Rolf Larsson

BARTLETT CORRECTIONS FOR

UNIT ROOT TEST STATISTICS

Institute of Mathematical Statistics University of Copenhagen

BARTLETT CORRECTIONS FOR UNIT ROOT TEST STATISTICS

Rolf Larsson, January 1994

Abstract

Bartlett correction for the log likelihood ratio, testing for a unit root in an autoregressive process of order one or two, is studied. The correction is numerically calculated for order one, as well as for order two in the special case of a zero nuisance parameter.

1. Introduction

Consider the $\mathrm{AR}(2)$ model

$$
\begin{equation*}
X_{t}=\rho_{1} X_{t-1}+\rho_{2} X_{t-2}+\varepsilon_{t}, \quad t=1, \ldots, T \tag{1.1}
\end{equation*}
$$

where the ε_{t} :s are independent and normally distributed with mean zero and variance σ^{2}, and $X_{0}=X_{-1}=0$. Our object is to test the hypothesis $H_{0}: \rho_{1}+\rho_{2}=1$ against $\neg H_{0}$. We may also rewrite (1.1) in error correction form, i.e.

$$
\begin{equation*}
\Delta X_{t}=\pi X_{t-1}+\gamma \Delta X_{t-1}+\varepsilon_{t} \tag{1.2}
\end{equation*}
$$

where $\pi=\rho_{1}+\rho_{2}-1$ and $\gamma=-\rho_{2}$. Now, the null hypothesis is $H_{0}: \pi=0$, and γ is a nuisance parameter for this test. We say that we test for a unit root of the process.

Now, let us for a moment consider the multivariate version of (1.2), i.e. let X_{t} and ε_{t} be p-dimensional vectors and let π and γ be $p \times p$ matrices. In this situation, an important issue is to test $H(r): \operatorname{rank}(\pi)=r<p$ against e.g. $H(p): \operatorname{rank}(\pi)=p$. This is a multivariate version of the unit root test.

Performing this test in practice, the common thing to do is to use a table of the asymptotic distribution of the likelihood ratio test statistic (the Dickey-Fuller distribution). This is a well-known functional of the vector-valued Brownian motion, which has been simulated by several authors (see e.g. Johansen (1988)). However, if a very large amount of data is not at hand, it has recently been found that (see e.g. Jacobsson (1992)) straightforward use of these tables could be very misleading. Thus, there seems to be a need of small sample correction for the asymptotic test, and it is the purpose of our work to find such corrections. We start by studying the relatively simple scalar model (1.2), but in the future, our aim is to generalize our results to the multivariate case.

2. Bartlett correction

In a pioneering paper (Bartlett (1937)), Bartlett introduced a small sample correction technique, later known as Bartlett correction. The idea is that, instead of looking directly at the test statistic, say S_{T} (with an unknown distribution), which tends to S_{∞} (with known distribution) as $T \rightarrow \infty$, we look at the distribution of $\frac{S_{T}}{E S_{T}}$, which of course tends to the distribution of $\frac{S_{\infty}}{E S_{\infty}}$ as $T \rightarrow \infty$. Thus,

$$
S_{T} \approx E S_{T} \frac{S_{\infty}}{E S_{\infty}}
$$

an approximation which (at least in "standard" cases) turns out to be useful also for moderately large T values. However, a problem is that we might not know $E S_{T}$, but if we can find a series expansion like

$$
E S_{T}=E S_{\infty}+\frac{R}{T}+O\left(\frac{1}{T^{2}}\right)
$$

we get

$$
S_{T} \approx\left(E S_{\infty}+\frac{R}{T}\right) \frac{S_{\infty}}{E S_{\infty}}
$$

This is called the Bartlett correction. In "standard" cases, this correction has been shown to correct also higher moments and fractiles (cf Jensen (1993)) for an overview of the subject).

Testing H_{0} in (1.2), the log likelihood ratio test statistic is

$$
-2 \log Q_{T}=-T \log \left(1-M_{T}\right)=T M_{T}+O\left(\frac{1}{T}\right) \quad \text { as } \quad T \rightarrow \infty
$$

where

$$
\begin{equation*}
M_{T}=\frac{\left(\sum X_{t-1} \Delta X_{t}-\frac{\sum \Delta X_{t} \Delta X_{t-1}}{\sum\left(\Delta X_{t-1}\right)^{2}} \sum X_{t-1} \Delta X_{t-1}\right)^{2}}{\left(\sum\left(\Delta X_{t}\right)^{2}-\frac{\left(\sum \Delta X_{t} \Delta X_{t-1}\right)^{2}}{\sum\left(\Delta X_{t-1}\right)^{2}}\right)\left(\sum X_{t-1}^{2}-\frac{\left(\sum X_{t-1} \Delta X_{t-1}\right)^{2}}{\sum\left(\Delta X_{t-1}\right)^{2}}\right)} . \tag{2.1}
\end{equation*}
$$

(If nothing else is said, the summation goes from $t=1$ to $t=T$.) It follows that

$$
T M_{T} \xrightarrow{\mathrm{~d}} \frac{\left(\int_{0}^{1} W_{t} d W_{t}\right)^{2}}{\int_{0}^{1} W_{t}^{2} d t} \stackrel{\text { def }}{=} Z \quad \text { as } \quad T \rightarrow \infty
$$

where W_{t} is a standard Wiener process (Brownian motion). In the following, we will derive the expansion

$$
\begin{equation*}
E T M_{T}=E Z+\frac{R(\gamma)}{T}+O\left(\frac{1}{T^{2}}\right), \quad R(\gamma)=R_{1}+R_{2}(\gamma) \tag{2.2}
\end{equation*}
$$

Indeed, looking at the corresponding $\operatorname{AR}(1)$ test statistic

$$
\begin{equation*}
Z_{T} \stackrel{\text { def }}{=} T \frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum \varepsilon_{t}^{2} \sum S_{t-1}^{2}}, \quad S_{t} \stackrel{\text { def }}{=} \sum_{i=1}^{t} \varepsilon_{i} \tag{2.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
E Z_{T}=E Z+\frac{R_{1}}{T}+O\left(\frac{1}{T^{2}}\right) \tag{2.4}
\end{equation*}
$$

the Bartlett correction for the $\operatorname{AR}(1)$ test. Accordingly, we may view the term $\frac{R_{2}(\gamma)}{T}$ as a correction from the $\operatorname{AR}(1)$ to the $\mathrm{AR}(2)$ test. (Naturally, this is where the nuisance parameter γ enters.) We will be able to calculate R_{1} and $R_{2}(0)$ numerically.

To get a feeling for the shape of $R_{2}(\gamma)$, we have performed some simulations of $E T M_{T}$ for $T=10$, 20,50 and 100 with $1,000,000$ replications, which are displayed in figure 1 . (The upper curve corresponds to $T=100$, the next to upper to $T=50$, and so on.) From this figure, we see that, for $|\gamma| \leq 0.3$, the
approximation $R_{2}(\gamma) \approx R_{2}(0)$ is fairly accurate for $T \geq 20$, whereas for lower T values we might have to consider the linear approximation $R_{2}(\gamma) \approx R_{2}(0)+\gamma R_{2}^{\prime}(0)$.

Figure 1:

3. A representation of $R_{2}(0)$

If $\gamma=0$, it follows from (1.2) that under $H_{0}: \pi=0, X_{t}=\sum_{i=1}^{t} \varepsilon_{i}=S_{t}$, i.e. $\Delta X_{t}=\varepsilon_{t}$, implying $\sum \Delta X_{t} \Delta X_{t-1}=\sum \varepsilon_{t} \varepsilon_{t-1}$ and $\sum X_{t-1} \Delta X_{t-1}=\sum S_{t-1} \varepsilon_{t-1}$. Multiplying out the main term in (2.1), we have
$T M_{T}=T \frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum \varepsilon_{t}^{2} \sum S_{t-1}^{2}}\left(1-\frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t-1}}{\sum S_{t-1} \varepsilon_{t} \sum \varepsilon_{t-1}{ }^{2}}\right)^{2}\left(1-\frac{\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}}{\sum \varepsilon_{t}^{2} \sum \varepsilon_{t-1}{ }^{2}}\right)^{-1}\left(1-\frac{\left(\sum S_{t-1} \varepsilon_{t-1}\right)^{2}}{\sum S_{t-1}^{2} \sum \varepsilon_{t-1}{ }^{2}}\right)^{-1}$.
Now, since (for convenience, we assume $\sigma^{2}=1$ in the following) $\sum \varepsilon_{t}{ }^{2}=T+O_{p}(1), \sum \varepsilon_{t-1}^{2}=T+O_{p}(1)$, $\sum \varepsilon_{t} \varepsilon_{t-1}=O_{p}(\sqrt{T}), \sum S_{t-1} \varepsilon_{t}=O_{p}(T), \sum S_{t-1} \varepsilon_{t-1}=O_{p}(T)$ and $\sum S_{t-1}^{2}=O_{p}\left(T^{2}\right)$ (the notation $X_{T}=$ $O_{p}\left(T^{\alpha}\right)$ means that $\frac{X_{T}}{T^{\alpha}}$ converges in distribution to a "non-degenerate" random variable as $\left.T \rightarrow \infty\right)$, Taylor expansion yields

$$
\begin{aligned}
T M_{T} & =T \frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum \varepsilon_{t}^{2} \sum S_{t-1}^{2}}\left(1-\frac{2}{T} \frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t-1}}{\sum S_{t-1} \varepsilon_{t}}+\frac{1}{T^{2}}\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t-1}}{\sum S_{t-1} \varepsilon_{t}}\right)^{2}+\right. \\
& \left.+\frac{1}{T^{2}}\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}+\frac{1}{T} \frac{\left(\sum S_{t-1} \varepsilon_{t-1}\right)^{2}}{\sum S_{t-1}^{2}}+O_{p}\left(T^{-\frac{3}{2}}\right)\right)
\end{aligned}
$$

and so, since $\sum S_{t-1} \varepsilon_{t-1}=\sum \varepsilon_{t-1}{ }^{2}+\sum S_{t-2} \varepsilon_{t-1}=T+\sum S_{t-1} \varepsilon_{t}+o_{p}(T)$, we have in view of (2.2) and (2.4)

$$
\begin{align*}
& \frac{R_{2}(0)}{T}=-2 E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t}\left(1+\frac{1}{T} \sum S_{t-1} \varepsilon_{t}\right)}{\sum S_{t-1}^{2}}\right)+ \tag{3.1}\\
& +\frac{\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}\left(1+\frac{2}{T} \sum S_{t-1} \varepsilon_{t}+\frac{2}{T^{2}}\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}\right)}{\sum S_{t-1}^{2}}+T E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}\left(1+\frac{1}{T} \sum S_{t-1} \varepsilon_{t}\right)^{2}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right) .
\end{align*}
$$

(We will come back to the calculation of R_{1} in chapter 6.) Now, we claim that the three terms in the r.h.s. of (3.1) are $O\left(T^{-1}\right)$, i.e. that $R_{2}(0)=O(1)$. In view of the orders of magnitude of the sums, this is evidently true for the second and third terms. However, by the same reasons the first term appears to be of order $T^{-\frac{1}{2}}$, but this is a false statement. This is so, since as is shown in Lemma 4.2 below, $\sum \varepsilon_{t} \varepsilon_{t-1}$ is asymptotically uncorrelated with $\sum S_{t-1} \varepsilon_{t}$ and $\sum S_{t-1}^{2}$. Indeed, as will be shown in theorem 5.2 , this term is also $O\left(T^{-1}\right)$.

Hence, we should have

$$
\begin{gathered}
T E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right) \rightarrow A, \quad E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1}\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2}}\right) \rightarrow B, \quad T E\left(\frac{\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}}{\sum S_{t-1}^{2}}\right) \rightarrow C, \\
E\left(\frac{\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2} \sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right) \rightarrow D, \quad \frac{1}{T} E\left(\frac{\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2}}\right) \rightarrow E, \quad T^{2} E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right) \rightarrow F, \\
T E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{3}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right) \rightarrow G \text { and } E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{4}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right) \rightarrow H,
\end{gathered}
$$

for some constants $A-H$, and so (3.1) yields

$$
\begin{equation*}
R_{2}(0)=-2(A+B)+C+2(D+E)+F+2 G+H+O\left(T^{-1}\right) \tag{3.2}
\end{equation*}
$$

In the following, numerical values of these constants will be calculated. Our technique is based on the ideas outlined in Mikulski \& Monsour, who calculate moments of the univariate Dickey-Fuller distribution.

4. The Mikulski \& Monsour idea

To start with, consider the trivial equality

$$
\frac{1}{x}=\int_{0}^{\infty} e^{-s x} d s
$$

Replacing x by $\sum X_{t-1}^{2}$, where X_{t} is defined by (1.1) with $\rho_{2}=0$, i.e. as an AR(1) process (for convenience, let $\sigma^{2}=1$). Taking expectation and using Fubini's theorem gives us

$$
\begin{equation*}
E\left(\frac{1}{\sum X_{t-1}^{2}}\right)=\int_{0}^{\infty} E\left(e^{-s \sum X_{t-1}^{2}}\right) d s=\int_{0}^{\infty} \varphi\left(\rho_{1} ; s\right) d s \tag{4.1}
\end{equation*}
$$

where $\varphi\left(\rho_{1} ; s\right) \stackrel{\text { def }}{=} E\left(e^{-s \sum X_{i-1}^{2}}\right)$ is the moment generating function (Laplace transform) of $\sum X_{t-1}^{2}$. On the other hand,

$$
\begin{equation*}
E\left(\frac{1}{\sum X_{t-1}^{2}}\right)=\int \ldots \int \frac{1}{\sum x_{t-1}^{2}}(2 \pi)^{-\frac{T}{2}} e^{-\frac{1}{2} \sum\left(x_{t}-\rho_{1} x_{t-1}\right)^{2}} d x_{1} \ldots d x_{T} \tag{4.2}
\end{equation*}
$$

Putting (4.1) equal to (4.2) and differentiating w.r.t. ρ_{1}, we have

$$
\int_{0}^{\infty} \frac{\partial}{\partial \rho_{1}} \varphi\left(\rho_{1} ; s\right) d s=\int \ldots \int \frac{\sum x_{t-1}\left(x_{t}-\rho_{1} x_{t-1}\right)}{\sum x_{t-1}^{2}}(2 \pi)^{-\frac{T}{2}} e^{-\frac{1}{2} \sum\left(x_{t}-\rho_{1} x_{t-1}\right)^{2}} d x_{1} \ldots d x_{T}=E\left(\frac{\sum X_{t-1} \varepsilon_{t}}{\sum X_{t-1}^{2}}\right)
$$ and so, letting $\rho_{1} \rightarrow 1$,

$$
\int_{0}^{\infty} \frac{\partial}{\partial \rho_{1}} \varphi(1 ; s) d s=E\left(\frac{\sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right) .
$$

Finishing off by calculating $\frac{\partial}{\partial \rho_{1}} \varphi(1 ; s)$, this and similar arguments help Mikulski \& Monsour to derive, among others, the results listed in the following theorem (the figures are obtained by employing numerical integration):

Theorem 4.1.

$$
\begin{align*}
\lim _{T \rightarrow \infty} T E\left(\frac{\sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right) & =-\frac{1}{2} \int_{0}^{\infty} \frac{x}{\sqrt{\cosh x}} d x+1 \approx-1.781 \tag{4.3}\\
\lim _{T \rightarrow \infty} E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2}}\right) & =\int_{0}^{\infty}\left(\frac{x}{4 \sqrt{\cosh x}}+\frac{3 \sinh ^{2} x}{4 x \cosh ^{\frac{5}{2}} x}\right) d x-1 \approx 1.142 \tag{4.4}\\
\lim _{T \rightarrow \infty} T^{2} E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right) & =\frac{1}{4} \int_{0}^{\infty}\left(\frac{x^{3}}{2 \sqrt{\cosh x}}-\frac{3 x}{\sqrt{\cosh x}}\right) d x+\frac{1}{2} \approx 13.286 \tag{4.5}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{T \rightarrow \infty} E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{4}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right)=\int_{0}^{\infty}\left(\frac{x^{3}}{32 \sqrt{\cosh x}}-\frac{x}{8 \sqrt{\cosh x}}+\frac{105 \sinh ^{4} x}{32 x \cosh ^{\frac{9}{2} x}}\right) d x-\frac{9}{4} \approx 3.522 \tag{4.6}
\end{equation*}
$$

Thanks to these results, we are spared from calculating F and G, the values of which are given by (4.5) and (4.6), respectively. Moreover, as a consequence of the following lemma, the theorem in effect also provides us with D and E.

