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What did Fisher mean by 'inverse 
probability' in 1912-1922? 

A.W.F.Edwards* 

1 Introduction 

In his 1992 paper On the Mathematical Foundations of Theoretical Statistics 
Fisher made a rather puzzling remark: 

I must indeed plead guilty in my original statement of the Method 
of Maximum Likelihood (1912) to having based my argument upon 
the principle of inverse probability; in the same paper, it is true, I 
emphasised the fact that such inverse probabilities were relative only. 

The remark is puzzling because in the 1912 paper Fisher is entirely clear that 
the entity he is maximising (not yet called the likelihood) "is a relative probability 
only, suitable to compare point with point, but incapable of being interpreted as 
a probability distribution over a region, or of giving any estimate of absolute 
probability". Moreover, contrary to his assertion in 1922, the 1912 paper does 
not contain any argument as such, but merely the magisterial statement (after 
dismissing least squares and the method of moments) "But we may solve the 
real problem directly", followed a few lines later by the assertion that "The most 
pro bable set of values for the [parameters] will make [the likelihood] a maximum" . 
(In the original the corresponding mathematical symbols were employed rather 
than the words in square brackets, but it will sometimes be convenient in this 
account to use Fisher's later terminology anachronisticly.) 

G.A. Barnard has suggested to me that Fisher's comments about relative 
probability in his 1912 paper might have been something of an afterthought; 
they are indeed confined to the sixth and last section of the paper. By contrast, 
the phrase "inverse probability system" is used in section 5 to describe the graph 
of the likelihood function for the mean m and dispersion parameter h of a Normal 
distribution (in modern notation, h = t(2). Fisher says that a Mr. T.L. Bennett, 
in a printed technical lecture, has integrated out m in order to derive a function 
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of h to maximise for variation in h alone. But "We shall see (in §6) that the 
integration with respect to m is illegitimate and has no definite meaning with 
respect to inverse probability", a comment which might have been added at the 
time he drafted the additional section 6. The interpretation is an attractive 
one, the more so because it explains the wording of the last sentence of all: "In 
conclusion I should like to acknowledge the great kindness of Mr. J.F.M. Stratton 
[sic; F.J.M. Stratton], to whose criticism and encouragement the present form of 
this note is due" [my italics]. 

The literal conclusion from Fisher's two uses of the phrase "inverse probabil
ity" in 1912 is that he meant by it what he later called the likelihood, because 
(1) it was analytically equal to the likelihood, an (2) it could not be integrated. 
But "the principle of inverse probability" is not mentioned. 

I only know of two published comments on the 1922 remark. Nearly twenty 
years ago (Edwards, 197 4a) I interpreted it as an admission by Fisher that he 
"was using the phrase "inverse probability" incorrectly", whilst in his recent in
troduction to the 1922 paper Geisser (1992) says that in 1912 "[Fisher] had taken 
a Bayesian approach because the maximising procedure resembled the calculation 
of the mode of a posterior probability". I believe both of these comments are 
wide off the mark, mine because it does not reflect what Fisher actually wrote, 
and Geisser's because it does not mention Fisher's clear understanding in 1912 
that the probabilistic entity he was maximising was not an ordinary probability 
but a kind of "relative" one which did not obey the traditional law. The problem 
evidently needs looking at afresh, and in the present paper I shall try to examine 
exactly what Fisher meant by "inverse probability" in his youth. I should men
tion in passing that Zabell (1989), in his very informative paper "R.A. Fisher on 
the history of inverse probability", notes that 1922 remark, but simply takes it 
at its face value (R.L. Plackett, in his comment appended to Zabell's paper, says 
"Zabell passes quickly over Fisher's statement in 1912 that his absolute criterion, 
known later as the method of maximum likelihood, is derived from the principle 
of inverse probability"). 

There is a famous remark of Fisher's from 1936 about "the theory of inverse 
probability", that "1 may myself say that I learned it at school as an integral part 
of the subject, and for some years saw no reason to question its validity". Alas, 
we do not know how long" some years" were, though another historical remark 
two years later (published as a note to Jeffreys, 1938) gives a clue: 

From a purely historical standpoint it is worth noting that the ideas 
and nomenclature for which I am responsible were developed only 
after I had innured myself to the absolute rejection of the postulate 
of Inverse Probability, .. 
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2 Inverse Probability 

Where does the phrase "inverse probability" come from, and has it always meant 
the same thing? It does not seem to have been used by Hume (1739), but 
Hume's contemporary, David Hartley, in his Observations on Man published in 
1749, wrote 

An ingenious Friend has communicated to me a Solution of the Inverse 
Problem, in which he has shewn what the Expectation is, when an 
Event has happened p times, and failed q times, that the original 
Ratio of the Causes for the Happening or Failing of an Event should 
deviate in any given Degree from that of p to q. 

This, of course, is earlier than Bayes (1764), a fact which prompted Stigler 
(1983) to suggest that someone other than Bayes had discovered his theorem. The 
need for such an explanation only arises if the "Solution of the inverse Problem" is 
the Bayesian solution, and in response to Stigler I argued (Edwards, 1986) that it 
was not, writing "I myself doubt that the passage refers to the Bayesian solution 
at all, believing it more likely to refer to one of the non-Bayesian attempts at a 
solution discussed first by James Bernoulli (1713) and then de Moivre (1738)". 
Dale (1988) agrees. When Thodhunter came to write about Ars Conjectandi in 
1865 he too wrote of "the inverse use of James Bernoulli's theorem" [his italics], 
whereas in his chapter on Bayes he did not use the word inverse at all (contrary 
to a statement of mine in 1974a). 

In 1809 Charles Hutton, George Shaw, and Richard Pearson published an 
abridgement of the Philosophical Transactions spanning the period which in
cluded Bayes's paper, about which he wrote: 

The problem is to this effect: "Having given the number of times an 
unknown event has happened and failed; to find the chance that the 
probability of its happening should lie somewhere between any two 
named degrees of probability". In its full extent and perfect mathe
matical solution, this problem is much too long and intricate, to be 
at all materially and practically useful, and such as to authorize the 
reprinting it here; especially as the solution of a kind~ed pr~ble~In de 
Moivre's Doctrine of Chances, p. 243, and the rules there given, may 
furnish a shorter way of solving the problem. See also the demon
stration of these rules at the end of Mr. Simpson's treatise on "The 
Nature and Laws of Chance". 

Although we do not here find the word "inverse", it is interesting that the 
authors regarded Bayes's solution and de Moivre's as alternatives. 

It is important to note that in these early quotations the word "inverse" refers 
to the problem itself, and not necessarily to a particular solution of it, and that 
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when it does refer to a particular solution it might not be to Bayes's. Richard 
Price, we may here remark, called the problem "the converse problem" in his 
introduction to Bayes's Essay. 

For a continuation of this enquiry into the origin of the phrase "inverse prob
ability" Dale's A History of Inverse Probability (1991) is invaluable. Dale reports 
that it was the Danish statistician Arne Fisher who traced the first "modern" 
use of "inverse" to Augustus de Morgan's Essay on Probabilities of 1838. De 
Morgan employs the phrase "the inverse method" in his preface to describe what 
is required if one is to reason "from the happening of an event to the probability 
of one or other cause". A little later on he writes: 

De Moivre, nevertheless, did not discover the inverse method. This 
was first used by the Rev. T. Bayes, in Phil. Trans.liii.370.; and the 
author, though now almost forgotten, deserves the most honourable 
remembrance from all who treat the history of science. 

Then, in Chapter I, de Morgan goes on to say: 

... causes are likely or unlikely, just in the same proportion that it is 
likely or unlikely that observed events should follow from them. The 
most probable cause is that from which the observed event could most 
easily have arisen. 

Now this statement is remarkable for its absence of any mention of equal 
prior probabilities for the causes. De Morgan similarly makes no mention of 
prior probabilities when, later on, he gives the rule for applying this method. 
Dale cites two examples from de Morgan's subsequent writing which also omit 
any appeal to equal prior probabilities: 

When an event has happened, & may have happened in 2 or 3 different 
ways, that way which is most likely to bring about the event is most 
likely to have been the cause, (1843) 

and 

This inversion of circumstances, this conclusion that the circumstances 
under which the event did happen are most probably those which 
would have been most likely to bring about the event, is of the ut
most evidence to our minds. (1847) 

These last three quotations from de Morgan seem to suggest a novel principle, 
namely that when considering causes one might simply choose the one with the 
highest likelihood without computing posterior probabilities explicitly, and hence 
without having to consider prior probabilities. (The first of then, it is true, goes 
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further by suggesting a measure of "likely or unlikely" and not just a maximising 
principle.) , 

Such a principle was not entirely new, for de Moivre himself in the preface to 
the first edition of The Doctrine of Chances published in 1718 observed that in 
order to compare the hypotheses of "Chance" and "Design" "we may calculate 
what Probability there is, that ... Events should be rather owing to one than to 
the other", whilst Daniel Bernoulli (1778) had written: "Of all the innumerable 
ways of dealing with errors of observation one should choose the one which has 
the highest degree of probability for the complex of observations as a whole". 

De Morgan was,.of course, writing after the publication of Laplace's influential 
1774 Memoire sur la probabilite des causes par les evenemenis in which he had 
introduced the following fundamental principle (independently of both Bayes and 
D. Bernoulli): 

If an event can be produced by a number n of different causes, the 
probabilities of these causes given the event are to each other as the 
probabilities of the event given the causes, and the probability of 
the existence of each of these is equal to the probability of the event 
given that cause, divided by the sum of all the probabilities of the 
event given each of these causes. (Translation of Btigler, 1986.) 

Laplace did not mention the implicit equal prior probabilities any more than 
de Morgan did, but by the time of his Essai philosophique sur les probabilites 
(1814-1825; see Edwards, 1974a, and Dale, 1991) he was quite explicit about the 
need to take unequal prior probabilities into account. He seems, however, never 
to have written of inverse probability (though Stigler, 1986, entitles his translation 
"Laplace's 1774 memoir on inverse probability"). Dale notes that the heading 
Methode inverse des probabilites does occur in a Paris lecture summary from the 
turn of the century. 

Jumping many years ahead it is interesting to compare Jeffrey's statement "if 
we must choose between two definitely stated alternatives we should naturally 
take the one that gives the larger likelihood" (1948), and that in turn brings to 
mind Ramsey's 1928 notes (Ramsey, 1931). 

3 A digression on F.P. Ramsey 

Ramsey had clearly been much impressed by Fisher's 1925 paper Theory of sta
tistical estimation, read by title to the Cambridge Philosophical Society on 4 
May. Although critical of the "stupid fiction" of an infinite population, he was 
enthusiastic about the Method of Maximum Likelihood, whose "significance is in 
suggesting a theory or set of chances. Proportion of infinite population should 
be replaced by chance". "Chances", wrote Ramsey, "are degrees of belief within 
a certain system of beliefs and degrees of belief". Then comes a set of notes of 
which two deserve quoting in full: 

5 



(13) in choosing a system [of chances] we have to compromise be
tween two principles: subject always to the proviso that the system 
must not contradict any facts we know, we choose (other things being 
equal) the simplest system, and (other things being equal) we choose 
the system which gives the highest chance to the facts we have ob
served. This last is Fisher's" Principle of Maximum Likelihood", and 
gives the only method of verifying a system of chances. 

(15) Statistical science must be briefly dealt with from our point 
of view; it has three parts:-

(a) Collection and arrangement of selections from the multitudi
nous data. 

(b) Induction = forming a system of chances from the data by 
means of the Principle of Maximum Likelihood. 

(c) Causal analysis; e.g. this die falls so often this way up, there
fore its centre of gravity must be displaced towards the opposite face. 

