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Abstract

Bartlett correction for the log likelihood ratio, testing for a unit root in an autoregressive process of

order one or two, is studied. The correction is numerically calculated for order one, as well as for order two

in the special case of a zero nuisance parameter.
1. Introduction

Consider the AR(2) model
(1.1) Xe=p X1+ p2Xio+e, t=1,...,T,

where the ¢;:s are independent and normally distributed with mean zero and variance 02, and Xy = X_; = 0.

Our object is to test the hypothesis Hy : p;+p2 = 1 against =Hy. We may also rewrite (1.1) in error correction

form, i.e.
(12) AXt = 7I’Xt_.1 + ‘)/AXt—l + &¢,
where 7 = p; + p2 — 1 and ¥ = —ps. Now, the null hypothesis is Hy : 7 = 0, and 7 is a nuisance parameter

for this test. We say that we test for a unit root of the process.

Now, let us for a moment consider the multivariate version of (1.2), i.e. let X; and ¢; be p-dimensional
vectors and let 7 and ¥ be pxp matrices. In this situation, an important issue is to test H(r) : rank(7) =r < p
against e.g. H(p) : rank(w) = p. This is a multivariate version of the unit root test.

Performing this test in practice, the common thing to do is to use a table of the asymptotic distribution
of the likelihood ratio test statistic (the Dickey-Fuller distribution). This is a well-known functional of the
vector-valued Brownian motion, which has been simulated by several authors (see e.g. Johansen (1988)).
However, if a very large amount of data is not at hand, it has recently been found that (see e.g. Jacobsson
(1992)) straightforward use of these tables could be very misleading. Thus, there seems to be a need of
small sample correction for the asymptotic test, and it is the purpose of our work to find such corrections.

We start by studying the relatively simple scalar model (1.2), but in the future, our aim is to generalize our

results to the multivariate case.

2. Bartlett correction

In a pioneering paper (Bartlett (1937)), Bartlett introduced a small sample correction technique, later
known as Bartlett correction. The idea is that, instead of looking directly at the test statistic, say Sr
(with an unknown distribution), which tends to Se (with known distribution) as T' — oo, we look at the

distribution of E—S%, which of course tends to the distribution of %: as T — oo. Thus,
S

= ~ ESp———



an approximation which (at least in ”standard” cases) turns out to be useful also for moderately large T

values. However, a problem is that we might not know ESp, but if we can find a series expansion like

R 1
ESTzESoo',‘T"'O(ﬁ))
we get
R\ S
This is called the Bartlett correction. In ”standard” cases, this correction has been shown to correct also
higher moments and fractiles (cf Jensen (1993)) for an overview of the subject).

Testing Ho in (1.2), the log likelihood ratio test statistic is
—2log Qr = —T'log(1 — Mp) =TMr + O (—,11;) as T — oo,
where
AX1o1)?
1) Mr = AX,AX (’ > Xio18X-1)" )
(Taxy - OfReral) (pap, - Gfopral )

(If nothing else is said, the summation goes from ¢t =1 to t = T'.) It follows that

2
(EXHAXt — fglXia X zxt_lAXt_l)

where W, is a standard Wiener process (Brownian motion). In the following, we will derive the expansion
R 1

(2.2) ETMy = EZ + % +0 (ﬁ) . R(7) = Ri + Ra(y).

Indeed, looking at the corresponding AR(1) test statistic

2 t
Zr ¥ (2 Si-aer) S € > e

2.3 = Tt
@3) YTy 5 2
we have

_ Ry 1
(2.4) EZr =EZ + T +0(T2),

the Bartlett correction for the AR(1) test. Accordingly, we may view the term R—(zTﬁ as a correction from

the AR(1) to the AR(2) test. (Naturally, this is where the nuisance parameter y enters.) We will be able to

calculate Ry and R2(0) numerically.
To get a feeling for the shape of Ry(y), we have performed some simulations of ET My for T' = 10,

20, 50 and 100 with 1,000,000 replications, which are displayed in figure 1. (The upper curve corresponds
to T' = 100, the next to upper to T' = 50, and so on.) From this figure, we see that, for |y| < 0.3, the
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approximation Ry(y) & R3(0) is fairly accurate for T > 20, whereas for lower T values we might have to

consider the linear approximation Ry(y) = R2(0) + vR5(0).

Figure 1:
/
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3. A representation of Ry(0)

t
If ¥ = 0, it follows from (1.2) that under Ho: 7 =0, X; = > &; = Sy, i.e. AX; =&, implying
i=1
SAXAXi—1 =) eei—1 and Y, X4—1AX¢—1 = ), Si—16¢—1. Multiplying out the main term in (2.1), we

have
-1 -1
TMp = 72 51e) (1 LT ES‘-I“-IY o Zeee)® V() (ESeen)”
e} Sty 2 Si-180 ) €1-1? Yetyea? XSt E-?

Now, since (for convenience, we assume o2 = 1 in the following) Y &2 = T + Op(1), Y e:—12 = T + 0,(1),
S €1 = Op(VT), Y. Si—16: = O0p(T), 3. Si—161-1 = Op(T) and 3 SZ_; = 0,(T?) (the notation Xz =

Op(T*) means that 2Z converges in distribution to a "non-degenerate” random variable as T' — oo), Taylor

expansion yields

TMr =T (Est—lsi)z ( _ _2_25t5t—1 ZSt—lft—l + _1. (Zé‘t&‘t_l 251-16t_1>2+

el ) St T > Si-16 T2 > St—1e

+ -7—3—2- (Zetet_l)z + %————(Zg‘s‘{‘l‘lf + op(T—%)>

and so, since ) Si_16i—1 = Y €1—12+ . St—oet—1 = T+ Y_ Si—1&¢ + 0,(T'), we have in view of (2.2) and
(2.4)



(3.1) 52%92 = —2F (ZQE"I ZSt-Zl:E;'tz(__ll+ T Z:St—lst)) +

+ (E 5t5t—1)2 (1 + % Z:St;IEt + 7'?_2 (z St—-let)z) +TFE <(z St_151)2 (1 + %2251_163)2) -
25 (X sty)

(We will come back to the calculation of R; in chapter 6.) Now, we claim that the three terms in the r.h.s.
of (3.1) are O(T 1), i.e. that R2(0) = O(1). In view of the orders of magnitude of the sums, this is evidently
true for the second and third terms. However, by the same reasons the first term appears to be of order T-3,
but this is a false statement. This is so, since as is shown in Lemma 4.2 below, )" e:6:_1 is asymptotically

uncorrelated with 3" S;_1¢; and 5~ SZ ;. Indeed, as will be shown in theorem 5.2, this term is also O(T""?).