Lemma 4.2. $\sum \varepsilon_{t} \varepsilon_{t-1}$ is asymptotically uncorrelated with $\sum S_{t-1} \varepsilon_{t}$ and $\sum S_{t-1}^{2}$.

The lemma implies that $\sum \varepsilon_{t} \varepsilon_{t-1}$ is asymptotically uncorrelated with any smooth function of $\sum S_{t-1} \varepsilon_{t}$ and $\sum S_{t-1}^{2}$, and so

$$
E\left(\frac{\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2} \sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right) \approx E\left(\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}\right) E\left(\frac{\sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right)
$$

where \approx means equality to the first order. But since $E\left(\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}\right)=T$, this means that the value of D is given by (4.3), and similarly we conclude that E is given by (4.4), leaving only A, B, C and G to be calculated. Furthermore, the calculation of C is simplified, since as above,

$$
\begin{equation*}
T E\left(\frac{\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}}{\sum S_{t-1}^{2}}\right) \approx T^{2} E\left(\frac{1}{\sum S_{t-1}^{2}}\right) \tag{4.7}
\end{equation*}
$$

Proof of Lemma 4.2: As is easily verified,

$$
E\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)=0, \quad E\left(\sum S_{t-1} \varepsilon_{t}\right)=0, \quad E\left(\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t}\right)=T, \quad E\left(\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{2}\right)=T
$$

and

$$
E\left(\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}\right)=\frac{1}{2} T(T-1)
$$

and so

$$
\operatorname{Corr}\left(\sum \varepsilon_{t} \varepsilon_{t-1}, \sum S_{t-1} \varepsilon_{t}\right)=O\left(T^{-\frac{1}{2}}\right)
$$

which proves that $\sum \varepsilon_{t} \varepsilon_{t-1}$ and $\sum S_{t-1} \varepsilon_{t}$ are asymptotically uncorrelated. The fact that $\sum \varepsilon_{t} \varepsilon_{t-1}$ is also asymptotically uncorrelated with $\sum S_{t-1}^{2}$ is proved similarly.

5. The calculation of A, B, C and G

Calculating the remaining terms A, B, C and G by generalising the Mikulski \& Monsour procedure, we at first obtain the following lemma:

Lemma 5.1. Let

$$
\varphi\left(\rho_{1}, \rho_{2} ; s\right) \stackrel{\text { def }}{=} E\left(e^{-s \sum X_{t-1}^{2}}\right)
$$

where X_{t} is the $A R(2)$ process defined by (1.1). Then

$$
\begin{equation*}
T E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right)=T \int_{0}^{\infty}\left(T \varphi+\frac{\partial \varphi}{\partial \rho_{1}}+\frac{\partial^{2} \varphi}{\partial \rho_{1}^{2}}-\frac{\partial^{2} \varphi}{\partial \rho_{1} \partial \rho_{2}}\right) d s+o(1) \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1}\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2}}\right)=\int_{0}^{\infty}\left(2 T \frac{\partial \varphi}{\partial \rho_{1}}+2 \frac{\partial^{2} \varphi}{\partial \rho_{1}^{2}}+\frac{\partial^{3} \varphi}{\partial \rho_{1}^{3}}-\frac{\partial^{3} \varphi}{\partial \rho_{1}^{2} \partial \rho_{2}}\right) d s+2+o(1) \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
E\left(\frac{1}{\sum S_{t-1}^{2}}\right)=\int_{0}^{\infty} \varphi d s \quad \text { and } \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{3}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right)=\int_{0}^{\infty}\left(s \frac{\partial^{3} \varphi}{\partial \rho_{1}^{3}}+3 \frac{\partial \varphi}{\partial \rho_{1}}\right) d s \tag{5.4}
\end{equation*}
$$

where φ and all its derivatives are calculated at $\left(\rho_{1}, \rho_{2}\right)=(1,0)$.

Proof: With X_{t} defined by (1.1), we of course still get the equalities (4.1) and (4.2), and so

$$
\begin{equation*}
\int_{0}^{\infty} \varphi\left(\rho_{1}, \rho_{2} ; s\right) d s=E\left(\frac{1}{\sum X_{t-1}^{2}}\right)=\int \ldots \int \frac{1}{\sum x_{t-1}^{2}} L\left(\rho_{1}, \rho_{2}\right) d x_{1} \ldots d x_{T} \tag{5.5}
\end{equation*}
$$

where

$$
L\left(\rho_{1}, \rho_{2}\right) \stackrel{\text { def }}{=}(2 \pi)^{-\frac{T}{2}} e^{-\frac{1}{2} \sum \varepsilon_{t}{ }^{2}}, \quad \varepsilon_{t} \stackrel{\text { def }}{=} x_{t}-\rho_{1} x_{t-1}-\rho_{2} x_{t-2} .
$$

Letting $\rho_{1} \rightarrow 1$ and $\rho_{2} \rightarrow 0$ in this equation gives us (5.3). Furthermore, succesive differentiation of $L\left(\rho_{1}, \rho_{2}\right)$ yields

$$
\begin{align*}
\frac{\partial L}{\partial \rho_{1}} & =\sum x_{t-1} \varepsilon_{t} L \tag{5.6}\\
\frac{\partial^{2} L}{\partial \rho_{1}^{2}} & =\left(-\sum x_{t-1}^{2}+\left(\sum x_{t-1} \varepsilon_{t}\right)^{2}\right) L \tag{5.7}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial^{2} L}{\partial \rho_{1} \partial \rho_{2}}=\left(-\sum x_{t-1} x_{t-2}+\sum x_{t-1} \varepsilon_{t} \sum x_{t-2} \varepsilon_{t}\right) L \tag{5.8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{3} L}{\partial \rho_{1}^{3}}=\left(-3 \sum x_{t-1}^{2} \sum x_{t-1} \varepsilon_{t}+\left(\sum x_{t-1} \varepsilon_{t}\right)^{3}\right) L \quad \text { and } \tag{5.9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{3} L}{\partial \rho_{1}^{2} \partial \rho_{2}}=\left(-\sum x_{t-1}^{2} \sum x_{t-2} \varepsilon_{t}-2 \sum x_{t-1} x_{t-2} \sum x_{t-1} \varepsilon_{t}+\left(\sum x_{t-1} \varepsilon_{t}\right)^{2} \sum x_{t-2} \varepsilon_{t}\right) L \tag{5.10}
\end{equation*}
$$

Now, combining (5.6)-(5.8) with (5.5) and letting $\rho_{1} \rightarrow 1$ and $\rho_{2} \rightarrow 0$ (throughout, the argument of φ and its derivatives is $\left.\left(\rho_{1}, \rho_{2}\right)=(1,0)\right)$,

$$
\begin{aligned}
& \int_{0}^{\infty}\left(T \varphi+\frac{\partial \varphi}{\partial \rho_{1}}+\frac{\partial^{2} \varphi}{\partial \rho_{1}^{2}}-\frac{\partial^{2} \varphi}{\partial \rho_{1} \partial \rho_{2}}\right) d s= \\
& =E\left(\frac{1}{S_{t-1}^{2}}\left(T+\sum S_{t-1} \varepsilon_{t}-\sum S_{t-1}^{2}+\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}+\sum S_{t-1} S_{t-2}-\sum S_{t-1} \varepsilon_{t} \sum S_{t-2} \varepsilon_{t}\right)\right)
\end{aligned}
$$

But since

$$
\sum S_{t-1}^{2}-\sum S_{t-1} S_{t-2}=\sum S_{t-1} \varepsilon_{t-1}=\sum S_{t-2} \varepsilon_{t-1}+\sum \varepsilon_{t-1}^{2}
$$

implying

$$
\begin{align*}
T+\sum S_{t-1} \varepsilon_{t}-\sum S_{t-1}^{2}+\sum S_{t-1} S_{t-2} & =T-\sum \varepsilon_{t-1}^{2}+\sum S_{t-1} \varepsilon_{t}-\sum S_{t-2} \varepsilon_{t-1}= \tag{5.11}\\
& =O_{p}(1)+S_{T-1} \varepsilon_{T}=o_{p}(T)
\end{align*}
$$

(the notation $o_{p}(\cdot)$ has the obvious meaning), and since

$$
\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}-\sum S_{t-1} \varepsilon_{t} \sum S_{t-2} \varepsilon_{t}=\sum S_{t-1} \varepsilon_{t} \sum \varepsilon_{t-1} \varepsilon_{t}
$$

(5.1) follows.

Likewise, (5.6), (5.7), (5.9) and (5.10) together with (5.5) imply

$$
\begin{aligned}
& \int_{0}^{\infty}\left(2 T \frac{\partial \varphi}{\partial \rho_{1}}+2 \frac{\partial^{2} \varphi}{\partial \rho_{1}^{2}}+\frac{\partial \varphi^{3}}{\partial \rho_{1}^{3}}-\frac{\partial^{3} \varphi}{\partial \rho_{1}^{2} \partial \rho_{2}}\right) d s= \\
& =E\left(\frac { 1 } { \sum S _ { t - 1 } ^ { 2 } } \left(2 T \sum S_{t-1} \varepsilon_{t}-2 \sum S_{t-1}^{2}+2\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}-3 \sum S_{t-1}^{2} \sum S_{t-1} \varepsilon_{t}+\left(\sum S_{t-1} \varepsilon_{t}\right)^{3}+\right.\right. \\
& \left.\left.+\sum S_{t-1}^{2} \sum S_{t-2} \varepsilon_{t}+2 \sum S_{t-1} S_{t-2} \sum S_{t-1} \varepsilon_{t}-\left(\sum S_{t-1} \varepsilon_{t}\right)^{2} \sum S_{t-2} \varepsilon_{t}\right)\right)= \\
& =-2+E\left(\frac { 1 } { \sum S _ { t - 1 } ^ { 2 } } \left(2 T \sum S_{t-1} \varepsilon_{t}+2\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}+\left(\sum S_{t-1} \varepsilon_{t}\right)^{3}+2 \sum S_{t-1} S_{t-2} \sum S_{t-1} \varepsilon_{t}-\right.\right. \\
& \left.\left.-\left(\sum S_{t-1} \varepsilon_{t}\right)^{2} \sum S_{t-2} \varepsilon_{t}\right)\right)
\end{aligned}
$$

cancelling terms of expectation zero. But

$$
\begin{aligned}
& 2 T \sum S_{t-1} \varepsilon_{t}+2\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}+2 \sum S_{t-1} S_{t-2} \sum S_{t-1} \varepsilon_{t}= \\
& =2 \sum S_{t-1} \varepsilon_{t}\left(T+\sum S_{t-1} \varepsilon_{t}+\sum S_{t-1} S_{t-2}\right)=2 \sum S_{t-1} \varepsilon_{t}\left(\sum S_{t-1}^{2}+o_{p}(T)\right)
\end{aligned}
$$

where the last equality follows from (5.11), and so, dividing by $\sum S_{t-1}^{2}$ and taking expectation, we get an $o_{p}(1)$ term, since $E \sum S_{t-1} \varepsilon_{t}=0$. Thus, the fact that

$$
\left(\sum S_{t-1} \varepsilon_{t}\right)^{3}-\left(\sum S_{t-1} \varepsilon_{t}\right)^{2} \sum S_{t-1} \varepsilon_{t}=\left(\sum S_{t-1} \varepsilon_{t}\right)^{2} \sum \varepsilon_{t-1} \varepsilon_{t}
$$

leads us to conclude (5.2).
It remains to verify (5.4). To this end, the equality

$$
\frac{1}{x^{2}}=\int_{0}^{\infty} s e^{-s x} d s
$$

with $x=\sum X_{t-1}^{2}$ and X_{t} as before yields

$$
\int_{0}^{\infty} s \varphi\left(\rho_{1}, \rho_{2} ; s\right) d s=E\left(\frac{1}{\left(\sum X_{t-1}^{2}\right)^{2}}\right)=\int \ldots \int \frac{1}{\left(\sum x_{t-1}^{2}\right)^{2}} L\left(\rho_{1}, \rho_{2}\right) d x_{1} \ldots d x_{T}
$$

Hence, in the usual manner, (5.9) implies

$$
\int_{0}^{\infty} s \frac{\partial^{3} \varphi}{\partial \rho_{1}^{3}} d s=-3 E\left(\frac{\sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right)+E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{3}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right)
$$

But, because of (5.5) and (5.6),

$$
\int_{0}^{\infty} \frac{\partial \varphi}{\partial \rho_{1}} d s=E\left(\frac{\sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right)
$$

which gives (5.4), and we are done.

The final step is to calculate first order approximations of φ and its derivatives at $\left(\rho_{1}, \rho_{2}\right)=(1,0)$, which we do by Taylor expansion around that point. Since this is a highly computationally involved task, we postpone the calculations to the appendix, and confine ourselves to giving the final results here. (Again, numerical integration is used to obtain the figures.)