Then, in enlarging on (c) Causal analysis, Ramsey makes an odd 
use of the phrase "Principle of Indifference": 

e.g. I conclude from the fact that more boys are born than girls 
to some superiority in the number, mobility or capacity for fertiliza
tion of male-bearing spermatoza or one of a thousand other possible 
causes, because of the Principle of Indifference, which is part of my 
fundamental system, the observed inequality would be so unlikely if 
there were no such difference. 

He seems to be arguing that it is the Principle of Indifference which justifies 
the rejection of a hypothesis on the test-of-significance grounds that its acceptance 
would render the data exceedingly improbable. However, G. Shafer has suggested 
to me that perhaps Ramsey only meant that the Principle justified the hypothesis 
of "no such difference" and that his syntax is misleading. 

It is interesting to note that the published version of Fisher's 1925 paper The
ory of statistical estimation starts with a Prefatory Note: "It has been pointed 
out to me that some of the statistical ideas employed in the following investiga
tion have never received a strictly logical definition and analysis", and then he 
attempts to justify the notion of an infinite hypothetical population. It seems 
altogether probable that Ramsey had commented adversely on this concept when 
Fisher's paper was read, and this was his reply. The minutes of the Cambridge 
Philosophical Society show that Fisher's was the fourth paper at the meeting on 
4 May, and the first to be read by title. But presumably a copy was available at 
the meeting for comment then or, privately, later. There is no record of who was 
present. 

Finally, Ramsey's phrase in note (15) "Statistical science" should not be al
lowed to pass unremarked. It may have been common in Cambridge discussions 
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at the time, for Fisher used it both in his 1922 paper and in his 1923 review of 
Keynes's A Treatise on Probability (Edwards, 1993). 

4 Fisher 

The above account suggests caution in interpreting what Fisher might have meant 
by "inverse probability" in 1922, and it is now time to return to his own writings. 
The story of his controversy with Karl Pearson over the confusion between maxi
mum likelihood and maximum posterior probability has been told too recently to 
need repeating in detail (E.S. Pearson, 1968; Edwards 1974a), but we may scan 
it again for clues. 

In his 1915 paper deriving the sampling distribution of the correlation co
efficient Fisher also derived the maximum-likelihood estimate of the parameter. 
"I have given elsewhere (1912) a criterion, independent of scaling, suitable for 
obtaining the relation between an observed correlation of a sample and the most 
probable value of the correlation in the whole sample." After the derivation he 
added "It is now apparent that the most likely value of the correlation will in 
general be less than that observed, ... " Here "most probable" and "most likely" 
are clearly synonyms, but the word "inverse" is not used, and the criterion is 
"independent of scaling". Pearson and his collaborators were not clear about 
the distinction between maximum probability and Fisher's criterion, and their 
work (Soper et. al., 1917) prompted Fisher to clarify his criterion by giving the 
word "likelihood" its technical meaning in 1921. Before then, however, there was 
another important interchange with Pearson. 

The two letters, from the summer of 1916, are preserved in the Fisher archive 
in the Barr-Smith Library of the University of Adelaide, and have been published 
by E.S. Pearson (1968). In the first, Fisher offers Karl Pearson the draft of a note 
for Biometrika commenting unfavourably on the method of minimum chi-squared 
which had been advocated by Kirstine Smith, a Danish pupil of Thiele's then 
studying under Karl Pearson (E.S. Pearson, 1990). Fisher's note ends: 

There is nothing at all "arbitrary" in the use of the method of mo
ments for the Normal curve; as I have shown elsewhere it flows directly 
from the absolute criterion (2:,logf a maximum) derived from the Prin-

. ~ . '" "'. 

ciple of Inverse Probability. There is, on the other hand, something 
exceedingly arbitrary in a criterion which depends entirely upon the 
manner in which the data happens to be grouped. 

Thus in mid-1916 Fisher has already formulated essentially the same per
plexing statement as in 1922 about his criterion having been derived from the 
Principle of Inverse Probability. 

The second letter is Pearson's reply, in which not surprisingly in view of 
Fisher's statement he does not differentiate between Fisher's criterion and max
imum probability, which he now refers to as "the Gaussian method". "If you 
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will write me a defence of the Gaussian method, I will certainly consider it for 
publication, but if I were to publish your note, it would have to be followed by 
another note saying that it missed the point, ... " 

In 1918 Fisher submitted what was presumably his "defence", but after an 
interval Pearson rejected it in a letter dated 21 Octover 1918 (E.S. Pearson, 
1968). Unfortunately no copy of Fisher's paper seems to exist, but probably it 
had something in common with the last section of Fisher (1921) and section 12 
of Fisher (1922). 

It is to these two famous papers we must turn in order to find Fisher's clear 
detachment of the method of maximum likelihood from maximum posterior pro b
ability. The first of them had been rejected by Karl Pearson (his letter of 21 Au
gust 1920 is in E.S. Pearson, 1968) because he felt that "Under present printing 
and financial conditions, I am regretfully compelled to exclude all that I think er
roneous on my own judgement, because I cannot afford controversy". Fisher was 
never to submit a paper to Biometrika again. Major Leonard Darwin, Fisher's 
mentor at this time, approached the Royal Statistical Society on his behalf to see 
if their Journal might be interested, but they could not help "because", as Dr. 
M. Greenwood informed him, "they have to cater for an audience many of whom 
could not understand it and they therefore have to limit the number of highly 
technical articles" (Box, 1978). But in Italy Corrado Gini was looking for mate
rial for his new journal Metron, and it was there that the paper finally appeared. 
Thus the original definition of likelihood is in Metron and not Biometrika or the 
Journal of the Royal Statistical Society, the two leading British journals of the 
day. 

In the Introduction Fisher explains how Soper et. al. had incorrectly assumed 
that his criterion for estimation had been deduced from Bayes's theorem, and 
that in his opinion "two radically distinct concepts have been confused under 
the name of "probability" and only by sharply distinguishing these can we state 
accurately what information a sample does give us respecting the population from 
which it is drawn." In section 3 Fisher critizises Soper et. al. for having assumed 
that he had appealed to Bayes's theorem in 1915, and adds: 

As a matter of fact, as I pointed out in 1912 (Fisher, 1912) the opti
mum is obtained by a criterion which is absolutely independent of any 
assumption respecting the a priori probability of any particular value. 
It is therefore the correct value to use when we wish for the best value 
for the given data, unbiassed by any a priori presuppositions. 

The paper is dated October 1920. Within nine months, on 25 June 1921, the 
Royal Society received the manuscript of the 1922 paper with its statement "I 
must indeed plead guilty in my original statement of the Method of Maximum 
Likelihood (1912) to having based my argument upon the principle of inverse 
probability". The only way to reconcile these contemporaneous views of Fisher 

8 



about his own undergraduate paper nine years earlier is to suppose that he saw 
some distinction between the assumption of a uniform prior distribution and the 
principle of inverse probability, which is just the distinction I detected in the 
writing of de Morgan. 

The 1921 paper ends with the famous Note on the confusion between Bayes 
, Rule and my method of the evaluation of the optimum, in which likelihood is 
formally defined and differentiated from probability. (It was this heading which 
emboldened me to introduce the words evaluate and evaluation in 1972; I still 
think they ought to be adopted.) 

Again in the 19,22 paper Fisher repeatedly stresses the difference between 
likelihood, as newly defined, and probability. The phrase "Method of Maximum 
Likelihood" occurs for the first time. He shows that he has read Bayes's paper 
with care, though he did not notice that Bayes had a cunning argument for adopt
ing a uniform distribution for the binominal parameter (Molina, 1931; Edwards, 
1974b, 1978). But he does not refer to Bayes's procedure as an example of the 
application of "inverse probability"; on the contrary, he says "In a less obtrusive 
form the same species of arbitrary assumption underlies the method known as 
that of inverse probability", which he expounds for the case of two hypotheses. 
He states that the method assumes that their post-data probabilities are in the 
same ratio as the ratio of the probabilities of the data on the two hypotheses, and 
he notes that this amounts to assuming that the two hypothese have been drawn 
at random from an infinite population in which each was true half the time. Then 
comes his admission that in 1912 he had based his Method of Maximum Likeli
hood on the principle of inverse probability. (The referees of the 1922 paper were 
A.S. Eddington, Plumian Professor of Astronomy, and G.Udny Yule, University 
Lecturer in Statistics, both in the University of Cambridge. Their reports are 
reproduced in Appendix 1 by courtesy of the Royal Society of London.) 

There is not much further evidence to be gleaned from Fisher's subsequent 
writings, but in the Adelaide archives there is a manuscript precis and discussion 
of Karl Pearson's paper On the systematic fitting of curves to observations and 
measurements (Pearson, 1902). The handwriting is that of Mrs. Fisher, so pre
sumably she was taking dictation; there are a couple of corrections in Fisher's 
hand. I reproduce the complete note in Appendix 2, with the permission of the 
University of Adelaide1 . The second paragraph reads: 

It is noteworthy here, too, that throughout the paper no distinction 
is drawn between the fitting of frequency curves and that of regres
sion lines. Only the latter had been traditionally treated by least 
squares. For the former the student might find in Gauss a discussion 
justifying what is known as the method of maximum likelihood as 
a general principle, and showing that in fitting a normal frequency 

1 In this version of the paper the two Appendices have been omitted. It is intended to publish 
them in due course. In the meantime, the author would be happy to supply copies on request. 
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curve, this took the form of the method of moments, while in fitting 
regression lines in the important case of normal and equal variability 
in the arrays (i.e. of the observations) it took the form of the method 
of least squares. Gauss's views, though very influential, had not, how
ever, in this matter gained general assent for he derived the method of 
maximum likelihood, erroneously, from the principle of inverse proba
bility, confidence in which among mathematicians had been dwindling 
throughout the nineteenth century. 

The word "erroneously" is perhaps not so placed as to convey quite the mean
ing Fisher intended, but the extract serves to confirm the knowledge of the work 
of Gauss and Pearson. Unfortunately it is undated, but it seems to record a 
study made for the 1922 paper, but after the naming of the method of maximum 
likelihood, which would put it into the first half of 1921. This note does not 
differentiate between the principle of inverse probability and the adoption of a 
uniform prior distribution, which is how Gauss actually argued, yet Fisher made 
the distinction in the 1922 paper as I have indicated. 

Finally, when Fisher introduced his notion of fiducial probability in 1930 he 
called the paper "Inverse probability", and it is indeed mostly a criticism of the 
Bayesian position along lines by now quite familiar, though he does add the new 
point that if we assume a uniform prior for a parameter, to choose its value by 
maximising the posterior probability (as he again notes Gauss did) is very odd, 
for "had the inverse probability distribution any objective reality at all we should 
certainly, at least for a single parameter, have preferred to take the mean or the 
median value". 

5 Conclusion 

We should never look for complete consistency in the writings of any author, 
especially a young one advancing the frontiers of a subject at a furious rate in 
the face of uncomprehending elders, but my impression now is in fact that in 
the decade 1912-1922 Fisher did indeed draw a distinction between inverse prob
ability and fully-blown Bayesian inference which, though "of the same species" , 
starts from a slightly different viewpoint. Bayesian inference delivers a probabil
ity distribution for an unknown parameter, which Fisher explicitly and forcefully 
rejected from the start, whilst the Principle of Inverse Probability only allows (on 
the present interpretation of his view) the comparison of parameter values "point 
with point" (1912). After all, if we cut away the historical use of the phrase, 
"inverse probability" is rather a good term for "likelihood", so long as we under
stand that it is not an ordinary probability. C.A.B. Smith once observed that 
"Fisher's choice of the word "likelihood" might have been a little unfortunate, 
in that in ordinary language the words" likelihood" and" probability" are virtu
ally synonymous" (Smith, 1986). I am inclined to agree with him; some kind of 
connotation of "support" would have been better (see Edwards, 1972). 