Hence, we should have

Yoeter—1y, Si—1€¢ Yoeer-1 (D0 5:-151)2 (Zetet—l)z
TE( e ) .y E( S ) B, TE (_253_1 ) ~c,

(E€t€t—1)225t—15t _ 1 (25t5t—1)2(zst—15t)2 _ 2 (Z:St—let)z -
E( I ) v E( L ) E’”((zsz_l)z) "

TE (——-——(ZS“””);) -G and E <——(ZS"1Q);) —H,
(ZSEy) (57-1)

for some constants A-H, and so (3.1) yields

|

(3.2) Ry(0) = —2(A+B)+C+2(D+E)+ F+2G+ H+0(T™).

In the following, numerical values of these constants will be calculated. Our technique is based on the ideas

outlined in Mikulski & Monsour, who calculate moments of the univariate Dickey-Fuller distribution.



4. The Mikulski & Monsour idea

To start with, consider the trivial equality

1 00
- = /e"”ds.
z

0

Replacing z by )~ X7 ;, where X; is defined by (1.1) with p; = 0, i.e. as an AR(1) process (for convenience,

let o2 = 1). Taking expectation and using Fubini’s theorem gives us

[o2)

(4.1) E(ﬁ) = 7E(e"zx'2—l)ds= /go(pl;s)ds,
0 0

where ¢(p1;s) ey (e_s X '2-') is the moment generating function (Laplace transform) of }_ X2 ;. On
the other hand,

(4.2) (thz 1) / /Z @r)-Fe 3 X E-mee gy | dep

Putting (4.1) equal to (4.2) and differentiating w.r.t. p;, we have

T 0 Soai—1(we — pras—1) —T 13 (e )2 EXt 1€¢
—p(p1;s ds:/ 2T)"Te 2 tTAT=1) g L dep = ,
o/apl“) DENEE veder =B\,

and so, letting p; — 1,
7 0 (Z.S't_lst) )
—op(l;8)ds=F | &——1}.
0/‘9/’1 #(1;s) > St

Finishing off by calculating 3 go(l s), this and similar arguments help Mikulski & Monsour to derive,

among others, the results hsted in the following theorem (the figures are obtained by employing numerical

integration):

Theorem 4.1.

[oe)
. ZSt—lfft) 1/
4.3 lim TE | &~——) = -2 de +1~ —1.781,
(4.3) 750 (ZS,Z_I 20 Vcosh *

. St_161)2> 7 x 3Sil’1h2 z
44 lim F ((—Z—:— = / + 5 dz — 1~ 1.142,
(4.4) T—o0 > S52 ) 4v/coshe 4zcosh? z

Sicie)?\ 1 1[ 48 3z 1
4.5 lim T2E ((z“‘ >_-/( - >d = ~ 13.286,
(45) T (>-s2.4)? 4 ) 2v/coshz +/coshz i 2



and

o)
(3 Si- 15,:)4) / ( z 105sinh® ) 9
4.6 hm E + 5 dz — - ~ 3.522.
(4.6) ( - SE,)? ) 32\/coshz 8vcoshz = 32z cosh? z "1

Thanks to these results, we are spared from calculating F' and G, the values of which are given by (4.5) and

(4.6), respectively. Moreover, as a consequence of the following lemma, the theorem in effect also provides

us with D and E.

Lemma 4.2. Y &6, is asymptotically uncorrelated with Y S;_1e; and ) S2 ;.

B
The lemma implies that 3 e;64—1 is asymptotically uncorrelated with any smooth function of ) S;_1¢; and

5> 8% ;, and so ,
oot s (See)) 2 ().

where ~ means equality to the first order. But since E ((3"e£1-1)2) = T, this means that the value of
D is given by (4.3), and similarly we conclude that E is given by (4.4), leaving only A, B, C and G to be

calculated. Furthermore, the calculation of C is simplified, since as above,

1
47 J ((Zsm )’ ) ~ T2E (————) .
40 > ST, =57,
Proof of Lemma 4.2: As is easily verified,

E (Zstet—1) =0, FE (Z St—1€t) =0, E (Zité‘t—l ZSt—let) = <(Z€t5t 1) ) =

and

E ((E St_let)z) = %T(T— 1),
Corr (Z5t5t—l;zst-—15t) =0 (T_%) ,

which proves that ) e:e;-1 and ) S;—16; are asymptotically uncorrelated. The fact that ) ese;—1 is also

and so

asymptotically uncorrelated with ) .SZ ; is proved similarly.



5. The calculation of A, B, C and G

Calculating the remaining terms A, B, C and G by generalising the Mikulski & Monsour procedure, we

at first obtain the following lemma:

Lemma 5.1. Let

o(p1,p2;5) € E (e_,zxf_,) 5
where X, is the AR(2) process defined by (1.1). Then

Zetst—l Z:St—let> 7( 62(,0 62 )
5.1 TE T +—+—— ds + o(1),
&) ( St J ¢ 9p?  9p10py s +o(1)

o p(Regten)- [ (e g s
(5.3) E (251'?_1) = O]ogods and
64 oS - [ (5 vage) e

where ¢ and all its derivatives are calculated at (p1,p2) = (1, 0).

Proof: With X; defined by (1.1), we of course still get the equalities (4.1) and (4.2), and so

(5.5) 7¢(p1,p2;s)ds =F (f}l{tz-—q) = / . / —E—-:tz—_lL(pl,pQ)dzl ...dzp,

where
def jo \_T _1
Lip1, ps) & @m)Fe 12, ¢, Yoy — pros_y — pazica

Letting py — 1 and ps — 0 in this equation gives us (5.3). Furthermore, succesive differentiation of L(p1, p2)

yields
(5.6) a—pl- = th 16¢L
2
(6.7) (Z’_p? = (—Z:ctz_l + (Z $t—1€t)2) L,

(5.8) 3/713,02 ( th 1T¢- 2+Zwt 1512.% ZEt)
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(5.9) =( 3Zwt lz:ct 160+ (Zwt 161) > and
(5.10) ap 2(‘3 2 ( E-’vt 12-’% 251—221& 1%¢— 22% 1€t+(zzt 1€t) Z-’Bt 26t>

Now, combining (5.6)-(5.8) with (5.5) and letting py — 1 and p2 — 0 (throughout, the argument of ¢ and
its derivatives is (p1,p2) = (1,0)),

dp ?18_32_5") ds =
Op1 ~ 0p} Op10p2 -

0\8

(Tgo + 5

=F (SzL (T+ Est—let - 253—1 + (E St-1€t)2 + Zst—lst—2 - ZSt—let ZSt—zé‘t)) .
i-1

But since
Y SE =D Sic1Siea =) Sicte1= ) Sicagm1+ Y ei?,

implying
(6.11) T+ Zst—15t - ZSf.l + Zst—lst—2 =T- Zf‘:t—lz + ZSt—IEt - zst-—25t—1 =