Theorem 5.2

$$
\begin{align*}
& \lim _{T \rightarrow \infty} T E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right)= \tag{5.12}\\
& =\frac{1}{2} \int_{0}^{\infty} x(\cosh x)^{-\frac{5}{2}}\left(\frac{1}{2} x \cosh x \sinh x-\frac{1}{2} \sinh ^{2} x+1\right) d x+1 \approx 5.563
\end{align*}
$$

(5.13) $\lim _{T \rightarrow \infty} E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1}\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2}}\right)=\int_{0}^{\infty} x(\cosh x)^{-\frac{7}{2}}(-\cosh x-$
$\left.-\frac{19}{8} \frac{\sinh ^{3} x}{x}+\frac{3}{2} \cosh x\left(\frac{\sinh x}{x}\right)^{2}-\frac{1}{8} x \cosh ^{2} x \sinh x+\frac{1}{2} \cosh x \sinh ^{2} x\right) d x+\frac{9}{5} \approx-1.280$,
(5.14) $\lim _{T \rightarrow \infty} T^{2} E\left(\frac{1}{\sum S_{t-1}^{2}}\right)=\int_{0}^{\infty} x(\cosh x)^{-\frac{1}{2}} d x \approx 5.563 \quad$ and
(5.15) $\lim _{T \rightarrow \infty} \frac{1}{T} E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{3}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right)=-\frac{1}{2} \int_{0}^{\infty} x^{3}(\cosh x)^{-\frac{7}{2}}\left(\frac{1}{8} \cosh ^{3} x-\frac{9}{8} \cosh ^{2} x \frac{\sinh x}{x}+\right.$
$\left.+\frac{39}{8} \cosh x\left(\frac{\sinh x}{x}\right)^{2}-\frac{15}{8}\left(\frac{\sinh x}{x}\right)^{3}+\frac{3}{2} \frac{\cosh x}{x^{2}}\right) d x+\frac{3}{2} \approx-5.643$.

Proof: See the appendix.

We now have access to approximate values of all the constants $A-G$, which are $A \approx 5.563$ (from (5.12)), $B \approx-1.280((5.13)), C \approx 5.563((5.14)$ and (4.7)), $D \approx-1.781((4.3)), E \approx 1.142((4.4)), F \approx 13.286$ $((4.5)), G \approx-5.643((5.15))$ and $H \approx 3.522((4.6))$, and so (3.2) yields

$$
\begin{equation*}
R_{2}(0) \approx 1.241 \tag{5.16}
\end{equation*}
$$

6. The $\mathbb{A R}(1)$ correction

Our final task will be to calculate the AR(1) Bartlett correction (cf (2.3) and (2.4)). To this end, since $T\left(\sum \varepsilon_{t}^{2}\right)^{-1}=1+o_{p}(1)$, the "main term" $E Z$ is already given by (4.4), but to find the rest term $\frac{R_{1}}{T}$ we need to be a little more careful. Generalizing the Mikulski \& Monsour idea (cf chapter 4), we have

$$
\frac{1}{x y}=\int_{0}^{\infty} \int_{0}^{\infty} e^{-s x-u y} d s d u
$$

and so, replacing x and y by $\sum X_{t-1}^{2}$ and $\sum\left(\Delta X_{t}\right)^{2}$ respectively, where X_{t} is defined by (1.1) with $\rho_{2}=0$ (becoming AR(1)) and $\Delta X_{t}=X_{t}-X_{t-1}$, and taking expectations, we get

$$
\begin{equation*}
E\left(\frac{1}{\sum X_{t-1}^{2} \sum\left(\Delta X_{t}\right)^{2}}\right)=\int_{0}^{\infty} \int_{0}^{\infty} E\left(e^{-s \sum X_{t-1}^{2}-u \sum\left(\Delta X_{t}\right)^{2}}\right) d s d u=\int_{0}^{\infty} \int_{0}^{\infty} \varphi\left(\rho_{1} ; s, u\right) d s d u \tag{6.1}
\end{equation*}
$$

where $\varphi\left(\rho_{1} ; s, u\right) \stackrel{\text { def }}{=} E\left(e^{-s \sum X_{t-1}^{2}-u \sum\left(\Delta X_{t}\right)^{2}}\right)$ is the m.g.f. of the pair $\left(\sum X_{t-1}^{2}, \sum\left(\Delta X_{t}\right)^{2}\right)$. On the other hand,

$$
E\left(\frac{1}{\sum X_{t-1}^{2} \sum\left(\Delta X_{t}\right)^{2}}\right)=\int \ldots \int \frac{1}{\sum x_{t-1}^{2} \sum\left(\Delta x_{t}\right)^{2}}(2 \pi)^{-\frac{T}{2}} e^{-\frac{1}{2} \sum\left(x_{t}-\rho_{1} x_{t-1}\right)^{2}} d x_{1} \ldots d x_{T}
$$

and so, differentiating two times w.r.t. ρ_{1}, we have in view of (6.1)

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial^{2}}{\partial \rho_{1}^{2}} \varphi(1 ; s, u) d s d u=E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2} \sum \varepsilon_{t}^{2}}\right)-E\left(\frac{1}{\sum \varepsilon_{t}^{2}}\right)
$$

However, since $\sum \varepsilon_{t}{ }^{2}$ is χ^{2}-distributed with T degrees of freedom, it follows that $E\left(\left(\sum \varepsilon_{t}^{2}\right)^{-1}\right)=\frac{1}{T-2}=\frac{1}{T}+\frac{2}{T^{2}}+O\left(\frac{1}{T^{3}}\right)$, and so

$$
\begin{equation*}
T E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2} \sum \varepsilon_{t}^{2}}\right)=T \int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial^{2}}{\partial \rho_{1}^{2}} \varphi(1 ; s, u) d s d u+1+\frac{2}{T}+O\left(\frac{1}{T^{2}}\right) \tag{6.2}
\end{equation*}
$$

In the appendix we show (cf (4.4))

Theorem 6.1.

$$
\begin{align*}
& \lim _{T \rightarrow \infty} T E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum \sum S_{t-1}^{2} \sum \varepsilon_{t}^{2}}\right)=\int_{0}^{\infty} x(\cosh x)^{-\frac{5}{2}}\left(\frac{1}{4} \cosh ^{2} x+\frac{3}{4}\left(\frac{\sinh x}{x}\right)^{2}\right) d x-1+ \tag{6.3}\\
& +\frac{1}{T}\left(\frac{1}{4} \int_{0}^{\infty} x(\cosh x)^{-\frac{5}{2}}\left(\cosh ^{2} x+1-\frac{3}{4} x \sinh x \cosh x+\frac{15}{4} \frac{\sinh ^{3} x}{x \cosh x}\right) d x-1\right)+O\left(\frac{1}{T^{2}}\right) \approx \\
& \approx 1.142-\frac{2.151}{T}
\end{align*}
$$

As before, the figures are obtained by numerical integration.

7. Comparison with simulations

In table 1 below, the corrections

$$
E Z_{T} \approx E Z-\frac{R_{1}}{T} \approx 1.142-\frac{2.151}{T}, \quad E T M_{T} \approx E Z_{T}-\frac{R_{2}(0)}{T} \approx E Z_{T}+\frac{1.241}{T}
$$

and

$$
E T M_{T} \approx E Z-\frac{R_{1}+R_{2}(0)}{T} \approx 1.142+\frac{-2.151+1.241}{T}=1.142-\frac{0.910}{T}
$$

are compared with simulated values of $E Z_{T}$ and $E T M_{T}$ for $\gamma=0$, respectively. The first two of these corrections are seen to be fairly accurate, whereas the third one performs less satisfactory, probably due to simulation errors and/or an unfortunate adding of higher order error terms. In the simulations, we used $1,000,000$ replications, which gave us a standard error of about $1 \cdot 10^{-3}$.

Table 1: Corrected and simulated expectations compared.

Columns:

1. Simulated values of $E Z_{T}$ (the $A R(1)$ statistic).
2. Corrected values of $E Z_{T}$ through $E Z_{T} \approx 1.142-\frac{2.151}{T}$.
3. Simulated values of $E T M_{T}$ (the $A R(2)$ statistic).
4. Corrected values of $E T M_{T}$ through $E T M_{T} \approx E Z_{T}+\frac{1.241}{T}\left(E Z_{T}\right.$:s from column 1).
5. Corrected values of $E T M_{T}$ through $E T M_{T} \approx 1.142-\frac{0.910}{T}$.

\underline{T}	$\underline{1}$.	$\underline{2}$	$\underline{\underline{3}}$	$\underline{\underline{4}}$	$\underline{\underline{5}}$.
10	0.999	0.927	1.096	1.123	1.051
20	1.063	1.034	1.116	1.125	1.097
30	1.088	1.070	1.124	1.129	1.112
40	1.098	1.088	1.126	1.129	1.119
50	1.109	1.099	1.132	1.134	1.124
60	1.114	1.106	1.133	1.135	1.127
80	1.119	1.115	1.134	1.135	1.131
100	1.125	1.120	1.137	1.137	1.133
200	1.133	1.131	1.138	1.139	1.138

8. Concluding remarks

The practical use of the results in this paper is the following: Suppose you want to test for a unit root of an $\operatorname{AR}(1)$ or $\operatorname{AR}(2)$ process, but that you only have access to a table of the asymptotic distribution of the test statistic. Then, it is clearly improper to use this table directly. However, with the aid of the corrected expectations derived in this paper, the asymptotic table is easily modified to a table which gives a good approximation to the distribution of the $\operatorname{AR}(1)$ or $\operatorname{AR}(2)$ test statistic, in the manner described in section 2. In the $\operatorname{AR}(2)$ case, we noted studying figure 1 that this would be a fairly accurate approximation as long as the parameter γ is sufficiently small and/or T is not too small. In other cases, we would need the improved approximation $R(\gamma) \approx R(0)+\gamma R^{\prime}(0)$ instead of $R(\gamma) \approx R(0)$, i.e. we need to calculate $R^{\prime}(0)$. However, we belive that this calculation is rather similar to the calculation of $R(0)$, and so this is an issue that we hope to investigate further.

Another interesting question to ask is whether our analytic method to find the corrections could be applicable to the perhaps more interesting multivariate case, where the unit root test carries over to a test of cointegration. Hopefully, we will get back to this problem in forthcoming papers.

Acknowledgements

The author is grateful to Søren Johansen, Bent Nielsen, Atsushi Nishio, Søren Tolver Jensen and the participants of the "november work shop" for many fruitful discussions on the subject, and to Bent Nielsen for performing the simulations.

References

M.S. Bartlett (1937) Properties of sufficiency and statistical tests. Proceedings of the Royal Statistical Society of London, Series A, vol. 160, pp. 268-282
T. Jacobsson (1992) Essays on Vector Autoregressions with Cointegrating Restrictions, Doctoral thesis, Department of Statistics, Uppsala University
J.L. Jensen (1993) A historical sketch and some new results on the improved log likelihood ratio test statistic. Scandinavian Journal of Statistics, vol. 20, pp.1-15.
S. Johansen (1988) Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control, 12, pp. 231-254
J.R. Magnus (1978) The moments of products of quadratic forms in normal variables, Statistica Nederlandica 32, pp. 201-210
P.W. Mikulski \& M.J. Monsour Moments of the limiting distribution for the boundary case in the first order autoregressive process. To appear in Journal of Statistical Computation and Simulation.

Appendix: Omitted proofs

Proof of theorem 5.2: With lemma 5.1 as a starting point, we are going to prove theorem 5.2 by at first calculating a Taylor expansion of $\varphi\left(\rho_{1}, \rho_{2} ; s\right)$, the moment generating function of $\sum X_{t-1}^{2}$, where X_{t} is defined by (1.1) with $\sigma^{2}=1$, around $\left(\rho_{1}, \rho_{2}\right)=(1,0)$. To this end, we will need the representation of φ given in the following lemma:

Lemma A.1.

$$
\begin{equation*}
\tilde{\varphi}(\theta, \rho ; s) \stackrel{\text { def }}{=} \varphi(1-\theta, \rho ; s)=\frac{1}{\sqrt{\operatorname{det} P}}, \quad P=P_{0}+h . \tag{A.1}
\end{equation*}
$$

Here, P_{0} is the $T \times T$ matrix

$$
P_{0}=\left(\begin{array}{cccccccc}
\alpha & -1 & 0 & 0 & & & & \tag{A.2}\\
-1 & \alpha & -1 & 0 & & & & \\
0 & -1 & \alpha & -1 & & & & \\
& & & & \cdots & & & \\
& & & & & -1 & \alpha & -1 \\
& & & & & -1 & 1
\end{array}\right), \quad \alpha=2(1+s)
$$

and

$$
\begin{equation*}
h=\theta h_{1,0}+\rho h_{0,1}+\theta^{2} h_{2,0}+\theta \rho h_{1,1}+\rho^{2} h_{0,2} \tag{A.3}
\end{equation*}
$$

where the $h_{i, j}: s, i, j=1,2$, are $T \times T$ matrices given by

$$
h_{1,0} \stackrel{\text { def }}{=}\left(\begin{array}{cccccccc}
-2 & 1 & 0 & 0 & & & & \tag{A.4}\\
1 & -2 & 1 & 0 & & & & \\
0 & 1 & -2 & 1 & & & & \\
& & & & \cdots & & & \\
& & & & & 1 & -2 & 1 \\
& & & & & 0 & 1 & 0
\end{array}\right)
$$

$$
h_{0,1} \stackrel{\text { def }}{=}\left(\begin{array}{ccccccccccccc}
0 & 1 & -1 & 0 & 0 & 0 & & & & & & \\
1 & 0 & 1 & -1 & 0 & 0 & & & & & & \\
-1 & 1 & 0 & 1 & -1 & 0 & & & & & & \\
0 & -1 & 1 & 0 & 1 & -1 & & & & & & \\
& & & & & & \cdots & & & & & \\
& & & & & & & -1 & 1 & 0 & 1 & -1 \\
& & & & & & & 0 & -1 & 1 & 0 & 0 \\
& & & & & & & 0 & 0 & -1 & 0 & 0
\end{array}\right),
$$

$$
h_{2,0} \stackrel{\text { def }}{=}\left(\begin{array}{ccccccc}
1 & 0 & 0 & & & & \\
0 & 1 & 0 & & & & \\
0 & 0 & 1 & & & & \\
& & & \cdots & & & \\
& & & & 1 & 0 & 0 \\
& & & & 0 & 1 & 0 \\
& & & & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{align*}
& h_{1,1} \stackrel{\text { def }}{=}\left(\begin{array}{ccccccccc}
0 & -1 & 0 & 0 & & & & & \\
-1 & 0 & -1 & 0 & & & & & \\
0 & -1 & 0 & -1 & & & & & \\
& & & & \cdots & & & & \\
& & & & & -1 & 0 & -1 & 0 \\
& & & & & 0 & -1 & 0 & 0 \\
& & & & & & 0 & 0 & 0
\end{array}\right) \tag{A.7}\\
& h_{0,2} \stackrel{\text { def }}{=}\left(\begin{array}{ccccccc}
1 & 0 & 0 & & & & \\
0 & 1 & 0 & & & & \\
0 & 0 & 1 & & & & \\
& & & \cdots & & & \\
& & & & 1 & 0 & 0 \\
& & & & 0 & 0 & 0 \\
& & & & 0 & 0 & 0
\end{array}\right) . \tag{A.8}
\end{align*}
$$