10 



To sum up, I believe that in 1912 by inverse probability Fisher meant likelihood; 
that in 1916 by the principle of inverse probability he meant the Laplace -
de Morgan principle which he thought conferred legitimacy on the method of 
maximum likelihood; and that only as late as 1921-1922 did he fully appreciate 
that this principle was inescapably Bayesian and had to be rejected. 
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The Three Revolutions in Statistical 
Inference 
and Their Importance for my Life as a 
Statistician 

Anders RaId 

Abstract 

A sketch is given of important features of the three revolutions in para
metric statistical inference due to Laplace, Gauss, and Fisher. Their im
portance for my life as a statistician, particularly for my research and 
teaching, is indicated. 

1 The Three Revolutions in Statistical Inference 

1.1 Introduction 

The three revolutions in parametric statistical inference are due to Laplace 
(1774), Gauss and Laplace (1809-1811) and Fisher (1922). It took about twenty 
years and several papers for each of these authors to work out the basic ideas in 
detail, and it took about a hundred years for the rest of the statistical community 
to understand and develop the new methods and their applications. 

Let p(xIO) be a statistical model with a given sample space and parameter 
space, and let .JC denote a sample of n independent observations. From the model 
we can find the sampling distribution of the statistic t = t(;r.), and from p(tIO) we 
can find probability limits for t for any given value of o. This is a problem in 
direct probability, as it was called in the previous century. 

In inverse probability the problem is to find probability limits for 0 for a given 
value of.JC. Bayes (1764) was the first to realize that a solution is possible only if 
o itself is a random variable with a probability density p( 0). We can then find the 
conditional distributions p(OI;r.) and p(Olt), which can be used to find probability 
limits for 0 for any given value of;r.. Independently of Bayes, Laplace (1774) gave 
the first general theory of statistical inference based on inverse probability. 

1.2 Laplace on Direct Probability 1776-1799 

However, at the same time Laplace also developed methods of statistical infer
ence based on direct probability. At the time the problems in applied statistics 

14 



were mainly fr?m demography, about rates of mortality and the frequency of 
male births, and from the natural sciences, where the distribution of errors and 
relations between variables were studied. It was therefore natural for Laplace 
to create a theory of testing and estimation comprising relative frequencies, the 
arithmetic mean, and the linear model. 

The error distributions discussed at the time were symmetric with known 
scale parameter, the most important being the rectangular, triangular, quadratic, 
cosine, semi-circular, and the double exponential. The normal distribution was 
not yet invented. These densities were chosen for their mathematical simplicity, 
nobody compared them with data. 

The arithmetic mean was ordinarily used as estimate of the location parameter 
in the error distribution. Laplace solved the problem of finding the distribution of 
the mean by means of the convolution formula. However, this was only a solution 
in principle because all the known error distributions, apart from the rectangular, 
led to unmanageable distributions of the mean. He also gave the first test of 
significance of a mean based on the probability of a deviation from the expected 
value as large or larger than the observed, assuming that the observation are 
rectangularly distributed. 

Let 

y = X (3 + E = Xb + e 

denote the linear model. Three methods of fitting this equation to data without 
specification of the error distribution apart from symmetry were developed. The 
method of averages by Mayer and Laplace requiring that ~wikei = 0, where as 
many equations are used as the number of parameters. The method of least 
absolute deviations by Boscovich and Laplace, where ~wiei = 0 and Z:;Wi led is 
ininimized for the two-parameter model. The method of minimizing the largest 
absolute deviation by Laplace, that is, minimax z:; leil. He evaluated the results 
of such analyses by studying the distribution of the residuals. 

1.3 The first Revolution: Lap lace 1774-1786 

Turning to inverse probability let us first consider two values of the parameter and 
the corresponding direct probabilities. Laplace's principle says, that' if ~ is more 
probable under ()2 than under ()1 and ~ has been observed, then the probability of 
()2 being the underlying value of () (the cause of ~ ) is larger than the probability 
of (h. Specifically, Laplace's principle of inverse probability says that 

or 
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that is, inverse probability is proportional to direct probability. In the first in
stance Laplace formulated the principle intuitively, later he proved it under the 
supposition that the prior density is uniform on the parameter space. 

Introducing the likelihood function Laplace's principle may be related to 
Fisher's through the diagram 

ex 

Inverse Probabiliy 
Laplace 

ex 

Direct Probability Likelihood 
I Fisher 

The history of statistical inference is about p(;1:.IO) and its two interpretations, or 
in modern terminology about sampling distributions, posterior distributions, and 
the likelihood function. It is obvious that the mathematical parts of the three 
topics are closely related, and that a new result in any of the three fields has 
repercussions in the other two. There has been, and still is, a fruitful interaction 
between the three fields, despite the harsh language often used. 

Based on Laplace's principle it is a matter of mathematical technique to de
velop a theory of testing, estimation, and prediction, given the model and the 
observations. Laplace did so between 1774 and 1786. 

To implement the theory for large samples Laplace developed approximations 
by means of asymptotic expansions of integrals, both for tail probabilities and 
for probability integrals over an interval containing the mode. Using the Taylor 
expansion about the mode 1i he found 

In p( 01;~J = const. + £ (0) [£ (0) = In L-"'.( 0)] 

= const. + £ (1i) + HO - 1i)2£"(1i) + ... , 

which shows that 0 is asymptotically normal with mean 1i and variance [-i' (1i)] -1. 

In this way Laplace proved for the binomial distribution that the most prob
able value of 0 equals the observed relative frequency h and that 0 is asymp
totically normal with mean h and variance h(l - h)/n. Moreover, to test the 
significance of the difference hI - h2 between two relative frequencies, he showed 
that 01 - O2 is asymptotically normal with mean hI - h2 and variance given by 
hI (1- h1)/nl +h2(1- h2)/n2, which led him to the large-sample test of significance 
used today. 

There is, however, an inconsistency in Laplace's theory of estimation. For 
the binomial and the multinomial distributions he uses the most probable value 
as estimate, but in the measurement error model he introduces a new criterion 
to estimate the location parameter, namely to minimize the posterior expected 
loss, using the absolute deviation as loss function. He proves that this leads to 
the median in the posterior distribution as estimator. His justification for this 
procedure is that the absolute deviation is the natural measure of the goodness 
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of the estimate and that it corresponds to the gambler's expected loss in a game 
of chance. -

The introduction of a loss function proved to be a serious mistake, which 
came to hamper the development of an objective theory of statistical inference 
to the present day. It is of course the beginning of the split between inference 
and decision theory. 

To tryout the new method Laplace chose the simplest possible error dis
tribution with infinite support, the double exponential distribution. For three 
observations he found that the estimate is a root of a polynomial equation of the 
15th degree. It mUfit have been a great disappointment for him that the combi
nation of the simplest possible error distribution and the simplest possible loss 
function led to an unmanageable solution, even for three observations. 

In 1799, at the end of the first revolution, one important problem was still 
unsolved: the problem of the arithmetic mean. Applying all the known methods 
of estimation to all the known error distributions led to estimates of the location 
parameter different from the mean. Nevertheless, in practice everybody used the 
mean. 

1.4 The second Revolution: Gauss and Laplace 1809-
1828 

The secorid revolution began in 1809-1810 with the solution of this problem, which 
gave us two of the most important tools in statistics, the normal distribution as 
a distribution of observations, and the normal distribution as an approximation 
to the distribution of the mean in large samples. 

In 1809 Gauss asked the question: Does there exist an error distribution lead
ing to the mean as estimate of the location parameter according to the principle 
of inverse probability? Gauss did not make the mistake of Laplace of introduc
ing a loss function, instead he used the most probable value of the parameter as 
estimate. Setting the posterior mode equal to the arithmetic mean of the ob
servations he got a functional equation with the normal distribution as solution. 
The normal distribution thus emerged as a mathematical construct, and Gauss 
did not compare the new error distribution with observations. 

Assuming that the observations are normally distributed he f<?ll1?-d that the 
most probable value of the location parameter is obtained by minimizing the 
exponent 'L,(Yi - 0)2, which- naturally leads to the mean. If 0 is a linear function 
of m parameters, 0 = X(3, the estimates are found by minimizing the sum of 
the squared errors (Y - X(3)'(Y - X(3). Assuming the variance of the y's to be 
known, Gauss solved the estimation problems for the linear-normal model and 
derived the multivariate normal distribution of the parameters. 

Before having seen Gauss's book, Laplace in 1810 published a paper in which 
he derived the first version of the central limit theorem, which says that regardless 
of the shape of the error distribution, if only the variance is finite, the mean will 
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be approximately normally distributed in large samples. 
As his immediate reaction to Gauss's results Laplace made two remarks in 

1810: 
(1) If the error distribution is normal, then the posterior distribution is normal 

and the posterior mean and median are equal. Hence, the method of least squares 
follows from my method of estimation as a special case. 

(2) If the error distribution has finite variance, but is otherwise unknown, 
then the central limit theorem gives a large-sample justification for the method. 

Hence, in the first instance, both Gauss and Laplace used inverse probability 
in their derivations of the method of least squares. 

But already in 1811 Laplace gave an alternative derivation based on direct 
probability using the asymptotic normality of a linear combination of observations 
and minimizing the expected absolute error, which for the normal distribution is 
proportional to the expected squared error. 

Between 1823 and 1828 Gauss supplemented Laplace's large-sample frequen
tist theory by a small-sample theory. Like Laplace he replaced the assumption of 
normality with the weaker assumption of finite variance, but in contradistinction 
to Laplace he used squared error as loss function because of its greater mathe
matical simplicity. He then developed the theory of linear, unbiased, minimum 
variance estimation for the linear model in the form known today. 

Hence, they both gave up the normality assumption as too restrictive. 
Gauss's two proofs both became popular and existed beside each other in spite 

of their contradictory assumptions. One reason for this may be the following 
argument due to Laplace. 

In 1812 Laplace made an important observation on the equivalence of direct 
and inverse probability for finding large-sample limits for the binomial parameter. 
Direct probability leads to the limits for the relative frequency h of the form 

h "" 0 ± JO(1 - O)/n, 

disregarding terms of the order of l/n. But for this order of approximation the 
limits may also be written as 

h "" 0 ± Jh(l - h)/n, 

which solved for 0 gives 

0", h ± Jh(l - h)/n. 

However, these limits are the same as those following from inverse probability. 
Generalizing this argument, the probability limits for the estimate t becomes 

and for the estimate s 
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Combining these relations we get 

which leads to the limits for B, 

B '" t ± s/fo. 

This kind of reasoning explains why the methods of direct and inverse probability 
could coexist in statistical practice without serious conflict for about a hundred 
years. . 

For large samples the normal distribution could be used to find probability 
or confidence limits. For moderately large samples the so-called 3o--limits be
came popular, possibly with an appeal to a result by Gauss, which states that 
for a unimodal symmetric error distribution with finite variance at least 95% of 
the probability lies within the 3o--limits. Use of the 3o--limits became a stan
dard procedure in estimation and testing as a safeguard against deviations from 
normality. 

During the following period the application of statistical methods was ex
tended to the social and biological sciences in which variation among individuals, 
instead of errors, was studied by means of skew frequency curves, and the mea
surement error model was replaced by linear regression and correlation. 

Two systems of frequency curves were developed: Pearson's system of skew 
frequency curves, and Kapteyn's system of transformations to obtain normality. 

Correspondingly, a new method of estimation was developed which may be 
called the analogy-method. Pearson equated the empirical moments to the theo
retical moments and thus got as many non-linear equations as parameters to be 
estimated. Kapteyn equated the empirical and theoretical fractiles. 