= Op(1) + Sr-167 = 0p(T),

(the notation op(-) has the obvious meaning), and since

(Z St—lf?t)z - Est—lst ZSt—zé‘t = Zst—ltft Zé‘t-lﬁt,

(5.1) follows.
Likewise, (5.6), (5.7), (5.9) and (5.10) together with (5.5) imply

i Op 0%  9p° ) _
0/ <2Tap1 250 T 0 " 80m) T
1 2 2 2 8
=B sz <2T25t_15, —2) 5242 (Y Simae) -3 88, Y Siae+ (Y Siaer) +
+ E S Zst—25t +2 Est—lst—z Zst-lb‘t - (Z St—1€t)2 Z St—25t>) =
1 2 3
=-2+ E('Z—Stz_‘l‘(2TZSt—15t +2 (Z St-1€t) + (Z St-lft) + 2ZSt-—ISt-2 Zst—let_

- (Z St_let) ’ > St_26t>) ,



cancelling terms of expectation zero. But

2TZSt—15t +2 (Z St-let)z + QZSt-—ISt—2 251-1& =
= QZSt—lst (T+ Est—l«‘:t + zst—lst—Z) = 2257:-16: (Z S+ Op(T)) )

where the last equality follows from (5.11), and so, dividing by >~ S2_, and taking expectation, we get an
0p(1) term, since E) S;_16; = 0. Thus, the fact that

(Z St-lé‘t)s - (Z St—16t)2 ZSt—wt = (Z St—16t)2 Eﬂ—ﬁt,

leads us to conclude (5.2).
It remains to verify (5.4). To this end, the equality

00
1
- = se”*%ds
z
0

with z = ) X2 ; and X; as before yields

o0

/stp(pl,pz;s)dszE((Zth ok ) / /(Z _L(p1, po)des ... dp.

Hence, in the usual manner, (5.9) implies
3
/s <Pd.«s =-3F (—-—z Stglet) +FE (O Simaer)” St_letl .
9p3 2. S (>-s2.1)

But, because of (5.5) and (5.6),

/_80 > Si-1€

0 XSt /)

0

which gives (5.4), and we are done.

The final step is to calculate first order approximations of ¢ and its derivatives at (p1, p2) = (1, 0), which we
do by Taylor expansion around that point. Since this is a highly computationally involved task, we postpone

the calculations to the appendix, and confine ourselves to giving the final results here. (Again, numerical

integration is used to obtain the figures.)

Theorem 5.2

doEEi—1y, 5't—1€t> _

5.12) lim TE(
(5.12) T—oo St

(V]

00
= l/:1:(cosh z)"% (%z cosh zsinhz — %sinhzz + 1) dz + 1~ 5.563,

0



9 (o]
(5.13) Tlim B (Eetet—l(z Si-16€1) ) ::/:c(cosh:c)_%<— cosh z—
0

St
- 13 . 2
- %Sm}; z + gcoshx (smhz) - é—m cosh?zsinhz + %coshwsinh2 :c) dz + g ~ —1.280,

(5.14) hm T?E

00
= [ z(coshz)~%dz ~ 5.563 and
#(sr) [ steon

sinh z

St 1¢¢
615) jm 22 () -

|
DO =

(o]
/:83(cosh z)~7 (% cosh®z — g cosh? z
0

39 sinhz\2 15 (sinhz\® 3 coshz 3
+?cosh:c( = ) ———é—(——z—) +§T)dm+-2-~—5.643.

Proof: See the appendix.
]

We now have access to approximate values of all the constants A-G, which are A ~ 5.563 (from (5.12)),
B ~ —1.280 ((5.13)), C =~ 5.563 ((5.14) and (4.7)), D ~ —1.781 ((4.3)), E ~ 1.142 ((4.4)), F ~ 13.286

((4.5)), G =~ —5.643 ((5.15)) and H = 3.522 ((4.6)), and so (3.2) yields

(5.16) Ry(0) ~ 1.241.
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6. The AR(1) correction

Our final task will be to calculate the AR(1) Bartlett correction (cf (2.3) and (2.4)). To this end, since
T(3&e:2)~! = 1+0p(1), the "main term” EZ is already given by (4.4), but to find the rest term £ we need

to be a little more careful. Generalizing the Mikulski & Monsour idea (cf chapter 4), we have

00 00
=//e_”'“ydsdu,
0D 0

and so, replacing = and y by ZX? 1 and Y_(AX;)? respectively, where X; is defined by (1.1) with p =0
(becoming AR(I)) and AX; = X; — X;_1, and taking expectations, we get

(6.1) E(thz—l %:(AX,)Z) = //E(e_’zxtz-l‘“ Z(AX‘)z) dsdu = ]Ojcp(pl;s, u)dsdu,

where ¢(p1; s, u) def E(e_’ 2o Xiy-u }:(Ax,)") is the m.g.f. of the pair (3_ X2 ;, Y (AX¢)?). On the other
hand,

1 = ! W_%e_%z(zi“Plxt—l)2 ¢, ...dz
E(ZX%’_lZ(AXt)Z) /"'/Zm?_lz(m,y@ ) dz; ...der,

and so, differentiating two times w.r.t. p;, we have in view of (6.1)

[ [ = 5 () -5 (7).

However, since zetz is X2 distributed with T" degrees of freedom, it follows that

E(Ce?)™) =75 =%+2+0 (), and so
w0 re( ) ][ o ool

In the appendix we show (cf (4.4))

Theorem 6.1.
. 2
(6.3) TILH(}O TE (%S;i—lz:%) /m(cosh z)” 3 (% cosh?z + % <sm::c> ) dz — 1+
0

o0
1 (1 _s ) 3 5 sinh®z 1
+T (Z/z(coshz) 2 (cosh :c—}—l—zxsmhzcosh +choshx> d:c—l) +O(ﬁ) ~

0

2.151
~1142_T

As before, the figures are obtained by numerical integration.
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7. Comparison with simulations

In table 1 below, the corrections

~F7 - —=~1. s vs ~ _ ~
EZr Z T 1.142 T ETMyr ~ EZy T EZr + —5
and

are compared with simulated values of EZp and ETMp for ¥ = 0, respectively. The first two of these
corrections are seen to be fairly accurate, whereas the third one performs less satisfactory, probably due to
simulation errors and/or an unfortunate adding of higher order error terms. In the simulations, we used

1,000,000 replications, which gave us a standard error of about 1-1073.
Table 1: Corrected and simulated expectations compared.

Columns:

1. Simulated values of EZr (the AR(1) statistic).

2. Corrected values of EZyp through EZp ~ 1.142 — 2331,

3. Simulated values of ET My (the AR(2) statistic).

4. Corrected values of ET' My through ET My ~ EZp + %4-1 (EZr :s from column 1).
5. Corrected values of ET My through ET My ~1.142 — 2312,

r L 2. 3. 4 5.