and

Proof: Using (1.1),

$$
\begin{aligned}
E\left(e^{-s \sum X_{t-1}^{2}}\right) & =\int \ldots \int(2 \pi)^{-\frac{T}{2}} e^{-s \sum x_{t-1}^{2}-\frac{1}{2} \sum\left(x_{t}-\rho_{1} x_{t-1}-\rho_{2} x_{t-2}\right)^{2}} d x_{1} \ldots d x_{T}= \\
& =\int \ldots \int(2 \pi)^{-\frac{T}{2}} e^{-\frac{1}{2} \underline{x}^{\prime} P \underline{x}} d x_{1} \ldots d x_{T}=\frac{1}{\sqrt{\operatorname{det} P}}
\end{aligned}
$$

where $\underline{x}^{\prime}=\left(x_{1}, \ldots, x_{T}\right)$, and since

$$
\begin{gathered}
\sum_{t=1}^{T}\left(x_{t}-\rho_{1} x_{t-1}-\rho_{2} x_{t-2}\right)^{2}= \\
=\left(1+\rho_{1}^{2}+\rho_{2}^{2}\right) \sum_{t=1}^{T-2} x_{t}^{2}+\left(1+\rho_{1}^{2}\right) x_{T-1}^{2}+x_{T}^{2}-2 \rho_{1} \sum_{t=2}^{T} x_{t} x_{t-1}-2 \rho_{2} \sum_{t=3}^{T} x_{t} x_{t-2}-2 \rho_{1} \rho_{2} \sum_{t=2}^{T-1} x_{t} x_{t-1}, \\
P=\left(\begin{array}{llllllllll}
a & b & c & 0 & 0 & 0 \\
b & a & b & c & 0 & 0 \\
c & b & a & b & c & 0 & \\
0 & c & b & a & b & c & & & & \\
& & & & & & \cdots & & & \\
\\
& & & & & & b & a & b & c \\
& 0 & c & b & d & e \\
& 0 & 0 & c & e & 1
\end{array}\right)
\end{gathered}
$$

where $a \stackrel{\text { def }}{=} 1+\rho_{1}^{2}-\rho_{2}^{2}+2 s, b=\rho_{1} \rho_{2}-\rho_{1}, c=-\rho_{2}, d=1+\rho_{1}^{2}+2 s$ and $e=-\rho_{1}$. Substituting $\rho_{1}=1-\theta$ and $\rho_{2}=\rho$, the lemma follows.

The next lemma fits the results of lemma 5.1 to the present context.

Lemma A. 2

$$
\begin{equation*}
T E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right)=\frac{1}{T} \int_{0}^{\infty} x g_{1}(x) d x+o(1) \tag{A.9}
\end{equation*}
$$

$$
\begin{equation*}
E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1}\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2}}\right)=\frac{1}{T^{2}} \int_{0}^{\infty} x g_{2}(x) d x+2+o(1) \tag{A.10}
\end{equation*}
$$

$$
\begin{equation*}
T^{2} E\left(\frac{1}{\sum S_{t-1}^{2}}\right)=\int_{0}^{\infty} x g_{3}(x) d x+o(1) \quad \text { and } \tag{A.11}
\end{equation*}
$$

$$
\begin{equation*}
T E\left(\frac{\left(\sum \varepsilon_{t} \varepsilon_{t-1}\right)^{3}}{\left(\sum S_{t-1}^{2}\right)^{2}}\right)=\frac{1}{2 T^{3}} \int_{0}^{\infty} x^{3} g_{4}(x) d x+\frac{3}{T} \int_{0}^{\infty} x g_{5}(x) d x+o(1) \tag{A.12}
\end{equation*}
$$

where, letting $a_{i j} \stackrel{\text { def }}{=} \operatorname{tr}\left(P_{0}^{-1} h_{i, j}\right), a_{i j \times k l} \stackrel{\text { def }}{=} \operatorname{tr}\left(\left(P_{0}^{-1} h_{i, j}\right)\left(P_{0}^{-1} h_{k, l}\right)\right)$ and $a_{i j \times k l \times m n} \stackrel{\text { def }}{=} \operatorname{tr}\left(\left(P_{0}^{-1} h_{i, j}\right)\left(P_{0}^{-1} h_{k, l}\right)\left(P_{0}^{-1} h_{m, n}\right)\right)$,

$$
\begin{align*}
g_{1}(x) & =\left(\operatorname{det} P_{0}\right)^{-\frac{1}{2}}\left(T+\frac{1}{2} a_{10}+\frac{1}{4} a_{10}\left(a_{10}+a_{01}\right)-\frac{1}{2}\left(2 a_{20}+a_{11}\right)+\frac{1}{2}\left(a_{10 \times 10}+a_{10 \times 01}\right)\right) \tag{A.13}\\
g_{2}(x) & =\left(\operatorname{det} P_{0}\right)^{-\frac{1}{2}}\left(T a_{10}-2\left(a_{20}-\frac{1}{4} a_{10}^{2}-\frac{1}{2} a_{10 \times 10}\right)-\frac{1}{2} a_{10}\left(2 a_{20}+a_{10}\right)-\right. \tag{A.14}\\
& -\frac{1}{2}\left(a_{20}-\frac{1}{4} a_{10}^{2}-\frac{1}{2} a_{10 \times 10}\right)\left(a_{10}+a_{01}\right)-\left(2 a_{10 \times 20}+a_{10 \times 11}\right)-\left(a_{10 \times 20}+a_{01 \times 20}\right)+ \\
& \left.+\frac{1}{2} a_{10}\left(a_{10 \times 10}+a_{10 \times 01}\right)+\left(a_{10 \times 10 \times 10}+a_{10 \times 10 \times 01}\right)\right)
\end{align*}
$$

$(A .15) \quad g_{3}(x)=\left(\operatorname{det} P_{0}\right)^{-\frac{1}{2}}$,
(A.17) $\quad g_{5}(x)=\frac{1}{2}\left(\operatorname{det} P_{0}\right)^{-\frac{1}{2}} a_{10}$.

The $a_{i j}:$ s dependency on x will be explained below.

Proof: Recall that

$$
\tilde{\varphi}(\theta, \rho ; s)=\int \ldots \int(2 \pi)^{-\frac{T}{2}} e^{-\frac{1}{2} \underline{x}^{\prime} \underline{P} \underline{x}} d x_{1} \ldots d x_{T}
$$

With $P=P_{0}+h$, we may rewrite this formula as

$$
\tilde{\varphi}(\theta, \rho ; s)=\frac{1}{\sqrt{\operatorname{det} P_{0}}} \int \ldots \int e^{-\frac{1}{2} \underline{x}^{\prime} h \underline{x}} \sqrt{\operatorname{det} P_{0}}(2 \pi)^{-\frac{T}{2}} e^{-\frac{1}{2} \underline{x}^{\prime} P_{0} \underline{x}} d x_{1} \ldots d x_{T}=\frac{1}{\sqrt{\operatorname{det} P_{0}}} E\left(e^{-\frac{1}{2} \underline{x}^{\prime} h \underline{x}}\right)
$$

taking expectation w.r.t. a T-variate normal distribution with covariance matrix P_{0}^{-1}. Taylor expansion now yields

$$
\begin{equation*}
\tilde{\varphi}(\theta, \rho ; s)=\frac{1}{\sqrt{\operatorname{det} P_{0}}}\left(1-\frac{1}{2} E\left(\underline{X}^{\prime} h \underline{X}\right)+\frac{1}{8} E\left(\left(\underline{X}^{\prime} h \underline{X}\right)^{2}\right)-\frac{1}{48} E\left(\left(\underline{X}^{\prime} h \underline{X}\right)^{3}\right)+\ldots\right), \tag{A.18}
\end{equation*}
$$

where $\underline{X}^{\prime} \stackrel{\text { def }}{=}\left(X_{1}, \ldots, X_{T}\right)$ with X_{t} as in (1.1). The r.h.s. of this equation involves moments of the Wishart distribution, which are calculated by Magnus (1978) to be (with $\underline{Y} \stackrel{\text { def }}{=} P_{0}^{\frac{1}{2}} \underline{X} \sim N_{T}(0, I)$, we have $\left.\underline{X}^{\prime} h \underline{X}=\underline{Y}^{\prime}\left(P_{0}^{-1} h\right) \underline{Y}\right)$

$$
\begin{align*}
& \quad E\left(\underline{X^{\prime}} h \underline{X}\right)=\operatorname{tr}\left(P_{0}^{-1} h\right), \tag{A.19}\\
& E\left(\left(\underline{X}^{\prime} h \underline{X}\right)^{2}\right)=\operatorname{tr}^{2}\left(P_{0}^{-1} h\right)+2 \operatorname{tr}\left(\left(P_{0}^{-1} h\right)^{2}\right) \quad \text { and } \\
& E\left(\left(\underline{X}^{\prime} h \underline{X}\right)^{3}\right)=\operatorname{tr}^{3}\left(P_{0}^{-1} h\right)+6 \operatorname{tr}\left(P_{0}^{-1} h\right) \operatorname{tr}\left(\left(P_{0}^{-1} h\right)^{2}\right)+8 \operatorname{tr}\left(\left(P_{0}^{-1} h\right)^{3}\right) .
\end{align*}
$$

But, from (A.3),

$$
P_{0}^{-1} h=\theta P_{0}^{-1} h_{1,0}+\rho P_{0}^{-1} h_{0,1}+\theta^{2} P_{0}^{-1} h_{2,0}+\theta \rho P_{0}^{-1} h_{1,1}+\rho^{2} P_{0}^{-1} h_{0,2}
$$

and so, plugging in into (A.18)-(A.21), collecting terms and using Taylor's formula,

$$
\begin{aligned}
\frac{\partial \tilde{\varphi}}{\partial \theta} & =-\frac{1}{2} a_{10} \tilde{\varphi}, \\
\frac{\partial^{2} \tilde{\varphi}}{\partial \theta^{2}} & =\left(-a_{20}+\frac{1}{4} a_{10}^{2}+\frac{1}{2} a_{10 \times 10}\right) \tilde{\varphi}, \\
\frac{\partial^{2} \tilde{\varphi}}{\partial \theta \partial \rho} & =\left(-\frac{1}{2} a_{11}+\frac{1}{4} a_{10} a_{01}+\frac{1}{2} a_{10 \times 01}\right) \tilde{\varphi} \\
\frac{\partial^{3} \tilde{\varphi}}{\partial \theta^{3}} & =\left(-\frac{1}{8} a_{10}^{3}+\frac{3}{2} a_{10} a_{20}+3 a_{10 \times 20}-\frac{3}{4} a_{10} a_{10 \times 10}-a_{10 \times 10 \times 10}\right) \tilde{\varphi} \quad \text { and } \\
\frac{\partial^{3} \tilde{\varphi}}{\partial \theta^{2} \partial \rho} & =\left(-\frac{1}{8} a_{10}^{2} a_{01}+\frac{1}{2} a_{10} a_{11}+\frac{1}{2} a_{01} a_{20}+a_{10 \times 11}+a_{01 \times 20}-\frac{1}{2} a_{10} a_{10 \times 01}-\frac{1}{4} a_{01} a_{10 \times 10}-a_{10 \times 10 \times 01}\right) \tilde{\varphi},
\end{aligned}
$$

where $\tilde{\varphi}$ and its derivatives are taken at $(\theta, \rho)=(0,0)$. Hence, since $\rho_{1}=1-\theta$ and $\rho_{2}=\rho,(5.1)$ yields

$$
T E\left(\frac{\sum \varepsilon_{t} \varepsilon_{t-1} \sum S_{t-1} \varepsilon_{t}}{\sum S_{t-1}^{2}}\right)=T \int_{0}^{\infty} h(s) d s+o(1)
$$

where

$$
h(s)=\left(\operatorname{det} P_{0}\right)^{-\frac{1}{2}}\left(T+\frac{1}{2} a_{10}+\frac{1}{4} a_{10}\left(a_{10}+a_{01}\right)-\frac{1}{2}\left(2 a_{20}+a_{11}\right)+\frac{1}{2}\left(a_{10 \times 10}+a_{10 \times 01}\right)\right),
$$

However, since $\frac{1}{T^{2}} \sum_{t=1}^{T} X_{t-1}^{2}$ converges to a random variable with a non-degenerate distribution function as $T \rightarrow \infty$, it is natural to put $s^{*}=s T^{2}$ and define

$$
\varphi^{*}\left(s^{*}\right) \stackrel{\text { def }}{=} E\left(e^{-s^{*} \frac{1}{T^{2}} \sum X_{t-1}^{2}}\right)=\varphi(s)
$$

Letting $h^{*}\left(s^{*}\right)$ correspond to $h(s)$, we have for an arbritary $\delta>0$

$$
T \int_{0}^{\infty} h(s) d s=\frac{1}{T} \int_{0}^{\infty} h^{*}\left(s^{*}\right) d s^{*}=\frac{1}{T} \int_{0}^{T^{6}} h^{*}\left(s^{*}\right) d s^{*}+o(1)
$$

and so

$$
T \int_{0}^{\infty} h(s) d s=T \int_{0}^{T^{-2+\delta}} h(s) d s+o(1)
$$

Hence, since

$$
\sigma \stackrel{\text { def }}{=} \sqrt{1-\frac{4}{\alpha^{2}}}=\sqrt{1-\frac{1}{(1+s)^{2}}} \Longleftrightarrow s=\frac{1}{\sqrt{1-\sigma^{2}}}-1,
$$

(cf Lemma A.3) the substitution $x=\sigma T$ implies

$$
s=\frac{x^{2}}{2 T^{2}}+o\left(\frac{1}{T^{2}}\right) \Rightarrow d s=\frac{x d x}{T^{2}}+o\left(\frac{1}{T^{2}}\right)
$$

for $x=o(T)$ i.e. $\delta<2$, which yields (A.9) and (A.13). (In effect, $s<T^{-2+\delta}$ implies $x \leq O\left(T^{\delta}\right)$, but since δ is arbritary we may from now on assume $x=O(1)$, i.e. $s=\frac{x^{2}}{2 T^{2}}+O\left(\frac{1}{T^{4}}\right)$ etc.) The rest of the results follow similarly. (Note that, by definition, the $a_{i j}$:s etc. are functions of s. Hence, they become functions of x after the substitution.)

As we see from lemma A.2, we also need to calculate P_{0}^{-1} explicitly.