1.5 The Third Revolution: R.A.Fisher 1912-1962 

At the beginning of the present century the theory of statistical inference thus 
consisted of a large number of ad hoc methods, some of them contradictory, 
and the small-sample theory was only in a rudimentary state. Some important 
questions were as follows: 

How to choose between direct and inverse probability methods? ' .. ,. 
How to choose between various loss functions? 
How to choose between various statistics for use in the analogy-method? 
How to find probability limits for the parameters from direct probability meth-

ods? 
These problems were attacked and most of them solved by Fisher between 

1922 and 1936. 
He turned the estimation problem upside down by beginning with require

ments to estimators. He formulated the criteria of consistency, efficiency, and 
sufficiency, the last concept being new. 
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Having thus defined the properties of good estimators he turned to a criticism 
of the existing methods of estimation. 

He showed that the inverse probability estimate depends on the parameteri
zation of the model, which means that the resulting estimate is arbitrary. For a 
time this argument led to less interest in inverse probability methods. 

He rejected the use of loss functions as extraneous to statistical inference. 
Turning to analogy-methods he showed that the method of moments in general 

is inefficient. 
Given the model and the observations, he noted that all information on the 

parameters is contained in the likelihood function, and he proved the asymptotic 
optimality of the estimates derived from this function, the maximum likelihood 
estimates. Basing his inference theory on the likelihood function he avoided the 
arbitrariness introduced by Laplace and Gauss due to loss functions and the 
assumption of finite variance. 

Assuming normality, he derived the t, X2 , and F distributions, and showed 
how to use them in testing and interval estimation, thus solving the small-sample 
problems for the linear-normal model. 

He also derived the distribution of the correlation coefficient and the partial 
correlation coefficients in normal samples. 

He initiated the theory of ancillary statistics and conditional inference. 
Large-sample probability limits for a parameter were found by what today is 

called a pivotal statistic. By an ingenious use of the pivotal argument, Fisher 
derived what he called fiducial limits for a parameter, for example by means of 
the t distribution. 

Blinded by his many successes, he even tried the impossible, namely to find 
a general theory for probability statements about parameters without consider
ing the parameter as random. To this end he defined the fiducial probability 
distribution of the parameters. 

Fisher explained the new statistical ideas and techniques in an aggressive 
and persuasive language, which lead to acceptance of his theories within a rather 
short period of time, not alone among mathematical statisticians, but also among 
research workers in general. 

A large part of mathematical statistics since 1922 has consisted in an elabo
ration of Fisher's ideas, both in theory and practice. 

Because of the fundamental relation between the posterior density and the 
likelihood function many of Fisher's asymptotic results are identical to those of 
Laplace from a mathematical point of view, only a new interpretation is required. 
Fisher never acknowledged his debt to Laplace. 

The following panorama (handout) indicates how the ideas of Laplace, Gauss, 
and Fisher, have influenced statistical theory today. As you will see, I have added 
the names of some prominent statisticians and left some space in which you may 
add the names of your favourites. The partitions are not watertight, many persons 
have worked in several fields. 
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Finally you may add your own name in the appropriate places and contem
plate how much you owe to the three giants who founded statistical science. 

The three revolutions in statistical inference 

Inverse Probability Direct Probability Likelihood 

ex ex Lq; . .{ B) 

Laplace 
Gauss 

Fisher 

Subjective Objective Decision Likelihood Likelihood Likelihood 
Bayesianism Bayesianism Theory Sampling Pivotal Theory 

Distributions Inference 

DeFinetti Jeffreys Neyman Bartlett Barnard Edwards 
Savage Perks Wald Rao 
Lindley Lehman Cox 

Box Barndorff 
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2 My Life as a Statistician 

2.1 Studying Statistics 1935-1939 

Turning to the second part of my lecture I shall begin by mentioning the persons 
who founded teaching and research of statistics in the University of Copenhagen, 
see Table 1. 

Table 1 
Some Teachers of Statistics at the University of Copenhagen 

Faculty of Natural Sciences Faculty of Economics 

T.N. Thiele, 1875-1907 
J.F. Steffensen, 1919-1943 
W. Simonsen, 1943-1974 
A. HaId, 1960-1982 

H. Westergaard, 1883-1924 
H. Cl. Nyb011e, 1926-1947 
A. HaId, 1948-1960 
G. Rasch, 1962-1972 

The two columns list the persons working with theoretical statistics in the 
Faculties of Natural Sciences and Economics, respectively. 

Besides the persons listed in Table 1 several others taught statistics, the most 
important being G. Rasch, who worked as external lecturer in biological and 
mathematical statistics 1937-1962. 

In 1935 only Nyb0lle was full-time occupied with statistics. He had no assis
tant. Steffensen had his time divided between actuarial mathematics, numerical 
analysis, and mathematical statistics. Hence, there was only 1 and 1/3 person 
engaged in teaching and research in statistics at the higher institutions of learning 
in Denmark. I guess that today there must be about a hundred. 

After having studied mathematics, numerical analysis, economics, and law 
for 2! years I began to study actuarial mathematics and statistics in 1935. My 
teachers were Steffensen and Nyb0lle. The curriculum consisted of the three 
books shown in Table 2. 

Table 2 
Curriculum in Statistics, 1935 

H. Westergaard og H.Cl. Nyb011e: Statistikkens Teori i Grundrids. 
G.E.C. Gads Forlag. K0benhavn 1927 
Steffensen J.F.: Matematisk Iagttagelsesltere. 
G.E.C. Gads Forlag. K0benhavn 1923 
Bowley, A.L.: Elements of Statistics. 
P.S. King and Sons, Ltd. London 1926 
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From the date of publication of these books it follows that they have been 
written in the last part of the second revolution. Westergaard and Nybplle's book 
is an elementary introduction written for students of economics and demography. 
It was supplemented by Bowley's book, which contains some sections of a more 
mathematical character. 

Steffensen's book is a highly concentrated, mathematical exposition of Pear
son's system of frequency curves, the method of moments, and the method of 
least squares according to Gauss's second proof. 

I took my first course in statistics in 1935 by Nybplle, my second in 1936 by 
Steffensen, and my third in the method of least squares for geodesists by N. E. 
Nprlund in 1936. 

The mathematics was dull, estimation meant routine calculation of point es
timates by the method of moments or the method of least squares, there was no 
unifying idea, there was no enthusiasm, it was at the end of the second revolution, 
and the revolutionary spirit had disappeared. 

On this background you may well ask what induced me to continue studying 
statistics. The answer is simple: Fisher has the full responsibility. His theory 
came as a revelation to me, transmitted through Steffensen and Rasch. 

In 1936 Steffensen published an important paper on "Free functions and the 
Student-Fisher theorem" in which he used the method of transformation by means 
of Jacobians instead of Fisher's geometrical method to derive Fisher's results. In 
the autumn of 1936 he organized a seminar in which he asked me to discuss his 
paper. To do so I naturally had to read Fisher. 

In the spring of 1937 Nprlund asked Rasch, who had spent the year 1935-36 
in Fisher's department in London, to give a short course of lectures on Fisher's 
results for the linear-normal model as a supplement to his own previous lectures 
on the method of least squares. Rasch used Steffensen's method to prove Fisher's 
results. 

In the autumn of 1937 Steffensen formulated the problem for the prize essay 
in mathematics for the year 1938 as "An exposition and critical assessment ofthe 
most important of R.A. Fisher's theories." I used the next 14 months to study 
Fisher and write an essay of 130 pages. 

2.2 Consulting, Teaching, and Research 1939-1948 

I had of course hoped to go to London and study under Fisher but the war 
stopped this plan. Instead I got the second best solution, namely to study and 
work with Rasch at the State Serum Institute from 1939 to 1941. 

Between 1941 and 1948 I worked as a consulting actuary and as a statistical 
consultant, mainly on economic and industrial problems, and also as a private 
tutor. In 1943 I got a part-time research grant from the University and during 
the following years I gave some courses on Fisher's theories to actuarial students 
based on my Essay. And most important for my further work, by request of 
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the Danish Engineering Association I gave an extensive course of lectures on the 
application of statistics in industry in 1943-44. 

Some of the publications resulting from these activities are listed in Table 3. 

Table 3. 
Some of my contributions to mathematical statistics 

1939 - 1948 

En maiemaiisk fremsiilling af R. A. Fisher's Teorier. (A mathemat
ical exposition of R.A. Fisher's theories), 131 pp. Prize Essay, 1939. 
Duplicated version 1945. 

On the determination of the phagocytic power ofleucocytes (Max
imum likelihood estimation in a grouped distribution). Acia Paih. 
1942, 20, 64-81. Together with M. Jersild and G. Rasch. 

Nogle Anvendelser af Transformationsmetoden i den normale For
delings teori (Some applications of the method of transformation in 
the theory of the normal distribution). Fesiskrift iil Professor dr. 
phi!. J.F. Sieffensen, 1943, 52-65. Together with G. Rasch. 

Den afstumpede normale Fordeling (The truncated normal distri
bution). Matematisk Tidsskrift E, 1946, 83-91. 

The Decomposition of a Series of Observations Composed of a 
Trend, a Periodic Movemeni and a Siochastic Variable. 134 pp. G.E.C. 
Gads Forlag, 1948. 

Siaiistiske Metoder med Eksempler pa Anvendelser indenfor Tek
nikken (Statistical Methods with Examples of Engineering Applica
tions). 654 pp. Det private Ingeni0rfond, 1948. 

Tabel - og Formelsamling til Statistiske Metoder (Tables and For
mulas to Statistical Methods). 77 pp. Det private Ingeni0rfond, 1948. 

As you will see all the publications are strongly influenced by Fisher's ideas, 
and they thus represent my main written contributions to the dissemination of 
these ideas in Denmark in the period 1939-1948. 

2.3 Professor of Statistics at the Faculty of Economics 
1948-1960 

In 1948 I succeeded Nyb011e as professor of statistics in the Department of Eco
nomics. In my naivete I thought that I could now replace my work as a consultant 
by research, but that turned out to be a great mistake. For about five years I 
was overburdened with administration and teaching, and with conflicts with the 
professors of economics about the extent of statistics in the curriculum. 

With the support of the Rector of the University I started an Institute of 
Theoretical Statistics in 1953 with E. Lykke Jensen as assistant. Realizing that I 
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could not get more support from the Economics Department I made a deal with 
myoId friends, ·the engineers. 

I promised to take up teaching of industrial statistics for members of the 
Engineering Association, and the Rector of the Technical University then financed 
two positions, in which I employed Hans Br0ns and Erik Harsaae. We then had 
a nucleus of four, who tried to educate each other in probability and statistics, 
and to spread the gospel to the outside world. 

These activities resulted in the publication of a number of textbooks for en
gineers and economists as shown in Table 4. 

Table 4. 
Textbooks on Statistics published 1952-1960 

HaId, A.: Statistical Theory with Engineering Applications. 783 
pp. Wiley, 1952. 

Hald, A.: Statistical Tables and Formulas. 97 pp. WiIey, 1952. 
Hald, A.: Statistisk Kvalitetskontrol (Statistical Quality Control). 

Together with E. Lykke Jensen. 399 pp. Teknisk Forlag, 1954. 
Hald, A.: Statistiske Metoder i Arbejdstudieteknikken (Statistical 

Methods in Time Studies). 74 pp. Dansk Rationaliserings Forening, 
1955. 

Hald, A.: Elementcer Lcerebog i Statistisk Kvalitetskontrol (Ele
mentary Text in Statistical Quality Control). 119 pp. Universitetets 
Statistiske Institut, 1956. 

Hald, A.: Forelcesninger over jorS{1gsplanlcegning (Lecture Notes 
on the Design of Experiments). Together with E. Harsaae. 154 pp. 
Dansk Ingeni0rforenings Industrisektion, 1956. 

Hald, A., E. Harsaae and E. Lykke Jensen: Tilf{1jelser, {1konomiske 
eksempler og {1velser til Statistical Theory (Supplements, Economic 
Examples, and Exercises to Statistical Theory). 31? pp. Univer
sitetets Statistiske Institut, 1959. 

Lykke Jensen, E.: Reprcesentative underS{1gelsers teori og metode 
(Theory and Methods of S~mpIe Surveys). 486 pp. Universitetets 
Statistiske Institut, 1957 and 1960. 