10 0.999 0.927 1.096 1.123 1.051
20 1.063 1.034 1.116 1.125 1.097
30 1.088 1.070 1.124 1.129 1.112
40 1.098 1.088 1.126 1.129 1.119
50 1.109 1.099 1.132 1.134 1.124
60 1.114 1.106 1.133 1.135 1.127
80 1.119 1.115 1.134 1.135 1.131
100 1.125 1.120 1.137 1.137 1.133
200 1.133 1.131 1.138 1.139 1.138

12



8. Concluding remarks

The practical use of the results in this paper is the following: Suppose you want to test for a unit root
of an AR(1) or AR(2) process, but that you only have access to a table of the asymptotic distribution of the
test statistic. Then, it is clearly improper to use this table directly. However, with the aid of the corrected
expectations derived in this paper, the asymptotic table is easily modified to a table which gives a good
approximation to the distribution of the AR(1) or AR(2) test statistic, in the manner described in section 2.
In the AR(2) case, we noted studying figure 1 that this would be a fairly accurate approximation as long as
the parameter v is sufficiently small and/or T is not too small. In other cases, we would need the improved
approximation R(y) ~ R(0) + yR’(0) instead of R(y) ~ R(0), i.e. we need to calculate R'(0). However, we

belive that this calculation is rather similar to the calculation of R(0), and so this is an issue that we hope

to investigate further.
Another interesting question to ask is whether our analytic method to find the corrections could be

applicable to the perhaps more interesting multivariate case, where the unit root test carries over to a test

of cointegration. Hopefully, we will get back to this problem in forthcoming papers.
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Appendix: Omitted proofs

Proof of theorem 5.2: With lemma 5.1 as a starting point, we are going to prove theorem 5.2 by at
first calculating a Taylor expansion of ¢(p1, p2; s), the moment generating function of Y~ X7 ;, where X; is

defined by (1.1) with ¢2 = 1, around (pi1, p2) = (1,0). To this end, we will need the representation of ¢

given in the following lemma:

Lemma A.1.

~ def
Al 0,p;8) = (1 —86,p;s) = , P=Py+h.
(an #(0,p35) = p(1=0,p;8) = —=— o
Here, Py is the T' x T' matrix
a -1 0 0
-1 a -1 0
(A.2) p=| 0 "1 o -1 , a=2(1+5)
-1 a -1
0 -1 1
and
(A3) h= 0’11,0 + pho,l + 92’12)0 + thl,l + pzho,g,
where the h; j:s, 1,5 = 1,2, are T x T matrices given by
-2 1 0 0
1 -2 1 0
(A4) hl,odéf 0 1 -2 1 ’
1 -2 1
0 1 0
(0 1 -1 0 0 0 \
1 0 1 -1 0 0
-1 1 0 1 -1 0
(A4.5) B o def 0 -1 1 0 1 -1
. 01 =
-1 1 0 1 =1
0 -1 1 0 O
\ 0 0 -1 0 0/
1 00
010
det 0 0 1
(A.6) hao = ;
1 00
010
0 00

14



-1 0 -1 O
-1 0 -1
(A7) hi,1 def and
-1 0 -1 0
0 -1 0 O
0 0 0 0
1 0 0
010
0 0 1
(A8) ho’zdéf
1 00
0 00
0 00

Proof: Using (1.1),

E (6"21"?.1) = /-.-/(QW)'%e"E”f—l"%z(”‘“”‘”"‘“””"z)zdz1 co.dep =

- _1,.'p 1
= /... [(27)"7e 22 8y, .. . der = ,
/ / () P Vdep
where z’ = (z1,...,zr), and since
T
Z(fﬂt = P1T¢-1 — P2~’Bt—2)2 =
t=1
T-2 T T T-1
=(1+p3+03) > el + (1 +p1)zh_y + 27 — 201 ) @i@io1 — 22 Y, T4Tioz — 2p1p2 Y, T4Ti-1,
t=1 t=2 t=3 t=2
a b ¢ 000
b a b ¢ 0 0
c b a b c 0
p= 00 ¢c b a b ¢ ,

c b a b ¢
0 ¢c b d e
0 0 ¢ e 1/

where a d:'3f1+p% —p2+2s,b=p1ps—p1,c=—pz, d=1+ p? + 25 and e = —p;. Substituting p; =1—0

and py = p, the lemma follows.

The next lemma fits the results of lemma 5.1 to the present context.
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Lemma A.2

(4.9) rp (St ESt) - L [y a)as + o)
Zetet (Z St Et) _ 1 i
(A.10) ( zl:sf ; ! ) = ﬁo/mgz(z)d:c+2+o(l),
(A.11) T°E (ﬁ) = /zya(m)da:+o(1) and
0
(A.12) TE (((ZZ::E:;? 11)2 ) 2;3 23g4(z)dz + —/zg5(a:)dm +o(1),

where, letting a;; %ef tr(Py thi ), aijxr el ((P5'hi ;)(Py'he)) and
@ij xklxmn E tr ((Po_lhi,j)(Po_lhk,l)(Po-lhm,n))r

1 1 1 1
(A13) gi(z) = (detPo)'% (T + 510 + Zalo(am +ao1) — 5(26!20 +an1) + 5(“10)(10 + aleOl)) )

1 1 1 1
(A14) gg(:c) = (detPo)—E (Taw -2 (azo - ZG%O - §a10x10) - 5(110(2(120 + (110)—

1 1 1
- = (020 - Zafo - -2-a10x10) (@10 + a01) — (2a10x20 + @10x11) — (@10%20 + Go1x20)+

2

1
+ '2‘alo(a10><10 + a1oxo01) + (@10x10x10 + @10x10%01) |,

(A15) gs(:c) = (detPo)_'é',

-1 1 3 3
(A.16) ga(z) = (detPy)~2 (‘a?o - 5“10“20 — 3aioxz20 + aloawxlo + alelelO) and

1 1
(A17) gs(.’L‘) = §(detP0)—5(110.

The a;;:s dependency on z will be explained below.

Proof: Recall that
?(8,p;8) = /.../(277)’%6'%3'135&21...de.
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With P = Py + h, we may rewrite this formula as

1
sz hz

1 1,/ T 1./ 1 1

5(0,p;8) = —=—=—= | ... [ e 2=\ [detPy(2n)"Te 32 P2y, .. . dep = ——F zhe),

(0, p; 5) detPo/ /e etPo(27)"Ze™ 2 z T T (e )
taking expectation w.r.t. a T-variate normal distribution with covariance matrix P; 1 Taylor expansion
now yields

1
(1 - %E (x'hX) + 5B ((x'hX)") - 1g (&nx)*) +.. ) ,

1
Al 30, §) = ———
(A.18) @(8,p;5) AT 8

where X' wf (X1,...,Xr) with X; as in (1.1). The r.h.s. of this equation involves moments of the Wishart

distribution, which are calculated by Magnus (1978) to be (with Y % PZ X ~ Np(0, I), we have
g 0

X'hX = Y'(Py'h)Y)

(A.19) E (X'hX) = tr(Pyth),
(A.20) E((x'hX)°) = o*(Py'h) + 26 (P5'h)?)  and
(A.21) E ((xhg)"’) = tr®(P; th) + 6tr(Py th)tr ((Py 'h)%) + 8tr (P51h)%) .

