
though it occurs as the random response on the left side of the equation 
just above, is an example. A similar idea is known from survival anal
ysis (cfr. Vovk 1993) where the formation of Cox's likelihood involves 
a similar recursive conditioning on previous events, including previous 
responses. 

It is tempting to conclude from all this, that econometricians are making 
life unnecessarily difficult for themselves when they focus on the com
plicated sample distribution of the test statistic for a = 1. However, it 
must not be forgotten that the idea of analysing any sequential experi
ment by non-sequential methods has its own traps or "paradoxes". The 
standard warning goes something like this. Consider 

SITUATION NO. 7 I.i.d. measurements Y1 , Y2 ,··· E N(f.-l, 1) are taken 
until[? - f.-lo [ X Vn ~ 3) where f.-lo is a (pre-determined) constant. 

Thus, we are sampling until the usual estimate of f.-l is at least three 
standard deviations from f.-lo. This happens sooner or later with proba
bility 1, even for f.-l = f.-lo. But regardless of whether f.-l = f.-lo or not, the 
standard (non-sequential) test for f.-l = f.-lo results in a highly significant 
rejection ([U[ ~ 3) with probability 1. 

The conclusions are left to the reader. 
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