2.4 Professor of Statistics at the Faculty of Natural Sci
ences 1960-1982 

By 1958 the importance of statistics had been firmly established among economists, 
engineers, and mathematicians. Personally I had paid the price for this by being 
out of research for about ten years. I realized that if I ever should get back I had 
to make a new start. 
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Instead of returning to statistical inference I turned to decision theory, partly 
influenced by Wald's book and partly by my work in industrial statistics. Since 
the mostly used and simplest rules in statistical decision theory are those of 
sampling inspection by attributes I began investigating the theoretical foundation 
for the existing rules and to study the properties of a new model based on the 
hypergeometric distribution combined with a prior distribution and a linear loss 
function. I presented the first results at a discussion meeting at Imperial College 
in London in 1960. 

For some time my activity on this project was slowed down because in 1958 
it was decided to reorganize the teaching of statistics at the University. A new 
position as professor of mathematical statistics and a corresponding Institute was 
created under the Faculty of Natural Sciences, and together with Brfilns I left the 
old institute to take over this new job. 

During the following 15 years I published many papers on the properties of 
attribute sampling plans in cooperation with my colleagues at the Institute. I 
carried the project to its bitter end by publishing a book in two instalments in 
1976 and 1978, later published by Academic Press in 1981 as Statistical Theory 
of Sampling Inspection by Attributes, 515 pp. (Tables together with U. Mfilller). 
I think it contains all that is worth knowing on the theory of sampling inspection 
by attributes - and a little more. 

This work may be considered as an application of the principles laid down by 
Laplace, which I did not know in detail at the time. The asymptotic properties of 
the sampling plans follow from the Laplace expansion of the loss integrals. The 
analysis of this model has proved to be of great importance for my understanding 
of the first revolution. 

Just after having completed the book in 1978 I was asked to write a short 
history of mathematical statistics in Denmark to be published by the University 
on the occasion of its 500th anniversary in 1979. A serious problem in this 
project was to understand how Thiele found the canonical form of the linear
normal model. To get the background for Thiele's work I read Gauss and wrote a 
detailed annotated transcription in modern notation of his papers on the method 
of least squares, which I hope to include, after suitable revision, in a book on the 
second revolution. My paper on Thiele's contributions to statistics was published 
in 1981. 

2.5 Retirement and the History of Statistics 1982-1993 

When I retired in 1982 I continued my research on the history of statistics, 
which so far has resulted in several papers and the book A History of Prob
ability and Statistics and Their Applications before 1150, 586 pp., Wiley, 1990, 
giving the background for the first revolution. Since then I have nearly completed 
a manuscript on the first revolution and done some work on the second. Time 
will show if it will be completed. 
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Pivotal Models and the Fiducial 
Argument 

George A. Barnard* 

Abstract 

A sketch of the history of Fisher's fiducial argument is accompanied by 
a version, called "pivotal inference" which, it seems, may give a consistent 
revised version of the ideas involved. 

1 Some History 

The first public exposition of the fiducial argument was given in 1 929 by Dr. 
J.O. Irwin who, having asked Fisher for help with a talk he was to give to that 
summer's meeting of the British Association for the Advancement of Science, 
was told of the idea which had occurred to Fisher after a conversation with E.J. 
Maskell (1930: Journal of Tropical Agriculture, vii, 101-104, 125-131). Maskell's 
idea was, that one could invert a test of significance to give an interval within 
which a parameter could be expected to lie. A similar idea had been put by 
Egon Pearson to W.S. Gosset in a letter dated 7 November 1927, the year in 
which E.B. Wilson rediscovered Laplace's method of obtaining confidence limits 
for a binomial probability p and corrected Laplace by giving a correct account 
of their coverage property. Indeed a clear account of how limits can be put on 
an unknown probability p from the observation that, in n independent trials, an 
event of probability p has occurred r times, is to be found in Cournot (1843). 
Irwin told me of his British Association talk more than once, but he never referred 
to the existence of any text so I presume that no record of exactly what he said 
has been kept. In any case, Fisher's paper sent to the Cambridge Philosophical 
Societyon the 23rd July, 1930, is the first careful general discussion of the "fiducial 
frequency distribution." 

Fisher's introduction of the notion is preceded by a re-emphasis of the point 
he had made several years before, that his "likelihood" is not a probability - in 
particular that it is a point function, not an interval function: 

*For Anders Hald on his 80th birthday in the hope that some of this may prove useful in 
his later volumes 

27 



If A and B are mutually exclusive possibilities, the probability of "A 
or B" is the sum of probabilities of A and of B, but the likelihood 
of A or B means no more than "the stature of Jackson or Johnson"; 
you do not know what it is until you know which is meant .... there 
are, however, certain cases in which statements in terms of probability 
(my stress - G.A.B.) can be made with respect to the parameters of 
the population. 

He goes on to cite the case where 

the random sampling distribution of a statistic T, calculable di
rectly from the observations, is expressible solely in terms of a single 
parameter, of which T is the estimate found by the method of maxi
mum likelihood I, If T is a statistic of continuous variation, and P the 
probability that T should be less than any specified value, we have 
then a relation of the form 

P = F (T, B). 

After specifying the necessary continuity and monotonicity conditions, Fisher 
says 

we may express the relationship by saying that the true value of B 
will be less than the fiducial 5 per cent value corresponding to the 
observed value of T in exactly 5 trials in 100 .... This then is a definite 
probability statement about the unknown parameter B, which is true 
irrespective of any assumption as to its a priori distribution. 

Later in this paper he writes "The fiducial frequency distribution will in gen
eral be different numerically from the inverse probability distribution obtained 
from any particular hypothesis as to a priori probability. Since such a hypoth
esis may be true 2, it is obvious that the two distributions must differ not only 
numerically, but in their logical meaning." It will be suggested below that the 

lThe fact that Fisher here introduced a requirement of "efficiency" for the estimate T has 
not always been noted. 

2In the Collected Papers, revised by Fisher shortly before his death, there is a footnote to 
the phrase" Since such an hypothesis may be true": 

It must not be known to be true - R.A.F. 
The footnote does not appear in the reprint of the paper in the 1950 "Contributions to 

Mathematical Statistics" and I think the later addition reflects Fisher's stronger appreciation 
of the fact that in statistical inference it is as important to specify what is assumed to be 
unknown as to specify what is assumed to be known. Many of the conversations I had with 
him centered on the fact that purely mathematical theories of statisical inference must suffer 
the logical defect that in the logical structure of pure mathematics there is no distinction to 
be drawn between" true" and" known to be true". In statistical inference the distinction is of 
course vital. 
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"difference in logical meaning" to which Fisher refers is illustrated by the fact 
that the fiducia1 distribution assigned to a parameter does not make the parame
ter into a random variable in the sense defined by Kolmogoroff in his 1933 classic 
"Grundlagen der Wahrscheinlichkeitsrechnung." Specifically, it is an immediate 
consequence of Kolmogoroff's definition that any measurable function of a Kol
mogoroff random variable (KRV) is itself a KRV; but it is only under special 
conditions that we can derive a fiducial distribution for a measurable function 
f(f)) from that off). 

The next major development in Fisher's thought on these matters is given 
in his 1934 "Two New Properties of Mathematical Likelihood". This contains 
the beginning of "Conditional Inference", with its demonstration of the fact that 
problems of location A and scale er can be solved for continuous distributions of 
arbitrary form by taking any location and scale sample functions - such as the 
first observation Xl and the difference d = X2 - Xl between the first observation 
and the second - forming what we would now call the "pivotals" b = (Xl - A) /er 
and c = d/ er and considering the joint distribution of band c conditioned on the 
sample configuration a whose ith component is (Xi - Xl) / d. 

In retrospect this paper seems unduly preoccupied with further promoting the 
likelihood function as carrying all the sample information about the parameters. 
Considerable space is taken up, for example, in proving that the average Fisher 
information in the observed XIO and do referred to their conditional distribution 
is equal to the average information in the original sample. In these days of 
routine telemetering we can easily imagine that instead of learning the values XiO 

in suffix order, we could first learn the observed value ao of the configuration, and 
afterwards learn the observed XlO and the observed do. The distribution of a does 
not involve either of the two parameters, and so can carry no direct information 
about these. It conditions the distribution ofthe pair (b, c). It then seems obvious 
that when we learn the values XIO and X20 of Xl and X2 our information about 
A and er will be fully contained in bo = (xlO-A)/er and Co = (X20-xIO)/er, 
referred to their joint conditional distribution. 

In case anyone should doubt this, one may cite a "Turing type" argument: 
Suppose we had a person P with "second sight" who knew the values of any 
parameters like A and er which might come under consideration, and who knew 
the joint density t.p (.) of p = (x - A.l) /er. Such a person could programme·his 
computer to generate a random sample ao from the know distribution of a. For 
each such sample he could programme the conditional density e (b, ciao) and using 
a completely independent source of random numbers he could generate values of b 
and c. Knowing A and er he could convert these into values of XIO and X20. Then 
using ao he could generate an artificial Xo. As a source of information about A and 
er, P would be indistinguishable from the genuine experimental source. But since 
neither A nor er were involved in generating the artificial ao, its value can, like 
the experimenter's height, be ignored. The argument used by Thomas Bayes to 
establish his Propositions 4 and 5 has some connection with these considerations. 
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2 Pivotal Models 

I now break into the historical account with an instance of valid fiducial reasoning 
as it now appears to me. Consider a clinical trial on the effect of a (change in) 
treatment intended to change the value of a quantity measurable for each of 
2n patients who come for treatment in matched pairs. One patient, chosen at 
random for the pair, is given the changed treatment while the other is given the 
standard treatment. Distinct pairs are assumed to be independent of each other. 

The effect of the change in treatment may be additive or multiplicative. Both 
cases can be treated along related lines, but for brevity I deal only with the 
additive case. Let us denote by Xi, i = 1,2, ... , n the difference between the 
measures of a matched pair. The effects of the treatment on the population of 
presenting patients can be described by two "pivotal parameters" fl and (j and a 
density cp such that in the population of matched pairs each of the functions 

Pi = (Xi - fl) / (j (1) 

has, independently, the density cp. Some knowledge of cp must be assumed, and 
we take cp to be approximable by a member of the Fechner family of unimodal 
densities 

cp ( u) = f{ exp { - ~ Ma ( u )} (2) 

where the function Ma (u) is defined for 1 :::; a < 00 and M > 0 by 

Ma (u) = ua when u ~ 0 and = (-Mu r when u :::; 0 (3) 

Here, as throughout the paper, f{ denotes a norming constant determined in 
each case by the condition that the density integrates to 1. In the present case 
its values is given by 

1/ f{ = (1 + I/M) 21/ a r (I/a) /a (4) 

The parameter M may be thought of as a skewness parameter, while a may 
be thought of as a tailor kurtosis parameter since it determines thickness, or 
otherwise, of the tails. The pair (M, a) are "shape parameters", contrasting with 
the pivotal parameters (fl, (j). The wide range of shapes obtainable by varying 
M and a is illustrated at the end of this paper. The density (2) has its mode at 
0, so the parameter fl denotes the mode of the distribution of the differences Xi. 