But, from (A.3),
Py th=0P; ka0 + pPy tho 1 + 02 Py hoo + 0p Py thyyy + p2 Py the s,

and so, plugging in into (A.18)-(A.21), collecting terms and using Taylor’s formula,

05 1
6—0——§a10%

0%y 1, 1 -
5 = | —az0 + Zam + §a10x10 2

P _ la +1a a +1a ’
896/} = D) 11 2 10@01 2 10x01 | ¥,

63<,5 14 3 3
50-5- =|—=<aj,+ Ealoﬂzo + 3a10x20 — Zawalomo — @10x10x10 | ¥ and

8
33p _ 1, 1 1 1 -
5075; = —galoam + §aloa11 + anwzo + a1o0x11 + @o1x20 — Ealoalox()l - ZGOIGIOXIO — @10x10x01 | ¥,

where @ and its derivatives are taken at (6, p) = (0,0). Hence, since py = 1 —6 and ps = p, (5.1) yields

TE (Z&tﬁ't—l ZSt—li‘?t) _ T]oh(s)ds + (1),

25t
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where

1

1 1 1
2alo + Zalo(alo + ap1) — 5(2'120 +an)+ §(alox10 + aleOl)) )

h(s) = (detPy)~ % (T+

T
However, since 77 » X2 ; converges to a random variable with a non-degenerate distribution function as
t=1

T — o0, it is natural to put s* = sT2 and define
0* (s%) def E (e-stl:EXf_l) = ().

Letting h*(s*) correspond to h(s), we have for an arbritary § > 0
0o (=] T°
T / h(s)ds = % / h*(s*)ds* = % / h*(s*)ds* + o(1),
0 0 0

and so
T-2+6

T]oh(s)ds =T / h(s)ds + o(1).
0

0

Hence, since
o 1-——4—— 1—-—1—'<=>s——1———
- a? (1+5s)? T Vi-o?

(cf Lemma A.3) the substitution = oT implies
oo _:cz_ + 1 s zdz + 1
Tar2 TO\Te T teN\rz )
for z = o(T) i.e. § < 2, which yields (A.9) and (A.13). (In effect, s < T~2* implies 2 < O(T?), but since

4 is arbritary we may from now on assume z = O(1), i.e. s = -2’,"1,—22 + 0 (T}?) etc.) The rest of the results

follow similarly. (Note that, by definition, the a;;:s etc. are functions of s. Hence, they become functions of

1,

z after the substitution.)

As we see from lemma A.2, we also need to calculate PO"1 explicitly.
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Lemma A.3. Denoting an arbritary element of the T x T' matrix Po'1 by a;;, we have

det.Po z—lDT—j: ZS])
(A.22) aij =
ajs, j<l,
where
1, k=0,
(A.23) Dy =
(g)k—l (1+0’)k_1+(1—0)k_1 + (i g (1+0.)k—l_(1_a.)k—1 E> 1
2 2 o 20 ’ =7
1, k=0,
(4.24) D= k-1 k-1 k-1 k-1
k—1 - — - -1 _ — -
N e YO N O FCE 2 BT L PR
2 2 o 20
and
4
o= 1— ?

Proof: Letting Dy be the determinant of the & x k lower right corner of Py and Dj the determinant of the
k x k upper left corner, it follows that

where of course Dp = det Py, adopting the conventions D§ = Dy = 1. Expanding Py by the first row, we

obtain the difference equation

Dr =aDr_; — Dr_»,

with initial conditions D; =1 and Dy = a — 1. From this, (A.23) follows.
For D}, we get the same difference equation, but here D} = a and D} = o? — 1, implying (A.24), and

we are done.
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Proof of Theorem 5.2: Our remaining task is the formidable one of deriving (5.12)-(5.15) out of (A.13)-(A.17).
We start this project with the calculation of det Py, and to this end, (A.23) yields

detPy = Dp = (%)T'l ((1+0)T'1-;(1 —o)™t (1_ %) (1+G)T-12_a(1 _U)T_1> |

where a = 2(1 + 5). Now, substituting z =0T, $ =140 (T}—g), implying (%)T_l =140 (%),

1- % = ;—Z +0 (7-,1—,,) and, due to the binomial theorem,

T—1 _ T-1
1+0)T1+(1-0) =coshm+0(%)

2

and (1 )T 1 (1 )T 1 inh
+o) " =—1—-0)"" sinh z

o =T — 0(1).
Hence,
A.25 det Py = Dp = coshz + O l ,
( T
and furthermore,
(A.26) D = Ts‘“zh“’ +0(1).

In the calculations below, we will also need approximations of terms like D;, where 1 < ¢ < T'. Substituting
z=ocT and y = 7’%, we get as above
D; = cosh(zy) + O (%)

and -
D! = Ts‘“zﬂ +0(1).
Moreover, introducing the notation

AD; ¥ D; — Di-y, A’D; ¥ AD; — AD;_y = D; — 2D;_1 + D;_s,

Taylor expansion yields

1/d 1 1 . 1
AD; = T (Ty cosh(zy) + O (T)) =¥ sinh(zy) + O (ﬁ) ,
and similarly

1 1
A2Di = ﬁzZ cosh(:cy) +0 (—,1:3—> ,

AD} = cosh(zy) + O <%) and

1 1
2% .
A Di = TJ? smh(:cy) + o (ﬁ) .

In the following, this approximation technique will turn out to be useful.
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We now start calculating gy (), and in view of (A.13), a1¢ is the first term to tackle. To this end, note

that from (A.22)

(DT_I Dr_; 1 \
Dy 1DT—i

(A.27)  detPo-Py'=| Dr—; ... Di_Dr—; ... D} IDT_ ... DY \Dr_; ... DI,
Dt 1DT !