Lemma A.3. Denoting an arbritary element of the $T \times T$ matrix P_{0}^{-1} by $a_{i j}$, we have

$$
a_{i j}=\left\{\begin{array}{l}
\frac{1}{\operatorname{det} P_{0}} D_{i-1}^{*} D_{T-j}, \quad i \leq j \tag{A.22}\\
a_{j i}, \quad j<i,
\end{array}\right.
$$

where
(A.23) $\quad D_{k}=\left\{\begin{array}{l}1, \quad k=0, \\ \left(\frac{\alpha}{2}\right)^{k-1}\left(\frac{(1+\sigma)^{k-1}+(1-\sigma)^{k-1}}{2}+\left(1-\frac{2}{\alpha}\right) \frac{(1+\sigma)^{k-1}-(1-\sigma)^{k-1}}{2 \sigma}\right), \quad k \geq 1,\end{array}\right.$
(A.24)

$$
D_{k}^{*}=\left\{\begin{array}{l}
1, \quad k=0, \\
\left(\frac{\alpha}{2}\right)^{k-1}\left(\alpha \frac{(1+\sigma)^{k-1}+(1-\sigma)^{k-1}}{2}+\left(\alpha-\frac{2}{\alpha}\right) \frac{(1+\sigma)^{k-1}-(1-\sigma)^{k-1}}{2 \sigma}\right), \quad k \geq 1
\end{array}\right.
$$

and

$$
\sigma=\sqrt{1-\frac{4}{\alpha^{2}}}
$$

Proof: Letting D_{k} be the determinant of the $k \times k$ lower right corner of P_{0} and D_{k}^{*} the determinant of the $k \times k$ upper left corner, it follows that

$$
a_{i j}=\frac{D_{i-1}^{*} D_{T-j}}{D_{T}}
$$

where of course $D_{T}=\operatorname{det} P_{0}$, adopting the conventions $D_{0}^{*}=D_{0}=1$. Expanding P_{0} by the first row, we obtain the difference equation

$$
D_{T}=\alpha D_{T-1}-D_{T-2}
$$

with initial conditions $D_{1}=1$ and $D_{2}=\alpha-1$. From this, (A.23) follows.
For D_{T}^{*} we get the same difference equation, but here $D_{1}^{*}=\alpha$ and $D_{2}^{*}=\alpha^{2}-1$, implying (A.24), and we are done.

Proof of Theorem 5.2: Our remaining task is the formidable one of deriving (5.12)-(5.15) out of (A.13)-(A.17). We start this project with the calculation of $\operatorname{det} P_{0}$, and to this end, (A.23) yields

$$
\operatorname{det} P_{0}=D_{T}=\left(\frac{\alpha}{2}\right)^{T-1}\left(\frac{(1+\sigma)^{T-1}+(1-\sigma)^{T-1}}{2}+\left(1-\frac{2}{\alpha}\right) \frac{(1+\sigma)^{T-1}-(1-\sigma)^{T-1}}{2 \sigma}\right)
$$

where $\alpha=2(1+s)$. Now, substituting $x=\sigma T, \frac{\alpha}{2}=1+O\left(\frac{1}{T^{2}}\right)$, implying $\left(\frac{\alpha}{2}\right)^{T-1}=1+O\left(\frac{1}{T}\right)$, $1-\frac{2}{\alpha}=\frac{x^{2}}{T^{2}}+O\left(\frac{1}{T^{4}}\right)$ and, due to the binomial theorem,

$$
\frac{(1+\sigma)^{T-1}+(1-\sigma)^{T-1}}{2}=\cosh x+O\left(\frac{1}{T}\right)
$$

and

$$
\frac{(1+\sigma)^{T-1}-(1-\sigma)^{T-1}}{2 \sigma}=T \frac{\sinh x}{x}+O(1)
$$

Hence,

$$
\begin{equation*}
\operatorname{det} P_{0}=D_{T}=\cosh x+O\left(\frac{1}{T}\right) \tag{A.25}
\end{equation*}
$$

and furthermore,

$$
\begin{equation*}
D_{T}^{*}=T \frac{\sinh x}{x}+O(1) \tag{A.26}
\end{equation*}
$$

In the calculations below, we will also need approximations of terms like D_{i}, where $1 \leq i \leq T$. Substituting $x=\sigma T$ and $y=\frac{i}{T}$, we get as above

$$
D_{i}=\cosh (x y)+O\left(\frac{1}{T}\right)
$$

and

$$
D_{i}^{*}=T \frac{\sinh (x y)}{x}+O(1)
$$

Moreover, introducing the notation

$$
\Delta D_{i} \stackrel{\text { def }}{=} D_{i}-D_{i-1}, \quad \Delta^{2} D_{i} \stackrel{\text { def }}{=} \Delta D_{i}-\Delta D_{i-1}=D_{i}-2 D_{i-1}+D_{i-2}
$$

Taylor expansion yields

$$
\Delta D_{i}=\frac{1}{T}\left(\frac{d}{d y} \cosh (x y)+O\left(\frac{1}{T}\right)\right)=\frac{1}{T} x \sinh (x y)+O\left(\frac{1}{T^{2}}\right)
$$

and similarly

$$
\begin{aligned}
\Delta^{2} D_{i} & =\frac{1}{T^{2}} x^{2} \cosh (x y)+O\left(\frac{1}{T^{3}}\right) \\
\Delta D_{i}^{*} & =\cosh (x y)+O\left(\frac{1}{T}\right) \quad \text { and } \\
\Delta^{2} D_{i}^{*} & =\frac{1}{T} x \sinh (x y)+O\left(\frac{1}{T^{2}}\right)
\end{aligned}
$$

In the following, this approximation technique will turn out to be useful.

We now start calculating $g_{1}(x)$, and in view of (A.13), a_{10} is the first term to tackle. To this end, note that from (A.22)

(The indices i, k and l are to be thought of as running from 1 to T, from 1 to $i-1$ and from $i+1$ to T, respectively.) Now, letting $D_{0}=D_{0}^{*}=0$, (A.4) and (A.27) imply

$$
\begin{equation*}
\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}= \tag{A.28}
\end{equation*}
$$

where

$$
a=D_{i-2}^{*} D_{T-i}-2 D_{i-1}^{*} D_{T-i}+D_{i-1}^{*} D_{T-i-1}=D_{i-1}^{*} \Delta^{2} D_{T-i+1}-D_{i-2}^{*} \Delta D_{T-i+1}-\Delta D_{i-1}^{*} D_{T-i+1}
$$

Hence,
(A.29) $\quad \operatorname{det} P_{0} \cdot a_{10}=\operatorname{tr}\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)=$

$$
=-2 D_{T-1}+D_{T-2}+\sum_{i=2}^{T-2}\left(D_{i-1}^{*} \Delta^{2} D_{T-i+1}-D_{i-2}^{*} \Delta D_{T-i+1}-\Delta D_{i-1}^{*} D_{T-i+1}\right)-\Delta D_{T-2}^{*}+D_{T-2}^{*}
$$

Approximating as above (with $T-i$ instead of i, we get $1-y$ instead of y), and replacing the sum by an integral (rendering a factor of T in front), we get
(A.30) $\operatorname{det} P_{0} \cdot a_{10}=$

$$
\begin{aligned}
& =T \int_{0}^{1}\left(T \frac{\sinh (x y)}{x} \frac{1}{T^{2}} x^{2} \cosh (x(1-y))-T \frac{\sinh (x y)}{x} \frac{1}{T} x \sinh (x(1-y))-\cosh (x y) \cosh (x(1-y))\right) d y+ \\
& +T \frac{\sinh x}{x}+O(1)=
\end{aligned}
$$

$$
\begin{aligned}
& =T\left(-\int_{0}^{1}(\sinh (x y) \sinh (x(1-y))+\cosh (x y) \cosh (x(1-y))) d y+\frac{\sinh x}{x}\right)+O(1)= \\
& =-T\left(\cosh x-\frac{\sinh x}{x}\right)+O(1) .
\end{aligned}
$$

After this, we need

$$
\operatorname{det} P_{0}\left(a_{10}+a_{01}\right)=\operatorname{tr}\left(\operatorname{det} P_{0} \cdot P_{0}^{-1}\left(h_{1,0}+h_{0,1}\right)\right)
$$

However, it follows from (A.4) and (A.5) that

$$
h_{1,0}+h_{0,1}=\left(\begin{array}{ccccccccccccc}
-2 & 2 & -1 & 0 & 0 & 0 & & & & & & \\
2 & -2 & 2 & -1 & 0 & 0 & & & & & & \\
-1 & 2 & -2 & 2 & -1 & 0 & & & & & & \\
0 & -1 & 2 & -2 & 2 & -1 & & & & & & \\
& & & & & & \cdots & & & & & \\
& & & & & & & -1 & 2 & -2 & 2 & -1 \\
& & & & & & & 0 & -1 & 2 & -2 & 1 \\
& & & & & & & 0 & -1 & 1 & 0
\end{array}\right)
$$

and so (A.27) yields

$$
\begin{align*}
& \operatorname{det} P_{0} \cdot P_{0}^{-1}\left(h_{1,0}+h_{0,1}\right)= \tag{A.31}\\
& \left(\begin{array}{llllllllllll}
a & & & & & & & \\
& b & & & & & & & & & \\
& & & & & & & \\
& \ldots & c & \ldots & d & e & f & \ldots & g & \ldots & & \\
& & & & & \ldots & & & & & & \\
& & & & & & & & & & -\Delta^{2} D_{T-2}^{*} & \Delta D_{T-2}^{*} \\
& & & & & & & & & & \\
& & \Delta^{2} D_{T-2}^{*}+\Delta D_{T-1}^{*} & \Delta D_{T-2}^{*}
\end{array}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& a=-2 \Delta D_{T-1}-D_{T-3} \\
& b=2 D_{T-1}-D_{1}^{*}\left(D_{T-2}+\Delta^{2} D_{T-2}\right) \\
& c=-\left(\Delta^{2} D_{k-1}^{*}+\Delta^{2} D_{k+1}^{*}\right) D_{T-i}, \\
& d=-\Delta^{2} D_{i-2}^{*} D_{T-i}+\Delta D_{i-1}^{*} D_{T-i}+D_{i-1}^{*} \Delta D_{T-i}, \\
& e=-\Delta^{2} D_{i-1}^{*} D_{T-i}-D_{i-1}^{*} \Delta^{2} D_{T-i}, \\
& f=\Delta D_{i-1}^{*} D_{T-i}+D_{i-1}^{*} \Delta^{2} D_{T-i}+D_{i-1}^{*} \Delta D_{T-i-1} \quad \text { and } \\
& g=-D_{i-1}^{*}\left(\Delta^{2} D_{T-l+1}+\Delta^{2} D_{T-l-1}\right)
\end{aligned}
$$

(Here, i runs from 3 to $T-2, k$ runs from 1 to $i-2$ and l runs from $i+2$ to T.) Now, using the same technique as before, we conclude (remember that $D_{1}^{*}=\alpha=2+O\left(\frac{1}{T^{2}}\right)$)
$(A .32) \quad \operatorname{det} P_{0}\left(a_{10}+a_{01}\right)=-D_{T-3}-\sum_{i=3}^{T-2}\left(\Delta^{2} D_{i-1}^{*} D_{T-i}+D_{i-1}^{*} \Delta^{2} D_{T-i}\right)+\Delta D_{T-2}^{*}+O\left(\frac{1}{T}\right)=$

$$
=-2 x \int_{0}^{1} \sinh (x y) \cosh (x(1-y)) d y+O\left(\frac{1}{T}\right)=
$$

$$
=-x \int_{0}^{1}(\sinh x+\sinh (x(2 y-1))) d y+O\left(\frac{1}{T}\right)=-x \sinh x+O\left(\frac{1}{T}\right) .
$$

Our next task is to calculate

$$
\operatorname{det} P_{0}\left(2 a_{20}+a_{11}\right)=\operatorname{tr}\left(\operatorname{det} P_{0} \cdot P_{0}^{-1}\left(2 h_{2,0}+h_{1,1}\right)\right)
$$

Now, observe that from (A.4), (A.6) and (A.7),

$$
\begin{equation*}
2 h_{2,0}+h_{1,1}=-h_{1,0}+\delta, \tag{A.33}
\end{equation*}
$$

where

$$
\delta \stackrel{\text { def }}{=}\left(\begin{array}{ccccc}
0 & 0 & & & \\
0 & 0 & & & \\
& & \cdots & & \\
& & & 0 & 1 \\
& & & 1 & 0
\end{array}\right)
$$

and so

$$
\operatorname{det} P_{0}\left(2 a_{20}+a_{11}\right)=-\operatorname{tr}\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)+\operatorname{tr}\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} \delta\right)
$$

The first of these terms is known from (A.30), and for the second one (A.27) yields, since $D_{1}=1$,

$$
\operatorname{det} P_{0} \cdot P_{0}^{-1} \delta=\left(\begin{array}{ccccc}
0 & \ldots & 0 & 1 & 1 \tag{A.34}\\
0 & \ldots & 0 & D_{1}^{*} & D_{1}^{*} \\
& \ldots & & \ldots & \\
0 & \ldots & 0 & D_{T-2}^{*} & D_{T-2}^{*} \\
0 & \ldots & 0 & D_{T-1}^{*} & D_{T-2}^{*}
\end{array}\right)
$$

and so

$$
\operatorname{tr}\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} \delta\right)=2 D_{T-2}^{*}=2 T \frac{\sinh x}{x}+O(1)
$$

which together with (A.30) implies

$$
\begin{equation*}
\operatorname{det} P_{0}\left(2 a_{20}+a_{11}\right)=T\left(\cosh x+\frac{\sinh x}{x}\right)+O(1) \tag{A.35}
\end{equation*}
$$