J-l is then the most likely value for the effect of the treatment if it is to be applied 
to another patient randomly drawn from the same population. In the case of a 
medical treatment we are concerned with effects on individual patients. The sum 
of a set of differences has no operational meaning, and the modal effects would 
seem to be the value of primary interest. But if Xi represented an effect on the 
yield of a crop it could well be that we would be more interested in assessing 
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the mean change in total yield. In such a case we might specify the mean of the 
Pi, J Pep (p) dp, to be zero, instead of the mode. 3 

We call our model a pivotal model because it defines, as known functions 
of observables and parameters, the basic pivotals Pi. Since their joint density 
'IjJ (p) = IIiep (Pi) is to some extent known, knowledge of the values of the param
eter would enable us to determine, to a corresponding extent, the distributions 
of the relevant functions of the observations. In our case the relevant functions 
of the observations are the differences Xi between treated and untreated pairs. 
When the observations are made the basic pivotals become determinate, though 
still unknown because the parameters are unknown. The basic pivotals are then 
partially known quantities whose distributions were to some extent known. Piv
otal inference relies on the fact that functions of the basic pivotals may exist 
which do not involve the unknown parameters. When the observations have been 
made these functions will be known quantities. Their known values can be used 
to condition the distribution of the remaining unknowns, and the conditional 
distribution may turn out to be better known than the original distribution of 
the basic pivotals. 

Pivotal inference is rigorously applicable only to data whose distribution is 
taken to be continuous. It is sometimes asserted that because the result of any 
measurement can be given to only a finite number of significant figures, any theory 
of statistical inference in which a fundamental distinction is drawn between con
tinuous distributions and discrete distributions must on that account be flawed. 
Such an argument fails to take account of the fact that continuous transforma
tions of continuous data constitute fundamental tools used in inference; and as 
soon as we depart from simple addition and subtraction any discretisation that 
has been supposed to be applied to a measurement of x will have to be changed 
if we are to treat knowing the value of Xo as logically equivalent to knowing the 
value of X itself. 4 

The fact that "known" versus "unknown" is a distinction of importance in 
statistical inference, but not in pure mathematics, means that the Dirichlet
Bourbaki (DB) concept of a function, as any correspondence f between sets A and 
B such that to each x in A there corresponds just one f (x) in B is not generally 
appropriate in statistics. The expression (1) above defines Pi algorithmically - a 
means is given whereby, for any triplet (Xi, Il, (7) we can effectively caJCulate the 
value of Pi. From it we can deduce that, knowing the distribution of Pi, and the 

3Physicians would ultimately be interested not only in J.l but also in the variability of the 
effect, as measured by (J' ; they should also be interested in the shape of the distribution of 
effects, as indicated by M and a. Thus while J.l will be the parameter of primary interest, 
estimates of the remaining three parameters should also be recorded for possible future use. 

4"1 do not wish to deny either that measurements, however accurate, are in the strictly 
mathematical sense discontinuous, or that counts may be of numbers so large that they could 
without sensible error be treated as measurements of continuous variables." (Fisher - Statistical 
Methods and Scientific Inference (SMSI) 3rd. Ed.p.53). 

31 



value of B, we could deduce the distribution of Xi. This might not be the case were 
the "function" given only DB-extensively. We shall see that it is of importance in 
pivotal inference to know, for example, whether a function of the basic pivotals 
is, or is not, parameter-free, and whether it does or does not depend solely on 
a specific parameter. If the function is algorithmically given, such questions can 
be immediately settled from the form of the algorithm. With functions given in 
DB-extensive form, such questions may remain open unless the set A is finite. In 
what follows we understand "function" to mean "algorithmically given function". 

In the 1930's it was noted by Irving Segal (1938) and, independently, by 
Paul Levy, that any continuous probability model which specifies that the ob
servables Xi, i = 1,2, ... ,n with density e(XI,X2"",xn:Bl,B2, ... ,Bs) depending 
on the parameters B1, B2, ... , Bs, can be expressed in pivotal form. We first find 
FI (Xl; Bb B2, .'" Bs), the cdf of the marginal distribution of Xl; then we find 
F2 (x2IxI; BI, B2, .. " Bs), the cdf of X2 given Xl; then we calculate the distribution 
F3 (x3lxl, X2; B1, B2, .. " Bs), and so on. Then we obtain a specification logically 
equivalent to the original e by saying that the point (FI , F2 , ... , Fn) is uniformly 
distributed over the unit n -cube. Such a transformation to pivotal form is clearly 
not unique, since we may change the order in which the Xi are taken; but so long 
as the e is taken to be known exactly, all the n! possibly distinct pivotal forms 
are logically equivalent to each other, 

It is otherwise in the more realistic case when, as here, the forms of our 
densities are not known precisely. Thus the precise forms of the functions Fi in 
the Levy-Segal transformation cannot be known, and the whole procedure loses 
precision. We have no guarantee that the transformed specification is logically 
equivalent to the original one. An advantage of initially specifying the model in 
pivotal form is that it allows us, as here for example, to specify quite precisely that 
it is the mode I-" which we wish to estimate without having to specify precisely 
what form the observational distributions take. Measurements are invariably 
made to finite accuracy, and are finite in number, so that we can hardly ever know 
our distribution shapes exactly; but in pivotal inference we avoid the pretense of 
exactness otherwise necessary in our model formulations. 

Another logically important consequence of the pivotal mode of specifying a 
model is, that it defines the class of functions with which we have to deal -
the "fundamental probability space" of random variables under consideration. 
Continuous functions of the basic pivotals will themselves be pivotals with distri
butions known to a degree of accuracy determinable from the form of the function 
in question and the degree of accuracy with which the distribution of the basic 
pivotals is known. This will not be true of functions of the observations andlor 
parameters which are not expressible as continuous functions of the basic pivotals. 

In case this should seem a severe limitation on the range of application of the 
pivotal mode of inference, we may point out that any function of observations 
andlor parameters can be added to the basic pivotal if it is judged to have a 
distribution known a priori to an accuracy comparable with that of the distribu-
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tion of the basic pivotals. Extending the basic pivotal in this way will, of course, 
mean extending the assumptions on which our inference is based. The objective 
correlative of the basic pivotal is the real random mechanism which generates our 
observations. Our basic pivotal and what we say about its distribution should 
express what we claim to know about this mechanism. 5 

3 Pivotal Inference 

In pivotal inference we try to transform the basic pivotals p to a new set T (p) = 
(a, b, c) by a continuous 1-1 transformation T to a form T (p) = (a, b, c) in which a 
is the maximal function of p which involves only the observations, b is the maximal 
function of p which involves only that function f.1, of the pivotal parameters which 
we wish to estimate, while c is the "complementary" pivotal required to make 
the transformation T 1 - 1. In our medical example we set 

P =? T (p) = c (bl + a) (5) 

subject to the conditions 

l' a = 0 and a' a = n (n - 1) (6) 

Here 1 denotes an n-vector of 1 's and' denotes transpose. Then a little algebra 
gives the inverse transformation as 

a = (x - x.l) Vn/sx, b = (x - f.1,) Vn/sx, c = sx/(J'Vn 
while the Jacobian is 

J (a, c) = .6. (a) cn - 1 

where 

.6. (a) = n (n - 1) / I an - an-l I, 

(7) 

(8) 

(with an and an-l expressed in terms of aj, j = 1,2, ... , n - 2 using (6)) is a 
determinant involving only nand a. 

It is easy to see that in the model we have taken for our example, a is the 
maximal parameter-free function of the basic pivotals p, while b is the maximal 
function of p which involves the parameter function of interest, f.1" but no other 
parameter. In this example the separation into the form (a, b, c) is complete. The 
joint probability density of (a, b, c) is 

(9) 

5Those who take the view that all probabilities represent personal betting odds may here 
replace" claim to know about" by "are agreed about" . 
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Since the function Ma is homogeneous of degree 0:, we can write this density 
as 

(10) 

where 

We now introduce the suffix 0 to denote the operation of substituting, in a piv
otal, the observed values of all the observables in it. With this notation, in our ex
ample, a becomes a numerically known quantity ao = (xo - io.I) v'n/ SxO, similarly 
b becomes a numerically known function bo = (io - f-l) fo / SxO of the unknown 
parameter f-l, while C becomes a numerically known function Co = sxo/erylri of er. 
The values of bo and Co remain unknown so long as nothing further is known about 
f-l or er. If M and 0: were known exactly, then Ho would become the numerically 
known function (fo/sxot L,iMa (XiO - f-l). With M and 0: remaining unknown, 
Ho becomes a family of functions which mayor may not change drastically over 
the plausible range of (M, 0:). 

Now suppose we are told the value of ao of a before we are told the values 
of b or c. Since neither f-l nor er are involved in a, knowledge of a gives us no 
direct information about either parameter. But the joint density of (b, c) is now 
the conditional: 

(12) 

and unless we gain further information about the value of c, for any set B the 
probability Pr{bo E B} is found by integrating over B the marginal density: 

((bJao) = K J cn-lexp{-~caH(b,ao)}dc = K/{H(b,ao)}n/a, 

absorbing into K the Gamma function into which the integral converts. So long 
as nothing further is known about er, Co remains unknown and the density ((bJao) 
remains applicable. 

By way of comparison with a classical result, suppose we were prepared to 
assume M = 1 and 0: = 2 - i.e. that the density of the basic p is spherical 
standard normal N (0,1). Then 

H (b, ao) = (n/ s;) L,i (Xi - f-l)2 = (n/ s;) [n (i - f-l)2 + (n - 1) s;] 
= (n - 1) [1 + b2 / (n - 1 )r/2 

from which it can be seen that the conditional density of b is Student's density 
with n -1 degrees of freedom, K/ [1 + b2 / (n - I)r/2 • The fact that ao does not 
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appear explicitly here is due to the fact that for the normal distribution, (x, S2) 
is a sufficient pair. 

Whatever the values of M and et' {H (b, ao)}njO' can be calculated from (11) 
as a function of b and of ao, so that the normalised density of b 

((blao) = [H (b, ao)rn/O' / J [H (b, ao)rn/O' db (13) 

can be evaluated by a single quadrature. Given any set E, a further single 
quadrature (which can be programmed as part ofthe previous one) will therefore 
give Pr{b E Elao} and Pr{"'b E Elao}. 

Now when the observations x = xo, Sx = SxO, are known, for any set E the 
proposition bo E E is logically equivalent to Il E {Il: (xo -Il)y'n/sxo E E}. The 
1-1 mapping 

E =? Fo (E) = {Il: (:To -Il) y'n/sxo E E} 

maps the field {E} of E sets onto the field {F} of Il-sets. Associating with 
any element F of {F} the numerical value of Pr{b E Elao}, where b is the 
corresponding element of {E} defines a probability measure on {F}, called the 
fiducial probability measure for Il. 

We might be interested in (J as well as in Il. If so, we would take b to be 
the vector pivotal ((x - Il) y'n/ (J, sx/ (Jy'n), and then c would be null. The joint 
density of the two components of b would be given by (12) and then to any subset 
E of the half-plane we could attach a probability Pr{b E E}. When the observed 
values xo, SxO are known, this probability can attach to the set 

In practice M and et' will not be known exactly. The programme for computing 
H (b, ao) can, however, be written with M and et' as programme parameters. 
These can then be varied over their plausible range to asses the accuracy which 
can be attached to the fiducial distribution. 

Perhaps it should be added that we have taken a simple concrete example to 
avoid heavy notation. In fact the approach used to this problem extends to most 
of what is called "Linear statistical inference". 

4 Fiducial Probability and its Frequency Interpretation 

The fiducial probabilities thus defined are mathematical probability measures in 
the sense of Feller (Vol.II,pp.111-2). As indicated in Feller's book, we can define 
probability densities f (B) for the parameters involved with the property that for 
any parameter set F, the fiducial probability attached to F is IF f (B) dB. But to 
give the fiducial probabilities their objective, aleatory, or statistical character in 
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the sense used by Hald in Volume I (p. 28) of his history 6 , we must imagine the 
clinical trial under discussion to be one of a series of independent clinical trials, 
or other experiments with similar logical structure. 