\ 1 i, D,/

(The indices 7, k and [ are to be thought of as running from 1 to T, from 1 to ¢ — 1 and from ¢ + 1 to T,
respectively.) Now, letting Dy = D§ = 0, (A.4) and (A.27) imply

(A.28) detPy - Py thyo=

(—2DT_1 + Dr_s A2Dp_i1 1y
Dz_lA.z.bT—z}l

_| AiDr. ... AMDiDr; ... " Di,A’Dp_iy, ...  Di,
A2D;Dr_;

| ~ADj_, Dj.,

\ A A2D? AD:.. Di,)

where

Hence,
(A.29) detP; - ajo = tr(detPy - Po'lhl,o) =
T-2

=-2Dr_1+ Dr—2 + Z (Df_1A%*Dr_iy1 — Df_yADr_ip1 — AD}_;Dr_i41) — ADj_y + Dy _,.
=2

Approximating as above (with T — ¢ instead of ¢, we get 1 — y instead of y), and replacing the sum by an

integral (rendering a factor of T in front), we get

(A.30)  detPy- a0 =

1
s1nh(.7:y) 1 smh(zy) 1
Tb/ ( =@ cosh(z(1 — y)) — —T.'L’ sinh(z(1 — y)) — cosh(zy) cosh(z(1 — y))) dy+

sinh z

+T +0(1) =
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z

=T (— / (sinh(:cy) sinh(z(1 — y)) + cosh(zy) cosh(z(1 — y))) dy + Si“hw) +0(1) =
0

sinh z

=T (cosh:c - ) +0(1).

After this, we need
det Py(a10 + ao1) = tr (detPo . Po_l(hl,o + ho,l)) .

However, it follows from (A.4) and (A.5) that

(—2 2 -1 0 0
2 -2 2 -1 0
-1 2 -2 2 -1

o o o

hio+hoy = )

and so (A.27) yields

(A.31) det Py - Py '(h1o+ hoj) =

—A%D}_, ADy_,

where
a= —-QADT_l - DT._3,

b=2D7_1 — D}(Dr-2 + A’Dr_,),
c=—(A’D;_y + A’D; ) Dr—s,
d=-A’D} ,Dr_; + AD}_Dr_; + D}_{ADr_;,
e=-A’D} Dr_; — D}_A’Dr_;,
f=AD! Dr_;+ D} A’Dyp_; + D}_,ADp_;_, and
9=-D;_;(A’Dr_141 + A’Dp_i_y).
(Here, ¢ runs from 3 to T'— 2, k runs from 1 to 7 — 2 and ! runs from i + 2 to T.) Now, using the same

technique as before, we conclude (remember that D} =a=2+0 (73—2))

T-2
1
(A.32) detPy(aro+a0) = —Dr_s— »  (A2D}_,Dy_; + Di_yA’Dr_;) + AD}y_, + 0O (jw‘) =

=3

— % /1 sinh(zy) cosh(z(1 ~ y))dy + O (%) -
0
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1
. . 1 . 1
=-z /(smhz' + sinh(z(2y — 1)))dy +0 (T) = —zsinhz + O (T) .
0

Our next task is to calculate
detPo(2a20 + all) = tr (detPo . Po—l(2h2,0 + hl,l)) .

Now, observe that from (A.4), (A.6) and (A.7),

(A.33) 2h3,0 + h1,1 = —h1,0+ 6,
where
0 0
et 0 0
6= ,
01
10
and so

detPy(2az0 + a11) = —tr(det Py - Py thy o) + tr(det Py - P 16).

The first of these terms is known from (A.30), and for the second one (A.27) yields, since D, = 1,

0 ... 0 1 1

0 ... 0 D DI
(A.34) detPy - Pyl6 = e . ,

0 ... 0 Di, Di_,

0 ... 0 Db, Di,
and so -

tr(detPy - Py18) = 2D, = 2TS'":2 Z +o(),

which together with (A.30) implies
(A.35) detPy(2az0 + a11) =T (cosha: + smjz) +0(1).

To complete the calculation of g1(z), it follows from (A.28) and (A.31) that

(det Po)*(atox10 + @10x01) = tr((detPo - Py Y (h1,0 + ho 1)) (det Py - Po-lhl,o)) =

-3
=5— Y ((A°Diy + A®Diyy)Diyy + Dj_a(ADj_; + ADj_s)) +0(1),

i=1

where
def T-2 -2
S = Z (—DT_iAzDT_i_H Z Dz_l(AzDz_l + AzDZ_H)-I-
=3 k=1

+ (=A2D}_yDr_; + AD}_Dr_; + D}_;ADp_;)D}_,A’Dr_; 11+

+ (AD;_yDr_; + Di_yA’Dy_; + D}_ADr_;_1)A*D; Dp_;_1—
T
— Df_yA’D} S Dr_y(A*Dpoigy + AZDT_I_l)) =0(1),
1=i42
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due to our usual approximation arguments. Thus,

(A.36) (detPo)*(arox10 + atoxo1) =

T-3
==Y ((A%Dr, + A®D}y1)Diyy + Di_o(ADi_; + ADj_y)) +0(1) =

i=1

1
=T (—-2/sinh2(wy)dy +2 cosh:csm:ch :c) +0(1) =

0

z z

1
=T (— /(cosh(2:cy) —1dy+ 2coshxsmhx) +0(1)=T (cosh:z:smh:c + 1) +0(1).
0

Now, inserting (A.30), (A.32), (A.35) and (A.36) into (A.13),

91(z) = T(coshz)~ % (cosh2 z— —;— cosh (cosha: - smwh m) + %:c sinh = (cosh x — s1n:1 :c) -

k4 xz

- %coshz (coshm + s1nh.z') + —;— (cosh xsmhz + 1>) +0(1) =

sinh

= T(cosh z)~3% (cosh z

=3 +-;—mcoshxsinhx—%sinh2x+ 1),

which, in view of (A.9), since

/(cosh )~ % sinhzdz = 2
0

implies (5.12).
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As for go(z), we note from (A.14) that, in addition to the terms already calculated, we have to look at a3,

@10x10, 2@10x20 + G10x11, @10x20 + @o1x20 and a@1ox10x10 + @10x10x01. To start with, it follows from (A.6)

and (A.27) that

(A.37) detPy - Py lhao =

(DT_1 Dr_; L0y
D;_,Dr_;

_| Dr—i ... Di_Dr-i ... Df\Dr_i ... Di,Dr_i ... Di, 0
Di-“_'le—z

-

\ 1 D;, Di_, 0/

(As before, ¢ runs from 1 to 7', k runs from 1 to ¢ — 1 and [ runs from i + 1 to T.) Hence,

T-1 g 1
(A.38) detPy - ago = tr(detPp - Py tha) = Z D Dyp_; = T;—/sinh(zy) cosh(z(1 — y))dy + O(T) =
i=1 0

1
2 2 .
= s /(sinha: + sinh(z(2y — 1))) dy+0(T) = T% sinhz +o(T),
2z 2
0
Moreover, (A.28) yields
o) ... o1 D} _,+0(1)
(4.39) (detPy - Pythyo)? = | o DiaDioat om |
D;_,*+0(1)
O(l) ... O(1) Dj_,2+0(1)
implying
inh
(A.40) (det Po)2arox 10 = tr (det Py - Py thy0)2) = Dj_,” + O(T) = T? (smz ””) +0(T).