To complete the calculation of $g_{1}(x)$, it follows from (A.28) and (A.31) that

$$
\begin{aligned}
\left(\operatorname{det} P_{0}\right)^{2}\left(a_{10 \times 10}+a_{10 \times 01}\right) & =\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1}\left(h_{1,0}+h_{0,1}\right)\right)\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)\right)= \\
& =S-\sum_{i=1}^{T-3}\left(\left(\Delta^{2} D_{i-1}^{*}+\Delta^{2} D_{i+1}^{*}\right) D_{i+1}^{*}+D_{T-2}^{*}\left(\Delta D_{T-1}^{*}+\Delta D_{T-2}^{*}\right)\right)+O(1)
\end{aligned}
$$

where

$$
\begin{aligned}
S & \stackrel{\text { def }}{=} \sum_{i=3}^{T-2}\left(-D_{T-i} \Delta^{2} D_{T-i+1} \sum_{k=1}^{i-2} D_{k-1}^{*}\left(\Delta^{2} D_{k-1}^{*}+\Delta^{2} D_{k+1}^{*}\right)+\right. \\
& +\left(-\Delta^{2} D_{i-2}^{*} D_{T-i}+\Delta D_{i-1}^{*} D_{T-i}+D_{i-1}^{*} \Delta D_{T-i}\right) D_{i-2}^{*} \Delta^{2} D_{T-i+1}+ \\
& +\left(\Delta D_{i-1}^{*} D_{T-i}+D_{i-1}^{*} \Delta^{2} D_{T-i}+D_{i-1}^{*} \Delta D_{T-i-1}\right) \Delta^{2} D_{i}^{*} D_{T-i-1}- \\
& \left.-D_{i-1}^{*} \Delta^{2} D_{i}^{*} \sum_{l=i+2}^{T} D_{T-l}\left(\Delta^{2} D_{T-l+1}+\Delta^{2} D_{T-l-1}\right)\right)=O(1)
\end{aligned}
$$

due to our usual approximation arguments. Thus,
$(A .36) \quad\left(\operatorname{det} P_{0}\right)^{2}\left(a_{10 \times 10}+a_{10 \times 01}\right)=$

$$
\begin{aligned}
& =-\sum_{i=1}^{T-3}\left(\left(\Delta^{2} D_{i-1}^{*}+\Delta^{2} D_{i+1}^{*}\right) D_{i+1}^{*}+D_{T-2}^{*}\left(\Delta D_{T-1}^{*}+\Delta D_{T-2}^{*}\right)\right)+O(1)= \\
& =T\left(-2 \int_{0}^{1} \sinh ^{2}(x y) d y+2 \cosh x \frac{\sinh x}{x}\right)+O(1)= \\
& =T\left(-\int_{0}^{1}(\cosh (2 x y)-1) d y+2 \cosh x \frac{\sinh x}{x}\right)+O(1)=T\left(\cosh x \frac{\sinh x}{x}+1\right)+O(1)
\end{aligned}
$$

Now, inserting (A.30), (A.32), (A.35) and (A.36) into (A.13),

$$
\begin{aligned}
g_{1}(x) & =T(\cosh x)^{-\frac{5}{2}}\left(\cosh ^{2} x-\frac{1}{2} \cosh x\left(\cosh x-\frac{\sinh x}{x}\right)+\frac{1}{4} x \sinh x\left(\cosh x-\frac{\sinh x}{x}\right)-\right. \\
& \left.-\frac{1}{2} \cosh x\left(\cosh x+\frac{\sinh x}{x}\right)+\frac{1}{2}\left(\cosh x \frac{\sinh x}{x}+1\right)\right)+O(1)= \\
& =\frac{T}{2}(\cosh x)^{-\frac{5}{2}}\left(\cosh x \frac{\sinh x}{x}+\frac{1}{2} x \cosh x \sinh x-\frac{1}{2} \sinh ^{2} x+1\right),
\end{aligned}
$$

which, in view of (A.9), since

$$
\int_{0}^{\infty}(\cosh x)^{-\frac{3}{2}} \sinh x d x=2
$$

implies (5.12).

As for $g_{2}(x)$, we note from (A.14) that, in addition to the terms already calculated, we have to look at a_{20}, $a_{10 \times 10}, 2 a_{10 \times 20}+a_{10 \times 11}, a_{10 \times 20}+a_{01 \times 20}$ and $a_{10 \times 10 \times 10}+a_{10 \times 10 \times 01}$. To start with, it follows from (A.6) and (A.27) that
(A.37) $\quad \operatorname{det} P_{0} \cdot P_{0}^{-1} h_{2,0}=$

$$
=\left(\begin{array}{ccccccccc}
D_{T-1} & & \ldots & & D_{T-i} & \ldots & & 1 & 0 \\
\ldots & & & & D_{k-1}^{*} D_{T-i} & & & \ldots & \ldots \\
\\
D_{T-i} & \ldots & D_{k-1}^{*} D_{T-i} & \ldots & D_{i-1}^{*} D_{T-i} & \ldots & D_{i-1}^{*} D_{T-l} & \ldots & D_{i-2}^{*}
\end{array} \quad 0\right.
$$

(As before, i runs from 1 to T, k runs from 1 to $i-1$ and l runs from $i+1$ to T.) Hence,
$(A .38) \operatorname{det} P_{0} \cdot a_{20}=\operatorname{tr}\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{2,0}\right)=\sum_{i=1}^{T-1} D_{i-1}^{*} D_{T-i}=\frac{T^{2}}{x} \int_{0}^{1} \sinh (x y) \cosh (x(1-y)) d y+O(T)=$

$$
=\frac{T^{2}}{2 x} \int_{0}^{1}(\sinh x+\sinh (x(2 y-1))) d y+O(T)=\frac{T^{2}}{2} \frac{\sinh x}{x}+O(T) .
$$

Moreover, (A.28) yields

$$
\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)^{2}=\left(\begin{array}{cccc}
O(1) & \ldots & O(1) & D_{T-2}^{*}+O(1) \tag{A.39}\\
\ldots & & \ldots & D_{i-1}^{*} D_{T-2}^{*}+O(1) \\
& & & \ldots \\
& & & D_{T-2}^{*}{ }^{2}+O(1) \\
O(1) & \ldots & O(1) & D_{T-2}^{*}{ }^{2}+O(1)
\end{array}\right)
$$

implying

$$
\begin{equation*}
\left(\operatorname{det} P_{0}\right)^{2} a_{10 \times 10}=\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)^{2}\right)=D_{T-2}^{*}{ }^{2}+O(T)=T^{2}\left(\frac{\sinh x}{x}\right)^{2}+O(T) \tag{A.40}
\end{equation*}
$$

As for $2 a_{10 \times 20}+a_{10 \times 11}$, it follows from (A.33) that

$$
\begin{aligned}
\left(\operatorname{det} P_{0}\right)^{2}\left(2 a_{10 \times 20}+a_{10 \times 11}\right) & =\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)\left(\operatorname{det} P_{0} \cdot P_{0}^{-1}\left(2 h_{2,0}+h_{1,1}\right)\right)\right)= \\
& =-\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)^{2}\right)+\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} \delta\right)\right) .
\end{aligned}
$$

The first of these terms is given by (A.40), and by (A.28) and (A.34) the second one is

$$
\begin{aligned}
\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} \delta\right)\right) & =-\Delta D_{T-3}^{*} D_{T-2}^{*}+D_{T-2}^{*} D_{T-1}^{*}+\Delta^{2} D_{T-1}^{*} D_{T-2}^{*}+D_{T-2}^{*}{ }^{2}= \\
& =D_{T-2}^{*}\left(D_{T-1}^{*}+D_{T-2}^{*}\right)+O(T)=2 T^{2}\left(\frac{\sinh x}{x}\right)^{2}+O(T),
\end{aligned}
$$

and so, by (A.40),

$$
\begin{equation*}
\left(\operatorname{det} P_{0}\right)^{2}\left(2 a_{10 \times 20}+a_{10 \times 11}\right)=T^{2}\left(\frac{\sinh x}{x}\right)^{2}+O(T) \tag{A.41}
\end{equation*}
$$

Moreover, (A.31) and (A.37) imply
(A.42) $\quad\left(\operatorname{det} P_{0}\right)^{2}\left(a_{10 \times 20}+a_{01 \times 20}\right)=\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1}\left(h_{1,0}+h_{0,1}\right)\right)\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{2,0}\right)\right)=$

$$
\begin{aligned}
& =\sum_{i=1}^{T-2}\left(-D_{T-i}^{2} \sum_{k=1}^{i-2}\left(\Delta^{2} D_{k-1}^{*}+\Delta^{2} D_{k+1}^{*}\right) D_{k-1}^{*}+\left(\Delta D_{i-1}^{*} D_{T-i}+D_{i-1}^{*} \Delta D_{T-i}\right) D_{i-2}^{*} D_{T-i}+\right. \\
& +\left(\Delta D_{i-1}^{*} D_{T-i}+D_{i-1}^{*} \Delta D_{T-i-1}\right) D_{i-1}^{*} D_{T-i-1}- \\
& \left.-D_{i-1}^{*}{ }^{2} \sum_{l=i+2}^{T}\left(\Delta^{2} D_{T-l+1}+\Delta^{2} D_{T-l-1}\right) D_{T-l}+O(1)\right)+O(T)= \\
& =2 T^{2} \int_{0}^{1}\left(-\cosh ^{2}(x(1-y)) \int_{0}^{y} \sinh ^{2}(x z) d z+\cosh (x y) \cosh (x(1-y))+\right. \\
& \left.+\sinh (x y) \sinh (x(1-y))-\sinh ^{2}(x y) \int_{y}^{1} \cosh ^{2}(x(1-z)) d z\right)+O(T)= \\
& =\frac{T^{2}}{2}\left(\cosh x \frac{\sinh x}{x}+1\right)+O(T) .
\end{aligned}
$$

(To obtain the second equality, we put $x=\sigma T, \mathrm{y}=\frac{i}{T}$ and $z=\frac{k}{T}$ or $\frac{l}{T}$ and argue in the usual manner. How to get the third equality is in principle trivial, at least for a formula manipulating computer program.) Also, as follows from (A.31) and (A.39),
(A.43) $\quad\left(\operatorname{det} P_{0}\right)^{3}\left(a_{10 \times 10 \times 01}+a_{10 \times 10 \times 01}\right)=\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1}\left(h_{1,0}+h_{0,1}\right)\right)\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)^{2}\right)=$

$$
\begin{aligned}
& =-D_{T-2}^{*} \sum_{i=1}^{T-2}\left(\Delta^{2} D_{i-1}^{*}+\Delta^{2} D_{i+1}^{*}\right) D_{i-1}^{*}+\left(\Delta D_{T-1}^{*}+\Delta D_{T-2}^{*}\right) D_{T-2}^{*}{ }^{2}+O(T)= \\
& =2 T^{2} \frac{\sinh x}{x}\left(-\int_{0}^{1} \sinh ^{2}(x y) d y+\cosh x \frac{\sinh x}{x}\right)+O(T)=T^{2} \frac{\sinh x}{x}\left(\cosh x \frac{\sinh x}{x}+1\right)+O(T)
\end{aligned}
$$

Hence, since by (A.38), (A.30) and (A.40),

$$
\begin{equation*}
\left(\operatorname{det} P_{0}\right)^{2}\left(a_{20}-\frac{1}{4} a_{10}^{2}-\frac{1}{2} a_{10 \times 10}\right)= \tag{A.44}
\end{equation*}
$$

$$
\begin{aligned}
& =T^{2}\left(\frac{1}{2} \cosh x \frac{\sinh x}{x}-\frac{1}{4}\left(\cosh x-\frac{\sinh x}{x}\right)^{2}-\frac{1}{2}\left(\frac{\sinh x}{x}\right)^{2}\right)+O(T)= \\
& =T^{2}\left(-\frac{1}{4} \cosh ^{2} x+\cosh x \frac{\sinh x}{x}-\frac{3}{4}\left(\frac{\sinh x}{x}\right)^{2}\right)+O(T)
\end{aligned}
$$

(A.30), (A.35), (A.32), (A.41), (A.42), (A.36) and (A.43) plugged in into (A.14) gives us, after simplification

$$
\begin{aligned}
g_{2}(x) & =T^{2}(\cosh x)^{-\frac{7}{2}}\left(-\cosh x-\frac{1}{2} \frac{\sinh x}{x}-\frac{19}{8} \frac{\sinh ^{3} x}{x}+\frac{3}{2} \cosh x\left(\frac{\sinh x}{x}\right)^{2}-\frac{1}{8} x \cosh ^{2} x \sinh x+\right. \\
& \left.+\frac{1}{2} \cosh x \sinh ^{2} x\right)+O(T)
\end{aligned}
$$

and so, considering (A.10), and the fact that $\int_{0}^{\infty}(\cosh x)^{-\frac{7}{2}} \sinh x d x=\frac{2}{5},(5.13)$ is proved.
The derivation of (5.14) is immedeate from (A.11), (A.15) and the fact that $\operatorname{det} P_{0}=\cosh x+O\left(\frac{1}{T}\right)$. It remains to derive (5.15), i.e. to calculate $g_{4}(x)$ and $g_{5}(x)$. As for $g_{4}(x)$, (A.16) hints that we will need the "new" terms $a_{10 \times 20}$ and $a_{10 \times 10 \times 10}$. For the former, (A.28) and (A.37) imply

$$
\begin{align*}
\left(\operatorname{det} P_{0}\right)^{2} a_{10 \times 20} & =\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{2,0}\right)\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)\right)=\sum_{i=1}^{T-1} D_{i-1}^{*}{ }^{2}+O(T)= \tag{A.45}\\
& =\frac{T^{3}}{x^{2}} \int_{0}^{1} \sinh ^{2}(x y) d y=\frac{T^{3}}{2 x^{2}}\left(\cosh x \frac{\sinh x}{x}-1\right) .
\end{align*}
$$

Considering the latter, (A.28) and (A.39) give

$$
\begin{equation*}
\left(\operatorname{det} P_{0}\right)^{3} a_{10 \times 10 \times 10}=D_{T-2}^{*}+O\left(T^{2}\right)=T^{3}\left(\frac{\sinh x}{x}\right)^{3}+O\left(T^{2}\right) \tag{A.46}
\end{equation*}
$$

Now, inserting (A.30), (A.38), (A.45), (A.40) and (A.46) in (A.16) and simplifying, we get

$$
\text { 7) } \begin{align*}
g_{4}(x) & =T^{3}(\cosh x)^{-\frac{7}{2}}\left(-\frac{1}{8} \cosh ^{3} x+\frac{9}{8} \cosh ^{2} x \frac{\sinh x}{x}-\frac{15}{8} \cosh x\left(\frac{\sinh x}{x}\right)^{2}+\frac{15}{8}\left(\frac{\sinh x}{x}\right)^{3}+\right. \tag{A.47}\\
& \left.+\frac{3}{2} \frac{\cosh x}{x^{2}}-\frac{3}{2} \cosh ^{2} x \frac{\sinh x}{x^{3}}\right)+O\left(T^{2}\right) .
\end{align*}
$$

Furthermore, (A.17) and (A.30) imply

$$
g_{5}(x)=-\frac{T}{2}(\cosh x)^{-\frac{3}{2}}\left(\cosh x-\frac{\sinh x}{x}\right)+O(1)
$$

which, since $\int_{0}^{\infty}(\cosh x)^{-\frac{3}{2}} \sinh x d x=2$, together with (A.47) and (A.12) gives (5.15), and we are done.