There are several ways of giving a frequency interpretation to an event's 
having probability p. Perhaps the broadest is that which refers to a "long 
run" of N independent trials with events having probabilities p,p',p", ... , pN, 
when the proportion of events which will occur will be close to the average 
PN = (p + p' + pI! + ... + pN) / N. A simpler version takes p = p' = pit = ... = p, 
corresponding to repeated independent "throws" of the "same" die give a long 
run frequency approaching p. Unnecessary restriction to this simpler version has 
led to the use of the phrase to which Fisher objected so strongly: "Repeated 
sampling from the same population" (RSSP). As he used to say, when a scientist 
seriously "repeats" an experiment, he always has in mind at least the possibility 
that it may turn out not to be the same population from which he is sampling -
if he knew it was the same he would think of himself either as enlarging his orig
inal experiment, or wasting his time. For the frequency interpretation or fiducial 
probability we would therefore think of a series of experiments involving various 
pivotal parameters (), ()I, ()", ... not known to be connected one with another. We 
are therefore throwing different dice, and may very well consider different events, 
with probabilities p, p', p", ... Independence will still imply long run convergence 
of the average frequency of occurrence to the long run average of the p'S. The 
frequency interpretation of fiducial probabilities involves repeated sampling from 
different populations - RSDP instead of RSSP. In appealing primarily to RSDP 
instead of RSSP for its frequency interpretation, fiducial probability differs in its 
logical nature from Neyman's concept of "confidence". As will be noted below, 
insistence on taking RSSP as basic can lead to anomalies. 

Another important difference between fiducial probability, which involves 
RSDP, and probabilities involving RSSP, is that any single statement of fiducial 
probability relates to a proposition ha E B that is already true or false, though 
we do not know which of these possibilities holds. We shall not know whether it 
is in fact true or false until we know the value of the parameter involved - and 
typically we never know this exactly. 

The fact that the b involved is required to be a function of the basic pivotals 
does not only exclude some of the difficulties from which the fiducial argument 
has been judged to suffer; it may put a severe restriction on the parameter func
tions for which fiducial distributions can exist. The fiducial probability attached 

6Hald adds" or epistemic" to" subjective or personal". I fear that the additional word is open 
to misunderstanding. The probability of" I" with an unbiased die is 1/6. If it becomes known 
that the number showing is odd, this probability becomes 1/3. Because of the intervention of 
"known", it is arguable that the 1/3 probability is "epistemic". I imagine that Hald would 
agree with me that it remains aleatory. The Greek philosophers who prided themselves on 
being E1WYT'f}/-l0VOL did not, so far as I know, distinguish between private knowledge obtained 
by mystical or other such means, and the type of public knowledge characteristic of science. 
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to a set e to which a parameter function 0 may belong is equal to the proba
bility, before th'e observed values entering into the pivotal were known, that the 
corresponding pivotal t (0) belonged to the set T in the space of pivotals. This 
can be determined only if there is a function t (b) which, given the observations, 
involves only O. With the pivotals (bI, b2 ) referred to above, for example, if we 
take 0 = f1 + 30", we can set t (0) = (b l - 3y'n)/b2 and obtain a fiducial distribu
tion for f1 + 30". But for 0 = f12, no such t exists and we cannot derive a fiducial 
distribution for f12, VVhen we know xo, we can attach a fiducial probability to 
the statement f1 E {( -4 < f1 < -1) U (1 < f1 < 4)}, and we may ab breviate this 
to 1 < p2 < 2; but .the equivalence of this abbreviation to a statement about a 
function fl2 of the basic pivotals will cease when x takes another value. 

The theory of pivotal inference thus sketched seems to provide a contradiction 
free interpretation of Fisher's fiducial argument, which is why I have ventured 
to use the term "fiducial probability". The key restriction to functions of the 
basic pivotals secures the uniqueness of the maximal ancillary, since if al and 
a2 are both parameter-free functions of the basic pivotals, so is (aI, a2)' Thus 
difficulties such as those raised by Mauldon, and Basu, where there appear to be 
multiplicities of ancillaries, do not arise with the present formulation ,7 

An exactly similar argument shows that the maximal pivotal involving only 
the parameter function of interest is unique. Thus the difficulties raised by Tukey 
do not arise either. 

Although the unique maximal pivotal involving only the parameter of inter
est always "exists" it need not give rise to a valid fiducial distribution. In the 
Behrens-Fisher problem discussed below, the maximal pivotal for the parameter 
of interest takes only three distinct values, and so cannot give rise to a fiducial 
distribution. Nor need it be the case that the fiducial complement of a maximal 
pivotal is free from the parameter function of interest, the maximal pivotal may 
not contain all the relevant information. Fisher never claimed universal appli
cability for his fiducial argument; only that the form of statement to which it 
leads is particularly easy to understand and that its domain of applicati~n is 
sufficiently wide to make it of considerable interest. 

5 More History - Bartlett, Fisher, and the Behrens
Fisher Problem 

Fisher's next paper on the fiducial argument appeared in 1935 in Annals of Eu
genics, the journal he then edited. It contains the passage: 

In general it appears that if statistics TI , T2 , T3 ••• contain jointly the 
whole of the information available respecting parameter OI, O2 , ()3 ... , 

7The mere existence of multiplicities of this kind would not be fatal to the theory. Data sets 
exist from which the probability of a proposition A can validly be assigned two distinct values. 
se Barnard (1977). 
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and if functions t l , t2 , t3 , ... , can be found, the simultaneous distribu
tion of which is independent of the parameters 81 ,82 ,83 , ... , then the 
fiducial distribution of 81, 82 , 83 , •.. , simultaneously may be found by 
substitution. 

He went on to propound his solution to the Behrens-Fisher (BF) and the 
variance ratio (VR) problems in a way which assumes that one can manipulate 
fiducial distributions as if the parameters involved were random variables having 
the Kolmogoroff property. That his idea in this area never ceased to evolve is 
shown by the footnote he added shortly before his death to the reprint in his 
Collected Papers: 

After "appears", insert "likely" - R.A.F. 

But for many years his "solution" to the BF problem was a source of difficulty. 
Soon after Fisher's BF solution appeared, Bartlett pointed out, in a paper 

(1936) published by the Cambridge Philosophical Society (CPS), that with all 
Fisher's tests up to that time, in a long run of cases in all of which the hypothesis 
tested was true, the frequency of rejection was equal to the critical P-value a used 
in making the test; but with Fisher's BF test the hypothesis would be rejected 
when true with a frequency less than a. Bartlett indicated that it was possible to 
devise a test which would have the "a-frequency property", though he accepted 
that his test had unsatisfactory features. Fisher submitted a reply to Bartlett's 
paper for publication by the CPS, but it was refused publication. Considering 
himself unfairly treated, Fisher resigned his long-standing membership of the 
CPS. Bartlett was led to believe that Fisher had resigned, not because they 
had refused to publish Fisher's paper, but because they had published Bartlett's 
paper. [Following an appeal by Harold Jeffreys Fisher rejoined]. 

Another misunderstanding between Bartlett and Fisher was developing on 
the subject of "sufficiency". Bartlett's definition agreed with that still much 
in use in requiring that the distribution of the observations, conditional on a 
statistic sufficient for a parameter 8, should not involve the parameter 8. Thus 
for normal samples the statistic s; was not sufficient for (J2 because the density 
of x, N (11, (J2 / n), itself involves (J2. For Bartlett it was the "theoretical statistic" 
n (x - 11)2 + (n - 1) s; that was sufficient for 11. Fisher had not given a formal 
mathematical definition of sufficiency, though he had referred to s; as being 
sufficient for (J2. His letter to me dated 17 October 1953 suggests that he was 
still unwilling to be tied down to a precise set of definitions in this regard, as 
in so many others. The question of the meaning of "sufficiency" resurfaced, 
with Williams in place of Bartlett, after Fisher was asked to analyse the rock 
magnetism data that led to the current theory of continental drift cf. Barnard 
(1963). 

It soon became clear that the sufficiency definition used by Bartlett and oth
ers could apply only if the densities involved belonged to the exponential family. 
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The Fisher's insistence on sufficiency as a necessary requirement for the fiducial 
argument led many to refuse to accept the latter, on the ground that we could 
never in practice know the observational distribution with the precision required 
to determine whether or not is was of exponential type. It is an appealing fea
ture of the pivotal mode of inference that it is the precisely known forms of the 
basic pivotals, - describing the logical structure of the relationship between the 
pivotal parameters and the observations - not the inexactly known form of the 
pivotals' joint distribution, which is critical in determining the possibility, or 
otherwise, of arriving at a fiducial distribution. This conclusion was implicit in 
Fisher's 1934 paper .. And Bartlett certainly saw the implications, at least to some 
extent - perhaps more clearly than did Fisher himself. He proposed the term 
"quasi-sufficient" for the sample scale and location parameters as estimates of the 
population location and scale of a continuous distribution of arbitrary form. And 
unlike so many of his contemporaries, he clearly rejected Neyman's insistence on 
prespecification of error rates regardless of the inevitable variations of precision 
associated with variations in the ancillaries. It is a great pity that this profoundly 
important paper was published in the Miscellanea section of Biometrika (Vo1.31, 
1940, pp.391-2) under the less than informative title "A Note on the Interpreta
tion of Quasi-Sufficiency". But any hopes that further discussions such as those 
organised through the 1930's by the Industrial and Agricultural Research Section 
of the Royal Statistical Society might eventually result in better mutual under
standing between these two great men were dashed by the outbreak of war which 
scattered the leading personalities far and wide around the country and set them 
to work on a variety of more immediate tasks. 

The second world war saw tremendous expansion both in the applications 
of statistical methods, and in the use of probability for construction of "oper
ational research" models of situations. The developments in the USA and the 
UK took place in the absence of an adequate literature in English on mathemat
ical probability. In developing the theory of sequential tests, for example, one 
has to study papers well over 100 years old concerning the classical "problem of 
points". The most serious account in English of mathematical probability theory 
was in Cramer's little book "Random Variables and Probability Distributions" 
(1937) which does not contain a precise definition of "random variable". Such 
a definition is still absent from Cramer's 1946 account of mathema£lcal statis
tics. Kolmogoroff's classic '~Grundlagen der Wahrscheinlichkeitsrechnung" was 
not available in English until 1950. M.G. Kendall had persuaded a number of 
British mathematical statisticians of the need for a text on the "Advanced Theory 
of Statistics" in 1942, but he was left on his own to produce the first volume, on 
Distributions, in 1943. In that year an early version of Wilks's treatise became 
available in mimeographed form. The full printed version was delayed until 1962. 

By the time the war ended interest in the foundations of statistical inference 
had shifted away from the fiducial argument. Sampling inspection problems 
had drawn attention once more to Bayes' Theorem; and the likelihood ratio 
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sequential test led much discussion around the likelihood principle. The use of 
Haar (invariant) measure to obtain "Frequency justifications" for sequential tests 
of opposite hypotheses led to suggestions for the 'reconciliation' of the three main 
theories of statistical inference, due to Fisher, Jeffreys, and Neyman and Pearson. 
It then seemed to me it might be possible to interpret Fisher's fiducial probability 
as a likelihood integrated with respect to a relevant Haar measure. A similar idea 
had occurred to Tukey but when Francis Anscombe in the early 1950's arranged 
for the two of us to meet, along with one or two others, at Imperial College, we had 
agreed that this interpretation would not apply to the correlation coefficient, the 
very first example of fiducial distribution given by Fisher. The group invariance 
idea was taken up by Fraser, who used the term "structural inference" to describe 
the central concept. 