As for 2a10x20 + @10x11, it follows from (A33) that

(detPo)2(2a10x20 + a10x11) = tr((detPo . P(;_lhl’o) (detP() . P0—1(2h2'0 —+ h1,1))) =

= —tr ((detPy - Py *h1,0)?) + tr ((detPy - Py thyo)(det Py - Py '6)).
The first of these terms is given by (A.40), and by (A.28) and (A.34) the second one is

tr ((detPy - Py 'hy,0)(detPy - Py '6)) = —AD}_gDp_o + Dy _oyDip_y + A’Dy_ Dy_, + Di_,% =

. 2
= Dio(Dios + Diog) 4 00) =21 (22 o),
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and so, by (A.40),

inh 9
(A41) (detPo)2(2a10x20 + a10x11) = T2 (SIHT:E) + O(T)
Moreover, (A.31) and (A.37) imply

(A42) (detPo)z(aloxzo + amxzo) = tl‘((detPo . P(;—l(hl,o + ho,l)) (detPO . Po—th,O)) =

T-2 i-2
= Z (_D%—-i Z(A202_1 +A?D}1)Df_y + (AD{_; Dr_i + Di_yADr_;)D}_,Dr_i+
i=1 k=1

+(AD}_Dr—; + D;_ADyp_;_1)D;_Dp_;_1—

T
-D;,? Z (A’Dr_i41 + A%Dp_j_1)Dpi + 0(1)) +0(T) =
=142

1 y
=2T? 0/ (— cosh?(z(1 — y)) JSinhz(mz)dz + cosh(zy) cosh(z(1 — y))+

+ sinh(zy) sinh(z(1 — y)) — sinh?(zy) / cosh?(z(1 — z))dz) +0(T) =

9 .
= T—2- (cosh;csmhaT + 1) +O(T).
z

(To obtain the second equality, we put z = oT, y=,1'% and z = % or % and argue in the usual manner. How

to get the third equality is in principle trivial, at least for a formula manipulating computer program.) Also,

as follows from (A.31) and (A.39),

(A43)  (detPo)*(atox10x01 + @10x10x01) = t1‘((detP0 - Py (k1,0 + ho,1)) (det P 'Po—lhl.ﬂ)z) =

. T-2
=-Dp_, E(A2D?—1 + A’D}41)Di_y + (ADp_y + AD5_3) Dy 5" + O(T) =
i=1

Z

1
= 2T Smil z (— /sinhz(:cy)dy + cosh wsmh x) +0(T)=T? s1n::1:c (cosh msm;l ° 4 1) +O(T).
0

Hence, since by (A.38), (A.30) and (A.40),

1 1
(A.44) (det Pp)? (azo - Za%O - -2-a10x10> =
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z

1 sinhz 1 sinhz\? 1 /sinhz)?
= 2 — — — — — — =
=T (2 cosh z . 1 (coshz' ) 5 ( = ) ) + O(T)

. . 2
=T? 1 cosh? ¢ + cosh xsmh z _3 (sinhz +O(T),
4 z 4 z

(A.30), (A.35), (A.32), (A.41), (A.42), (A.36) and (A.43) plugged in into (A.14) gives us, after simplification

. .13 . 2
ga(z) = T?(cosh :c)'% (—— coshz — _21_smha: - 18—9 sinh” 2 sinh :c) - l:c cosh? z sinh z+
T

8

+gcosh:c(

+ % cosh z sinh? x) + O(T),

[e ]
and so, considering (A.10), and the fact that [(cosh z)~% sinhzdz = 2, (5.13) is proved.
0

The derivation of (5.14) is immedeate from (A.11), (A.15) and the fact that detPo = coshz+0 (%). It
remains to derive (5.15), i.e. to calculate g4(z) and gs(z). As for g4(z), (A.16) hints that we will need the

“new” terms aiox20 and aioxioxio. For the former, (A.28) and (A.37) imply

T-1
(A45) (detPg)2a10x20 =tr ((detPo . Pd_lhg’o)(detpo . Po_lhllo)) = E D;-k_lz + O(T) =
i=1

1
T3 [ . ., T3 sinh z
= ?/smh (zy)dy = 527 (coshz i 1) .
0
Considering the latter, (A.28) and (A.39) give
. 3
(A.46) (det Po)3atox10x10 = Di_,° + O(T?) = T3 (%) +0(T?).

Now, inserting (A.30), (A.38), (A.45), (A.40) and (A.46) in (A.16) and simplifying, we get

. : . 3
3 -z 1 3 9 2 sinhz 15 sinh 15 (sinhz
(A.47) ga(z) = T(cosh z) ( 3 cosh® z + 3 cosh” z . 3 cosh z m +3 - +
Jcoshz 3 o sinhz 9
+§——1—:2_——-2_COSh Z 1}3 )+O(T ).

Furthermore, (A.17) and (A.30) imply

sinh z

g5(z) = —%(cosh z)-3 (cosh z— ) +0(D),

o0
which, since [(coshz)~3 sinh zdz = 2, together with (A.47) and (A.12) gives (5.15), and we are done.
0
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Proof of Theorem 6.1: In order to prove Theorem 6.1, we may use many of the results in the proof of Theorem
5.2. In view of (6.2), our task is to calculate ai:}i;go(l;s, u), where ¢(p1;s,u) = E (e_’zxf-l‘" Z(AX')z)
and Xy is a process defined through (1.1) with p; = 0, i.e. an AR(1) process. Now, as in the proof of Lemma
A.1, it follows that

elp1;s,u) = / . ./(27()_12:6—3 Z’”f—l'“Z(”"’"-l)z‘"zl'E(”"‘"”"‘)zdml ...dzp = 1 =

det P

with

P (14 2u)Py + Ohy o + 62hy 0,

0 =1-p1, and hy o and hy o as before. So is also Py, but with s replaced by § def H-ﬁ Furthermore,

applying (A.18) with P, o (14 2u) P, instead of Py and #(0;s) = (1 —0; s), we get

0%y _ 1, 1_ -
507 =|—a20+ Zam + §awx10 v,
where
aso déf tI‘(P(;_lhz,o) = (1 + 2u)'1a20, aio déf tl‘(Po.lhl’o) = (1 + 2u)'1a10,
d10x10 < tr (P57 h1,0)%) = (1 + 2u)~%a10%10
and
1 r 1 T
b= — = (14 2u)~= =(14+2u)"zg,
?= T ( )= ya ( )T

evaluating ¢ and ¢ at # = 0. Hence,

o
062

1 1 -
=1+ 211)'%_2 (—(1 + 2u)azo + Zafo - §“10><10) P-

Now, as in the proof of Lemma A.2, the substitution £ = ¢T', where

1 _ zdz 1
o=4/1- a19)° =>ds_(1+2u)ds—(1+2u)ﬁ+0(F),

together with (6.2) yields
(A.48) 7p (ZSm1e)” ) l/oo oo(1+2g)—%-1z (2, u)drdut 1+ =+ 0 [~

' SStizer) T e T\

00
where
-1 1, 1

(A49) g((L‘, u) = (detPo) 2 —(1 + 211)(120 + Zalo - —2-010)(10 .