Proof of Theorem 6.1: In order to prove Theorem 6.1, we may use many of the results in the proof of Theorem 5.2. In view of (6.2), our task is to calculate $\frac{\partial^{2}}{\partial \rho_{1}^{2}} \varphi(1 ; s, u)$, where $\varphi\left(\rho_{1} ; s, u\right)=E\left(e^{-s \sum X_{t-1}^{2}-u \sum\left(\Delta X_{t}\right)^{2}}\right)$ and X_{t} is a process defined through (1.1) with $\rho_{2}=0$, i.e. an $\operatorname{AR}(1)$ process. Now, as in the proof of Lemma A.1, it follows that

$$
\varphi\left(\rho_{1} ; s, u\right)=\int \ldots \int(2 \pi)^{-\frac{T}{2}} e^{-s \sum x_{i-1}^{2}-u \sum\left(x_{t}-x_{t-1}\right)^{2}-\frac{1}{2} \sum\left(x_{t}-\rho_{1} x_{t-1}\right)^{2}} d x_{1} \ldots d x_{T}=\frac{1}{\sqrt{\operatorname{det} \bar{P}}}
$$

with

$$
\bar{P} \stackrel{\text { def }}{=}(1+2 u) P_{0}+\theta h_{1,0}+\theta^{2} h_{2,0}
$$

$\theta=1-\rho_{1}$, and $h_{1,0}$ and $h_{2,0}$ as before. So is also P_{0}, but with s replaced by $\bar{s} \stackrel{\text { def }}{=} \frac{s}{1+2 u}$. Furthermore, applying (A.18) with $\bar{P}_{0} \stackrel{\text { def }}{=}(1+2 u) P_{0}$ instead of P_{0} and $\tilde{\varphi}(\theta ; s)=\varphi(1-\theta ; s)$, we get

$$
\frac{\partial^{2} \tilde{\varphi}}{\partial \theta^{2}}=\left(-\bar{a}_{20}+\frac{1}{4} \bar{a}_{10}^{2}+\frac{1}{2} \bar{a}_{10 \times 10}\right) \bar{\varphi}
$$

where

$$
\begin{gathered}
\bar{a}_{20} \stackrel{\text { def }}{=} \operatorname{tr}\left(\bar{P}_{0}^{-1} h_{2,0}\right)=(1+2 u)^{-1} a_{20}, \quad \bar{a}_{10} \stackrel{\text { def }}{=} \operatorname{tr}\left(\bar{P}_{0}^{-1} h_{1,0}\right)=(1+2 u)^{-1} a_{10} \\
\bar{a}_{10 \times 10} \stackrel{\text { def }}{=} \operatorname{tr}\left(\left(\bar{P}_{0}^{-1} h_{1,0}\right)^{2}\right)=(1+2 u)^{-2} a_{10 \times 10}
\end{gathered}
$$

and

$$
\bar{\varphi}=\frac{1}{\sqrt{\operatorname{det} \bar{P}_{0}}}=(1+2 u)^{-\frac{T}{2}} \frac{1}{\sqrt{\operatorname{det} P_{0}}}=(1+2 u)^{-\frac{T}{2}} \tilde{\varphi}
$$

evaluating $\tilde{\varphi}$ and $\bar{\varphi}$ at $\theta=0$. Hence,

$$
\frac{\partial^{2} \tilde{\varphi}}{\partial \theta^{2}}=(1+2 u)^{-\frac{T}{2}-2}\left(-(1+2 u) a_{20}+\frac{1}{4} a_{10}^{2}-\frac{1}{2} a_{10 \times 10}\right) \tilde{\varphi}
$$

Now, as in the proof of Lemma A.2, the substitution $x=\sigma T$, where

$$
\sigma=\sqrt{1-\frac{1}{(1+\bar{s})^{2}}} \Rightarrow d s=(1+2 u) d \bar{s}=(1+2 u) \frac{x d x}{T^{2}}+O\left(\frac{1}{T^{4}}\right)
$$

together with (6.2) yields

$$
\begin{equation*}
T E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2} \sum \varepsilon_{t}^{2}}\right)=\frac{1}{T} \int_{0}^{\infty} \int_{0}^{\infty}(1+2 u)^{-\frac{T}{2}-1} x g(x, u) d x d u+1+\frac{2}{T}+O\left(\frac{1}{T^{2}}\right) \tag{A.48}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x, u)=\left(\operatorname{det} P_{0}\right)^{-\frac{1}{2}}\left(-(1+2 u) a_{20}+\frac{1}{4} a_{10}^{2}-\frac{1}{2} a_{10 \times 10}\right) \tag{A.49}
\end{equation*}
$$

(Observe that a_{20}, a_{10}^{2} and $a_{10 \times 10}$ are all $O\left(T^{2}\right)$.) To obtain the corrected expectation, we will need to approximate $g(x, u)$, i.e. $\operatorname{det} P_{0}, a_{10}, a_{20}$ and $a_{10 \times 10}$, to the second order! (Since $\frac{T}{\sum \varepsilon_{t^{2}}}=1+o_{p}(1)$, the leading term of (A.48) is given by (4.4).)

In the sequel, we will have repeated use of the formulae

$$
\begin{align*}
& \frac{(1+\sigma)^{T-k}+(1-\sigma)^{T-k}}{2}=1+\binom{T-k}{2}\left(\frac{x}{T}\right)^{2}+\binom{T-k}{4}\left(\frac{x}{T}\right)^{4}+\binom{T-k}{6}\left(\frac{x}{T}\right)^{6}+\ldots= \tag{A.50}\\
& =1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots-\frac{1}{T}\left(\frac{2 k+1}{2!} x^{2}+\frac{4 k+6}{4!} x^{4}+\frac{6 k+15}{6!} x^{6}+\ldots\right)+O\left(\frac{1}{T^{2}}\right)= \\
& =\cosh x-\frac{1}{2 T}\left(2 k x \sinh x+x^{2} \cosh x\right)+O\left(\frac{1}{T^{2}}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \frac{(1+\sigma)^{T-k}-(1-\sigma)^{T-k}}{2}=\binom{T-k}{1} \frac{x}{T}+\binom{T-k}{3}\left(\frac{x}{T}\right)^{3}+\binom{T-k}{5}\left(\frac{x}{T}\right)^{5}+\ldots= \tag{A.51}\\
& =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots-\frac{1}{T}\left(k x+\frac{3 k+3}{3!} x^{3}+\frac{5 k+10}{5!} x^{5}+\ldots\right)+O\left(\frac{1}{T^{2}}\right)= \\
& =\sinh x-\frac{1}{2 T}\left(2 k x \cosh x+x^{2} \sinh x\right)+O\left(\frac{1}{T^{2}}\right)
\end{align*}
$$

We will also need a second order approximation of $\operatorname{det} P_{0}$. But (as before, $\sigma=x T$)

$$
\left(\frac{\alpha}{2}\right)^{T-1}=1+\frac{x^{2}}{2 T}+O\left(\frac{1}{T^{2}}\right) \quad \text { and } \quad 1-\frac{2}{\alpha}=\frac{x^{2}}{2 T^{2}}+O\left(\frac{1}{T^{4}}\right)
$$

and so (A.23), (A.50) and (A.51) yield
(A.52) $\operatorname{det} P_{0}=D_{T}=\left(1+\frac{x^{2}}{2 T}\right)\left(\cosh x-\frac{1}{2 T}\left(2 x \sinh x+x^{2} \cosh x\right)+\frac{1}{2 T} x \sinh x\right)+O\left(\frac{1}{T^{2}}\right)=$

$$
=\cosh x-\frac{1}{2 T} x \sinh x+O\left(\frac{1}{T^{2}}\right)
$$

To compute a_{10}, let us take a close look at (A.29). We know that

$$
\begin{equation*}
D_{T-1}=\cosh x+O\left(\frac{1}{T}\right)=D_{T-2}+O\left(\frac{1}{T}\right)=\Delta D_{T-2}^{*}+O\left(\frac{1}{T}\right) \tag{A.53}
\end{equation*}
$$

and in the usual manner

$$
\begin{equation*}
\sum_{i=2}^{T-2} D_{i-1}^{*} \Delta^{2} D_{T-i+1}=x \int_{0}^{1} \sinh (x y) \cosh (x(1-y)) d y+O\left(\frac{1}{T}\right)=\frac{1}{2} x \sinh x+O\left(\frac{1}{T}\right) \tag{A.54}
\end{equation*}
$$

Calculating D_{T-2}^{*} (which is $O(T)$), we have to find a second order approximation of (A.24) for $k=T-2$.
To this end, we note that

$$
\left(\frac{\alpha}{2}\right)^{T-3}=1+\frac{x^{2}}{2 T}+O\left(\frac{1}{T^{2}}\right), \quad \alpha=2+O\left(\frac{1}{T^{2}}\right) \quad \text { and } \quad \alpha-\frac{2}{\alpha}=1+O\left(\frac{1}{T^{2}}\right)
$$

Hence, (A.50) and (A.51) yield, inserting into (A.24),

$$
\begin{align*}
D_{T-2}^{*} & =\left(1+\frac{x^{2}}{2 T}\right)\left(2 \cosh x+\frac{T}{x}\left(\sinh x-\frac{1}{2 T}\left(6 x \cosh x+x^{2} \sinh x\right)\right)\right)+O\left(\frac{1}{T}\right)= \tag{A.55}\\
& =T \frac{\sinh x}{x}-\cosh x+O\left(\frac{1}{T}\right)
\end{align*}
$$

To complete the calculation of a_{10}, we need $\sum_{i=2}^{T-2} D_{i-2}^{*} \Delta D_{T-i+1}$ and $\sum_{i=2}^{T-2} \Delta D_{i-1}^{*} D_{T-i+1}$. (Since these sums are $O(T)$, the usual integral approximation technique does not suffice for our present purposes.) In order to evaluate the former sum, note that from (A.23)

$$
\Delta D_{k}=D_{k}-D_{k-1}=\left(\frac{\alpha}{2}\right)^{k-2} \frac{1}{\alpha \sigma}\left(\left(\frac{\alpha}{2}(1+\sigma)-1\right)^{2}(1+\sigma)^{k-2}-\left(\frac{\alpha}{2}(1-\sigma)-1\right)^{2}(1-\sigma)^{k-2}\right)
$$

Hence, since by (A.24)

$$
D_{k}^{*}=\left(\frac{\alpha}{2}\right)^{k-1} \frac{1}{2 \sigma}\left(\left(\left(\alpha(1+\sigma)-\frac{2}{\alpha}\right)(1+\sigma)^{k-1}-\left(\alpha(1-\sigma)-\frac{2}{\alpha}\right)(1-\sigma)^{k-1}\right)\right.
$$

we have

$$
\begin{aligned}
D_{i-2}^{*} \Delta D_{T-i+1}=\left(\frac{\alpha}{2}\right)^{T-4} \frac{1}{2 \alpha \sigma^{2}} & \left(\left(\left(\alpha(1+\sigma)-\frac{2}{\alpha}\right)(1+\sigma)^{i-3}-\left(\alpha(1-\sigma)-\frac{2}{\alpha}\right)(1-\sigma)^{i-3}\right)\right. \\
& \cdot\left(\left(\frac{\alpha}{2}(1+\sigma)-1\right)^{2}(1+\sigma)^{T-i-1}-\left(\frac{\alpha}{2}(1-\sigma)-1\right)^{2}(1-\sigma)^{T-i-1}\right)
\end{aligned}
$$

Approximating in the usual manner,

$$
\begin{equation*}
\alpha(1 \pm \sigma)-\frac{2}{\alpha}=1 \pm 2 \frac{x}{T}+O\left(\frac{1}{T^{2}}\right) \tag{A.56}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha}{2}(1 \pm \sigma)-1= \pm \frac{x}{T}+\frac{x^{2}}{2 T^{2}}+O\left(\frac{1}{T^{3}}\right)= \pm \frac{x}{T}\left(1 \pm \frac{x}{2 T}+O\left(\frac{1}{T^{2}}\right)\right) \tag{A.57}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
D_{i-2}^{*} \Delta D_{T-i+1} & =\frac{1}{4}\left(1+\frac{x^{2}}{2 T}\right)\left(\left(1+3 \frac{x}{T}\right)(1+\sigma)^{T-4}+\left(1-3 \frac{x}{T}\right)(1-\sigma)^{T-4}-\right. \\
& \left.-\left(1+\frac{x}{T}\right)(1+\sigma)^{i-3}(1-\sigma)^{T-i-1}-\left(1-\frac{x}{T}\right)(1-\sigma)^{i-3}(1+\sigma)^{T-i-1}\right)+O\left(\frac{1}{T^{2}}\right)
\end{aligned}
$$

Now, (A.51) implies

$$
\begin{aligned}
& \sum_{i=2}^{T-2}(1+\sigma)^{i-3}(1-\sigma)^{T-i-1}=(1-\sigma)^{T-1}(1+\sigma)^{-3} \sum_{i=2}^{T-2}\left(\frac{1+\sigma}{1-\sigma}\right)^{i}= \\
& =(1-\sigma)^{T-1}(1+\sigma)^{-3}\left(\frac{1+\sigma}{1-\sigma}\right)^{2} \frac{1-\left(\frac{1+\sigma}{1-\sigma}\right)^{T-3}}{1-\frac{1+\sigma}{1-\sigma}}=\frac{1-\sigma}{1+\sigma} \frac{(1+\sigma)^{T-3}-(1-\sigma)^{T-3}}{2 \sigma}= \\
& =\frac{T}{x}\left(1-2 \frac{x}{T}\right)\left(\sinh x-\frac{1}{2 T}\left(6 x \cosh x+x^{2} \sinh x\right)\right)+O\left(\frac{1}{T}\right)
\end{aligned}
$$

and likewise

$$
\sum_{i=2}^{T-2}(1-\sigma)^{i-3}(1+\sigma)^{T-i-1}=\frac{T}{x}\left(1+2 \frac{x}{T}\right)\left(\sinh x-\frac{1}{2 T}\left(6 x \cosh x+x^{2} \sinh x\right)\right)+O\left(\frac{1}{T}\right)
$$

This, together with (A.50) and (A.51), yields
(A.58)

$$
\begin{aligned}
\sum_{i=2}^{T-2} D_{i-2}^{*} \Delta D_{T-i+1} & =\frac{1}{2}\left(1+\frac{x^{2}}{2 T}\right)\left((T-3)\left(\cosh x-\frac{1}{2 T}\left(8 x \sinh x+x^{2} \cosh x\right)+\frac{3 x}{T} \sinh x\right)-\right. \\
& \left.-\frac{T}{x}\left(\sinh x-\frac{1}{2 T}\left(6 x \cosh x+x^{2} \sinh x\right)\right)\right)+O\left(\frac{1}{T}\right)= \\
& =\frac{T}{2}\left(\cosh x-\frac{\sinh x}{x}-\frac{1}{T} x \sinh x\right)+O\left(\frac{1}{T}\right)
\end{aligned}
$$