In 1954 attention again focused on the fiducial argument as a result of work 
by Monica Creasy on the fiducial distribution of the ratio of two independent 
normal means J1 and 0:J1. U sing arguments similar in form to those used by 
Fisher to derive his solution to the BF problem, she was lead to fiducial limits for 
0: which sometimes differed quite drastically from those derived in the 1930's by 
Fieller and expounded in subsequent editions of Fisher's "Statistical Methods for 
Research Workers" (SMRW). Fieller's limits were also confidence limits, though 
when interpreted as such they suffered from the anomaly that the "guaranteed 
coverage frequency" corresponding to confidence 1 in RSSP was attained only 
by reason of the fact that every now and then the limits would be given as 
(-00, +00). Since these limits would clearly cover the true value 100% of the 
time, it immediately follows that the coverage frequency of any finite limits must 
be less than 1001%. Neither the confidence concept nor the fiducial argument 
appeared free from difficulties in this problem. 8 Fisher himself did not take part 
in the discussion of what came to be known as the "Creasy-Fieller" problem. He 
later pointed out, in effect, that Fieller's treatment, which he had followed, did 
not require the assumptions made by Fieller and by Creasy. Denoting the sample 
observables by x and y, it followed from their assumptions that the pivotal y - o:x 

was normally distribution about zero with unknown variance. But the converse 
was not true - their assumptions did not follow from the mere assumption that 
y-o:x was normal with zero mean. Thus Creasy was using further "information", 
and her inference could well be different. He did not, however, go into details. 

Further examples suggesting non-uniqueness of fiducial intervals were given in 
1955 by Mauldon and in 1957 by Tukey. The 1956 publication of Fisher's "Statis
tical Methods and Scientific Inference", with its vigorous restatement and defense 
of the fiducial argument drew attention to the problems raised. He asserted in a 
footnote that 

Probability statements derived by arguments of the fiducial type have 
often been called statements of "fiducial probability". This usage 

8For a discussion of this problem from the pivotal point of view see Barnard (1994). 
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is a convenient one, so long as it is recognised that the concept of 
probabilit'y involved is entirely identical with the classical probability 
of the early writers, such as Bayes. 

But in 1959 Stein pointed to the case where we are given unrelated observa
tions Xi, i = 1,2, ... , n having means /-li and unit variance and where the parameter 
function of interest is 82 = L,i/-lT- The mode of reasoning used by Fisher in the 
BF problem would lead to the conclusion that the /-li were spherically normally 
distributed around the end point of the vector X; but the coverage frequencies 
estimated from this conclusion could be wildly misleading. 

At the Paris session of the ISI in 1961 Fisher's return fare to Adelaide had 
been paid by the French CNRS; but the Paris to Adelaide ticket had been sent 
to Adelaide. Daniel Dugue, Fisher, and I, spent the best part of a day touring 
Paris in a taxi, with Daniel trying to persuade Air France, the CNRS, and other 
bureaucrats to do something to rescue the situation. We learned then just how 
near to being gold bullion an airline ticket is. Fisher's wrath was always liable 
to find target in the nearest person to hand, and I did my best to keep him plied 
with questions about the precise logical nature of pivotals and the distributions 
derived from them, partly, of course, to try to clarify my mind, but partly also 
to prevent him focusing on the air ticket muddle. 

That was the last time I saw Fisher. We continued to correspond after his re
turn to Adelaide, and he also corresponded with David Sprott and Donald Fraser. 
His discussions with Sprott and Fraser centered around the fiducial distribution 
of the bivariate correlation coefficient, starting from the puzzles arising from the 
multiplicities to which Mauldon had drawn attention. Details of his correspon
dence can be studied by reference to the differences between the three editions of 
SMSI, and to the correspondence between Fisher and Sprott, Fraser and myself, 
published in Henry Bennet's edition of Fisher's "Corresponden~e on Statistical 
Inference and Analysis." Alas, it was only after Fisher's premature death that 
the idea of "pivotal inference", as sketched above, occurred to me and to David 
Sprott. What Fisher would have thought of it must therefore remain unknown. 
The only clue we have is his footnote inserting "likely" after the statement quoted 
above. 

It now appears that Fisher's statement quoted at thebegirining 6f section 5 
is true, but only if we note that we cannot assume that the Oi, i = 1,2,3, ... 
thereby become Kolmogoroff random variables, i.e. functions on a probability 
space, such that functions of them are in turn also random variables. As Bartlett 
(1937) pointed out, in essence, long ago, it is the pivotal which is the Kolmogoroff 
random variable, not the parameter. Given the fiducial distribution of a (vector) 
parameter 0 based on a (vector) pivotal T it is possible to deduce a fiducial 
distribution for a function TJ (0) only if we can find a function G (T) such that 

G(T) =H(J2,TJ({))) 
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where !.!2. denotes the observables, and H (!.!2., 'I}) is of such a form that it can serve 
as a pivotal for 'I}. In the BF problem the pivotal !.!2. has four components which 
can be written: 

tl = X - p/ s, t2 = (x + d - f-l - 8) frs, t3 = s/ a, t4 = rs/ pa. 

The parameter of interest is 8. But as proved in Barnard (1982) the only 
function of T of the form H (x, 8) takes at most 2 distinct values, and so it 
cannot serve as a pivotal for 8. The corresponding result for the ratio is proved 
in Barnard and Sprott (1983). 

Had this restriction been recognised earlier, there would have been no need 
for the considerable controversy that has attached to the BF problem over many 
years. 

6 Fiducial Probability and Confidence 

Commenting on a paper submitted to the ISI Review in which I attempted to 
make some of the points made above, a referee remarked that what I have here 
ventured to call "fiducial probability" appeared to him to have a strong resem
blance to "confidence". I have already mentioned Egon Pearson's 1927 letter to 
Gosset containing the germ of the confidence interval idea; and perhaps I may 
say now that in the reminiscent conversations I was able to have with Egon after 
his retirement to Pendean it became clear to me that in so far as such a gentle 
character as he was could be said to harbour anything remotely approaching jeal
ousy or resentment, Egon felt that his share in the ideas underlying Neyman's 
1937 paper setting out the theory of confidence sets had gone unrecognised. (The 
perceptive reader of Constance Reid's account of the history of that paper will 
see that her account by no means conflicts with this view. It should be borne in 
mind that it was only a few years since Egon had been at pains to persuade Jerzy 
that he should finally abandon the "classical" Bayesian approach to inference in 
which he had been trained). 

The referee's comment suggests that it will be worth while to make clear some 
of the ways in which fiducial probability differs from confidence. Principal among 
these is the idea of RSSP which is not involved in fiducial probability but which 
is involved in Neyman's confidence concept. 

Until Bartlett (1935) pointed out that in the Behrens-Fisher problem the 
probability of rejection of the hypothesis 8 = 0 was less than Fisher's P-value, 
most statisticians (including, for example, Egon Pearson) seem to have thought 
that the differences of concept between fiducial limits and Neyman's concept of 
confidence limits were only minor. Fisher noted early on that in allowing the 
possible use of inefficient statistics Neyman's original proposal could give rise 
to a multiplicity of "conflicting probability statements". Neyman responded by 
saying, correctly, that his "confidence" statements were not to be understood as 
probability statements. In devoting one of his last papers to a method of obtaining 
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confidence limits for the cross-ratio in a 2x2 table, Fisher acknowledged, if only 
implicitly, that 'the confidence concept has its uses. Neyman devoted a paper to 
demonstrating the difference between his concept and Fisher's, though so far as 
I know he never asserted that Fisher's "fiducial argument" was fallacious. 

In the theory of confidence sets we are to envisage RSSP resulting each time 
in a set calculated from the new observations on the same population. The long 
run frequency with which the set covers the (fixed) true parameter value () is to 
be bounded below by a predetermined positive I chosen by "the experimenter". 
Subject to this condition the frequency with which any false value is covered is 
to be minimised, SQ far as possible. Extremely useful though his idea is, the 
element of pre-choice involved shows that it constitutes "inductive behaviour", 
to use Neyman's accurate term, rather than an inferential process such as pivotal 
inference exemplifies. With fiducial inference anyone is at liberty to nominate 
the set 8 of possible () values in which he/she is interested, and the fiducial 
probability associated with e will indicate how much confidence (in the non
technical sense) could be associated with a judgment that () E 8, if we should 
choose to make it. 

That the confidence concept essentially involves RSSP has become clearer 
with work stemming from the late Jack Kiefer's idea of conditional confidence -
a brilliant method of avoiding the otherwise disturbing implications sometimes 
arising from the unconditional approach adopted originally by Neyman. In re
peating sampling from a single normal population with unknown mean f1 and 
unknown variance cr2, the optimum confidence sets are of the form {f1 : x - uSx < 
f1 < x + uS x } where u is 1/ Vn times the relevant percentage point of Student's 
distribution. In repeated sampling, the midpoints of these sets vary around f1 
independently of the varying length 2usx of the intervals. It immediately follows 
that sets for which Sx is larger than usual must cover the true value more fre
quently than sets for which Sx is smaller than usual. The increase in coverage 
probability resulting from conditioning on the event Ixl/ Sx < K, for a suitably 
chosen K, is surprisingly high for sample sizes less than 10. A recent paper by 
Goutis and Casella (1992) shows that if we make a guess g as to the true value 
of f1, and shift the origin of measurements to g before setting up our confidence 
procedure (moving the origin back afterwards, if need be), then a good guesser 
can hope to get a large K and so raise the expected confidence very conSIder
ably. There is nothing paradoxical about this - clairvoyance has often been 
regarded as desirable, if only it were possible. But is does serve to emphasise 
that the procedure involved cannot be regarded as one of scientific inference (at 
least until repeatable procedures for obtaining clairvoyance have been described 
and tested.) 

In a recent paper (1991) Zabell has suggested that the possibility, not men
tioned by Fisher, of conditioning on Ixl/ Sx < K is the Achilles heel of Fisher's 
argument for the fiducial distribution of a normal mean. It is quite possible that 
Fisher did simply overlook this possibility; but such an omission more probably 
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reflects the fact that the repetitions Fisher had in mind would have involved ar
bitrary variations in the Il'S involved - not RSSP but RSDP. With RSSP we can 
set a lower bound to the frequency with which Ixll Sx < ]{ will occur. But with 
RSDP we can set no such lower bound, so that if we condition we may be doing 
so on an event of zero long run frequency. Within the above account of pivotal 
inference, conditioning on the observed Ixll Sx would be disallowed because the 
function Ix I1 SX is not expressible as a continuous function of the basic pivotals. 

7 Fitting the Fechner 

The non-pivotal parameters M and QC may be estimated from the ancillary a. We 
may use the marginal likelihood based on the observed a obtained by integrating 
out band c from the expression for the joint density of (a, b, c). If the marginal 
likelihood functions are routinely plotted for trials of a given type, their combi
nation can provide information helpful in the interpretation of the results and in 
judgments as to the relative plausibility of various values of M and QC. 

Alternatively, the moment-ratios g1 and g2 of a regarded as a sample can be 
equated to the expressions in terms of M and QC for the corresponding popula
tion values /'1 and /'2, as suggested in Fisher's "Statistical Methods for Research 
Workers", Section 14. As another alternative we may take a set of four per
centiles of a, ql < q2 < q3 < q4, and equate the location-scale invariant ratios 
(q4 - q1) I (q3 - q2) and (q4 - q3) I (q2 - ql) to their population values. An advan
tage of (g1, g2) is, that testing these for departure from normality is straightfor
ward, using Fisher's k-statistics. Should no significant departure from normality 
be indicated, it could be reasonable to assume normality, thus avoiding the ne
cessity for the quadratures indicated around equation (13) above. Before going 
to the trouble of performing these quadratures in any case a plot of the function 
11 H (ba, ao) for various values of M and QC may well indicate that for the sample 
to hand the ancillary is sufficiently near to normality to justify taking M = 1 
and QC = 2 even though one may know or suspect that the true density is far 
from normal. The principle involved here is related to that involved in Efron's 
"Bootstrap" , which suggests it might be called the "Stirrup". 

The appended graphs, due to Dr. Bruce Worton and Miss K.J. Thomas, show 
some of the shapes in the Fechner family. The latter's M.Sc. (Essex) dissertation 
provides further information. The symmetric densities illustrated in Chapter 3 
of Box and Tiao (1973) are also obtainable along with their skew counterparts. 
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Standard Fechner densities rp (u; M, a) for various values of M and a 
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