The calculation of $\sum_{i=2}^{T-2} \Delta D_{i-1}^{*} D_{T-i+1}$ very much follows the same lines. Indeed, (A.24) implies

$$
\begin{aligned}
\Delta D_{k}^{*}=D_{k}^{*}-D_{k-1}^{*}=\left(\frac{\alpha}{2}\right)^{k-2} \frac{1}{2 \sigma} & \left(\left(\frac{\alpha}{2}(1+\sigma)-1\right)\left(\alpha(1+\sigma)-\frac{2}{\alpha}\right)(1+\sigma)^{k-2}-\right. \\
& \left.-\left(\frac{\alpha}{2}(1-\sigma)-1\right)\left(\alpha(1-\sigma)-\frac{2}{\alpha}\right)(1-\sigma)^{k-2}\right)
\end{aligned}
$$

and by (A.23),

$$
D_{k}=\left(\frac{\alpha}{2}\right)^{k-1} \frac{1}{\alpha \sigma}\left(\left(\frac{\alpha}{2}(1+\sigma)-1\right)(1+\sigma)^{k-1}-\left(\frac{\alpha}{2}(1-\sigma)-1\right)(1-\sigma)^{k-1}\right)
$$

Thus,

$$
\begin{aligned}
\Delta D_{i-1}^{*} D_{T-i+1}=\left(\frac{\alpha}{2}\right)^{T-3} \frac{1}{2 \alpha \sigma^{2}} & \left(\left(\frac{\alpha}{2}(1+\sigma)-1\right)\left(\alpha(1+\sigma)-\frac{2}{\alpha}\right)(1+\sigma)^{i-3}-\right. \\
& \left.-\left(\frac{\alpha}{2}(1-\sigma)-1\right)\left(\alpha(1-\sigma)-\frac{2}{\alpha}\right)(1-\sigma)^{i-3}\right) \\
& \cdot\left(\left(\frac{\alpha}{2}(1+\sigma)-1\right)(1+\sigma)^{T-i}-\left(\frac{\alpha}{2}(1-\sigma)-1\right)(1-\sigma)^{T-i}\right)
\end{aligned}
$$

and so, by (A.56) and (A.57),

$$
\begin{aligned}
\Delta D_{i-1}^{*} D_{T-i+1}= & \frac{1}{4}\left(1+\frac{x^{2}}{2 T}\right)\left(\left(1+3 \frac{x}{T}\right)(1+\sigma)^{T-4}+\left(1-3 \frac{x}{T}\right)(1-\sigma)^{T-4}+\right. \\
& \left.+\left(1+2 \frac{x}{T}\right)(1+\sigma)^{i-3}(1-\sigma)^{T-i}+\left(1-2 \frac{x}{T}\right)(1-\sigma)^{i-3}(1+\sigma)^{T-i}\right)+O\left(\frac{1}{T^{2}}\right)
\end{aligned}
$$

Now, using (A.51),

$$
\begin{aligned}
& \sum_{i=2}^{T-2}(1+\sigma)^{i-3}(1-\sigma)^{T-i}=\frac{(1-\sigma)^{2}}{1+\sigma} \frac{(1+\sigma)^{T-3}-(1-\sigma)^{T-3}}{2 \sigma}= \\
& =\frac{T}{x}\left(1-3 \frac{x}{T}\right)\left(\sinh x-\frac{1}{2 T}\left(6 x \cosh x+x^{2} \sinh x\right)\right)+O\left(\frac{1}{T}\right)
\end{aligned}
$$

and

$$
\sum_{i=2}^{T-2}(1-\sigma)^{i-3}(1+\sigma)^{T-i}=\frac{T}{x}\left(1+3 \frac{x}{T}\right)\left(\sinh x-\frac{1}{2 T}\left(6 x \cosh x+x^{2} \sinh x\right)\right)+O\left(\frac{1}{T}\right)
$$

Hence, by this, (A.50) and (A.51),
(A.59) $\sum_{i=2}^{T-2} \Delta D_{i-1}^{*} D_{T-i+1}=\frac{1}{2}\left(1+\frac{x^{2}}{2 T}\right)\left((T-3)\left(\cosh x-\frac{1}{2 T}\left(6 x \sinh x+x^{2} \cosh x\right)+\frac{3 x}{T} \sinh x\right)+\right.$

$$
\begin{aligned}
& \left.+\frac{T}{x}\left(\sinh x-\frac{1}{2 T}\left(6 x \cosh x+x^{2} \sinh x\right)\right)\right)+O\left(\frac{1}{T}\right)= \\
& =\frac{T}{2}\left(\cosh x+\frac{\sinh x}{x}-\frac{6}{T} \cosh x\right)+O\left(\frac{1}{T}\right)
\end{aligned}
$$

and, inserting (A.53), (A.54), (A.55), (A.58) and (A.59) in (A.29),
(A.60) $\operatorname{det} P_{0} \cdot a_{10}=-2 \cosh x+\frac{1}{2} x \sinh x+T \frac{\sinh x}{x}-\cosh x-\frac{T}{2}\left(\cosh x-\frac{\sinh x}{x}\right)+\frac{1}{2} x \sinh x-$

$$
\begin{aligned}
& -\frac{T}{2}\left(\cosh x+\frac{\sinh x}{x}\right)+3 \cosh x+O\left(\frac{1}{T}\right)= \\
& =-T\left(\cosh x-\frac{\sinh x}{x}\right)+x \sinh x+O\left(\frac{1}{T}\right)
\end{aligned}
$$

generalizing (A.30).
As for a_{20} we will, in view of (A.38), need a second order approximation of $\sum_{i=1}^{T-1} D_{i-1}^{*} D_{T-i}$. But from (A.23), (A.24), (A.56) and (A.57),

$$
\begin{aligned}
D_{i-1}^{*} D_{T-i} & =\left(\frac{\alpha}{2}\right)^{T-3} \frac{1}{2 \alpha \sigma^{2}}\left(\left(\alpha(1+\sigma)-\frac{2}{\alpha}\right)(1+\sigma)^{i-2}-\left(\alpha(1-\sigma)-\frac{2}{\alpha}\right)(1-\sigma)^{i-2}\right) \\
& \cdot\left(\left(\frac{\alpha}{2}(1+\sigma)-1\right)(1+\sigma)^{T-i-1}-\left(\frac{\alpha}{2}(1-\sigma)-1\right)(1-\sigma)^{T-i-1}\right)= \\
& =\frac{T}{4 x}\left(1+\frac{x^{2}}{2 T}\right)\left(\left(1+\frac{5}{2} \frac{x}{T}\right)(1+\sigma)^{T-3}-\left(1-\frac{5}{2} \frac{x}{T}\right)(1-\sigma)^{T-3}+\right. \\
& \left.+\left(1+\frac{3}{2} \frac{x}{T}\right)(1+\sigma)^{i-2}(1-\sigma)^{T-i-1}-\left(1-\frac{3}{2} \frac{x}{T}\right)(1-\sigma)^{i-2}(1+\sigma)^{T-i-1}\right)+O\left(\frac{1}{T^{2}}\right)
\end{aligned}
$$

But, since by (A.51),

$$
\begin{aligned}
& \sum_{i=1}^{T-1}(1+\sigma)^{i-2}(1-\sigma)^{T-i-1}=\frac{1}{1+\sigma} \frac{(1+\sigma)^{T-1}-(1-\sigma)^{T-1}}{2 \sigma}= \\
& =\frac{T}{x}\left(1-\frac{x}{T}\right)\left(\sinh x-\frac{1}{2 T}\left(2 x \cosh x+x^{2} \sinh x\right)\right)+O\left(\frac{1}{T}\right)
\end{aligned}
$$

and

$$
\sum_{i=1}^{T-1}(1-\sigma)^{i-2}(1+\sigma)^{T-i-1}=\frac{T}{x}\left(1+\frac{x}{T}\right)\left(\sinh x-\frac{1}{2 T}\left(2 x \cosh x+x^{2} \sinh x\right)\right)+O\left(\frac{1}{T}\right)
$$

we have from (A.38), (A.50) and (A.51) that
(A.61) $\operatorname{det} P_{0} \cdot a_{20}=\sum_{i=1}^{T-1} D_{i-1}^{*} D_{T-i}=$

$$
\begin{aligned}
& =\frac{T}{2 x}\left(1+\frac{x^{2}}{2 T}\right)\left((T-1)\left(\sinh x-\frac{1}{2 T}\left(6 x \cosh x+x^{2} \sinh x\right)+\frac{5}{2 T} x \cosh x\right)+\frac{1}{2} \sinh x\right)+O(1)= \\
& =\frac{T^{2}}{2} \frac{\sinh x}{x}-\frac{T}{4}\left(\cosh x+\frac{\sinh x}{x}\right)+O(1)
\end{aligned}
$$

It remains to deal with $a_{10 \times 10}$, and to this end it follows from (A.28) that

$$
\begin{aligned}
\left(\operatorname{det} P_{0}\right)^{2} a_{10 \times 10} & =\operatorname{tr}\left(\left(\operatorname{det} P_{0} \cdot P_{0}^{-1} h_{1,0}\right)^{2}\right)= \\
& =\sum_{i=2}^{T-2}\left(D_{i-2}^{*} \Delta D_{T-i+1}+\Delta D_{i-1}^{*} D_{T-i+1}\right)^{2}+\sum_{i=1}^{T-1} \Delta^{2} D_{i}^{*} D_{i-1}^{*}+D_{T-2}^{*}{ }^{2}+O(1)
\end{aligned}
$$

Here, as usual

$$
\begin{aligned}
\sum_{i=2}^{T-2}\left(D_{i-2}^{*} \Delta D_{T-i+1}+\Delta D_{i-1}^{*} D_{T-i+1}\right)^{2} & =T \int_{0}^{1}(\sinh (x y) \sinh (x(1-y))+\cosh (x y) \cosh (x(1-y)))^{2} d y= \\
& =T \cosh ^{2} x+O(1)
\end{aligned}
$$

and

$$
\sum_{i=1}^{T-1} \Delta D_{i}^{*} D_{i-1}^{*}=T \int_{0}^{1} \sinh ^{2}(x y) d y=\frac{T}{2}\left(\frac{\sinh x}{x} \cosh x-1\right)+O(1)
$$

which together with (A.55) yields
(A.62) $\quad\left(\operatorname{det} P_{0}\right)^{2} a_{10 \times 10}=T \cosh ^{2} x+\frac{T}{2}\left(\frac{\sinh x}{x} \cosh x-1\right)+\left(T \frac{\sinh x}{x}-\cosh x\right)^{2}+O(1)=$

$$
=T^{2}\left(\frac{\sinh x}{x}\right)^{2}+T\left(\cosh ^{2} x-\frac{3}{2} \frac{\sinh x}{x} \cosh x-\frac{1}{2}\right)+O(1)
$$

Now, plugging in (A.52), (A.60), (A.61) and (A.62) into (A.49), Taylor expanding and simplifying, we get

$$
\begin{aligned}
g(x, u) & =\left(\cosh x-\frac{1}{2 T} x \sinh x\right)^{-\frac{5}{2}} \\
& \cdot\left(-(1+2 u)\left(\cosh x-\frac{1}{2 T} x \sinh x\right)\left(\frac{T^{2}}{2} \frac{\sinh x}{x}-\frac{T}{4}\left(\cosh x+\frac{\sinh x}{x}\right)\right)+\right. \\
& +\frac{1}{4}\left(-T\left(\cosh x-\frac{\sinh x}{x}\right)^{2}+x \sinh x\right)^{2}+ \\
& \left.+\frac{T^{2}}{2}\left(\frac{\sinh x}{x}\right)^{2}+\frac{T}{2}\left(\cosh ^{2} x-\frac{3}{2} \frac{\sinh x}{x} \cosh x-\frac{1}{2}\right)\right)+O(1)= \\
& =T^{2}(\cosh x)^{-\frac{5}{2}}\left(g_{11}(x)+u g_{12}(x)+\frac{1}{T}\left(g_{21}(x)+u g_{22}(x)\right)\right)+O(1)
\end{aligned}
$$

where

$$
\begin{aligned}
& g_{11}(x) \stackrel{\text { def }}{=} \frac{1}{4} \cosh ^{2} x-\frac{\sinh x}{x} \cosh x+\frac{3}{4}\left(\frac{\sinh x}{x}\right)^{2} \\
& g_{12}(x) \stackrel{\text { def }}{=}-\frac{\sinh x}{x} \cosh x \\
& g_{21}(x) \stackrel{\text { def }}{=} \frac{1}{4} \cosh ^{2} x+\frac{1}{4}-\frac{3}{16} x \sinh x \cosh x+\frac{15}{16} \frac{\sinh ^{3} x}{x \cosh x}-\frac{1}{2} \frac{\sinh x}{x} \cosh x \quad \text { and } \\
& g_{22}(x) \stackrel{\text { def }}{=}-\frac{1}{4} \cosh ^{2} x+\frac{3}{4}+\frac{1}{2} \frac{\sinh x}{x} \cosh x .
\end{aligned}
$$

However, since

$$
\int_{0}^{\infty}(1+2 u)^{-\frac{T}{2}-1} d u=\frac{1}{T} \quad \text { and } \quad \int_{0}^{\infty} u(1+2 u)^{-\frac{T}{2}-1} d u=\frac{1}{T(T-2)}=\frac{1}{T^{2}}+O\left(\frac{1}{T^{3}}\right)
$$

(A.48) implies

$$
\begin{equation*}
T E\left(\frac{\left(\sum S_{t-1} \varepsilon_{t}\right)^{2}}{\sum S_{t-1}^{2} \sum \varepsilon_{t}^{2}}\right)=\int_{0}^{\infty} x(\cosh x)^{-\frac{5}{2}}\left(g_{11}(x)+\frac{1}{T} g_{2}(x)\right) d x+1+\frac{2}{T}+O\left(\frac{1}{T^{2}}\right) \tag{A.63}
\end{equation*}
$$

where

$$
g_{2}(x)=g_{12}(x)+g_{21}(x)=\frac{1}{4} \cosh ^{2} x+\frac{1}{4}-\frac{3}{16} x \sinh x \cosh x+\frac{15}{16} \frac{\sinh ^{3} x}{x \cosh x}-\frac{3}{2} \frac{\sinh x}{x} \cosh x
$$

Hence, since

$$
\int_{0}^{\infty}(\cosh x)^{-\frac{3}{2}} \sinh x d x=2
$$

we obtain (6.3) from (A.63), which completes the proof.

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, DK-2100 COPENHAGEN Ø, DENMARK. TELEPHONE +45 35320899 .

No. 1 Hansen, Henrik and Johansen, Søren: Recursive Estimation in Cointegration VAR-Models.
No. 2 Stockmarr, A. and Jacobsen, M.: Gaussian Diffusions and Autoregressive Processes: Weak Convergence and Statistical Inference.
No. 3 Nishio, Atsushi: Testing for a Unit Root against Local Alternatives
No. 4 Tjur, Tue: StatUnit - An Alternative to Statistical Packages?
No. 5 Johansen, Søren: Likelihood Based Inference for Cointegration of Non-Stationary Time Series.

Preprints 1994

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, DK-2100 COPENHAGEN \varnothing, DENMARK. TELEPHONE 45353208 99, FAX 4535320772.

No. 1 Jacobsen, Martin: Weak Convergence of Autoregressive Processes.
No. 2 Larsson, Rolf: Bartlett Corrections for Unit Root Test Statistics.