(Observe that aso, a2, and ajoxio are all O(T?).) To obtain the corrected expectation, we will need to

approximate g(z,u), i.e. detPy, a10, azo and ajox10, to the second order! (Since E{—; = 14 o0p(1), the
t

leading term of (A.48) is given by (4.4).)
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In the sequel, we will have repeated use of the formulae
1+o)T*+(1-0)TF T—k) z\2, (T—k\(z\*, (T—k) (z\6 _
s SR (T (2 (T (2 () ()

2?2 gt oS 1 (2k+1, 4k+6 , 6k+15 , 1

1 . 2 1
= coshz — 2—T-(2k1: sinhz + z*coshz) + O (ﬁ)

and
o gl = (M) 7 () @ (75 @) -

3

3z 1 3k+3 53 b5k+10 4 1
=w+§+5+...—i<kx+ 30 z° 4+ = z+...)+0<772)=

. 1 2 . 1
=sinhz — ﬁ(%x coshz + ¢°sinhz) + O (ﬁ) .

We will also need a second order approximation of detPy. But (as before, o = 2T")
a\T-1 z? 1 2 2 1
(5) _1+ﬁ+0(ﬁ> and I“Z‘W+O(F)’

and so (A.23), (A.50) and (A.51) yield

2

_ _ z 1 . 2 1 . 1 _
(A.52) detPy = Dy = (1 + 2T> (coshz: - 2T(2:c sinhz + z* cosh z) + 7% sinh a:) +0 <T2) =

= coshz — -2—17;1:sinh:c+0 (-7—}5) .

To compute ajg, let us take a close look at (A.29). We know that
1 1 " 1
(A.53) Dp_1=coshz+0 7)= Dr_2+4+0 7= ADp_o+ 0O 7)o

and in the usual manner

T-2 1
(A.54) E D} _yA’Dp_ijp1 ==z / sinh(zy) cosh(z(1 — y))dy + O (%) = %:c sinhz + O (%) .
=2 0

Calculating D}._, (which is O(T')), we have to find a second order approximation of (A.24) for k = T — 2.
To this end, we note that

a\T-3 z? 1 1 2 1

29



Hence, (A.50) and (A.51) yield, inserting into (A.24),

2

s o= (142 T (sinhz— L 24 1) 2
(A.55) Di_,= (1+ QT) (2 coshz + . (smhar 2T(6:1: coshz + « smh:c))) +0 (T =

sinh z

1
=T . —cosha:+0(f).

T-2 T-2
To complete the calculation of ajo, we need ). D} ,ADr_;j41 and Y, AD} ;Dp_;41. (Since these sums
i=2 i=2
are O(T), the usual integral approximation technique does not suffice for our present purposes.) In order to
evaluate the former sum, note that from (A.23)

(Ga+or-1)a+o-(fa-0-1)"a-2?).

a\k-2 1

ADy =Dy — Dy = (3)

oo

Hence, since by (A.24)
1= ()" 55 (et +0- T e (ai-0r- )=o)

we have

Df oADp_;41 = (%)T_4 2—011;5 <((a(1 +0) - %) (1+0)3— (a(l —0)— %) (1- 0)5—3) )

: ((%(1 +0)— 1)2 (L+0)"1 = (S(1-0) - 1)2 (1- a)T-"-l) :

Approximating in the usual manner,

2 z 1
and
(A.57) YAto)—1=22+ 2 o(A) =212 10(L
‘ 2 =ET T o T3 ) =*T 2T T2 ))"

It follows that

1 2 o
D} ;ADr_iy1 = ; (1 + -2‘5’7) ((1 + 37) (1+0)™ 4 (1- 3%) (1= o)~

- (1+2) o -oT - (1-Z) (1 -0+ a)T-"'l) +0 (%2) .
Now, (A.51) implies

T—9 T-2 )
S (40 =of T = (-0 Y (R =

i=2 i=2

140)77?
l1+o 21"(1—0) 1-g(1+0)T2-(1-0)T3
1~ ite T 140 20 -

l-0

= (1= of 4oy

l-0

_ T X . 1 2 . 1
== (1 - 27) <s1nh:c - ﬁ(ﬁz coshz + z smh:z:)) +0 (T) ,
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and likewise

T—2
, _ T . . 1
— i—3 T—i—-1 — z . 1 . 1y
;(1 o) (1+0) p (1 +2T) (smhar 2T(6:c cosh z 4+ z* sinh :c)) +0 (T)

This, together with (A.50) and (A.51), yields

T—2
1 z? 1 3z
58) S D; a1 == z _ — = (8zsi 2 32 _
(A.58) 2 D} ,ADr_;11 3 (1 + 2T) ((1 3) (cosh:c 2T(8:c sinh z + z* cosh z) + — sinh 1:)

T/, 1 ). 1
-= (smh:c - 5—7—,—(6.7: coshz +z smha:))) +0 (T) =

T sinhz 1 . 1
_§<coshx— . —Ta:smh:c)+0<§;).

T2
The calculation of ) AD} ;Dp_;41 very much follows the same lines. Indeed, (A.24) implies
=2

AD; =D:—Dj_, = (%)k'2 5% ((%(1 +0)-1) (a(l +o)— %) (1 + o)F2—

_ (%(1 —o) - 1) (a(l —0)— %) (1- a)’“'z),

and by (A.23),

= (3)"7 = ((Ga+a-1)a+o - (J0-0)-1) a-01).

oo

Thus,

ADLDrn = (5) gz (G400 -1) (ai+0) = 2) 40y

- (%(1 —o)— 1) (a(l - %) (1- a)‘--")-

: (£(1+a)—1 (1+a)T"'-(5'f(1-a)—1) (1-a)T%),
2 2

and so, by (A.56) and (A.57),

* __1 172 T T-4 T T-4
AD}_Dr_ip1 =5 <1+ -ﬁ) ((1 +3T) (1+a)74+ (1 "3T) (1- o)+

+ (1 +2;—) (14 0)i~3(1 - o)T"i 4 (1 - 2%) (1-0)i-301 +a)T-") +0 (%) :
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Now, using (A.51),

T-2 ' o IO
§(I+U)i_3(l_”)T_'=(11+a) o) 20(1 =

T z . 1 9 . 1
== (1 3T) (smha:— 2,1,(6:::cosh:1:+:l: s1nha:)) +0 (T)

and

T-2
. . T m 1 1
— g)i—3 T-i _ = z . _ 1 ). 1
;(1 0)~°(1+0) p (1 + 3T) (smh:l: 2T(61: cosh z 4+ z*sinh :c)) +0 <T> )

Hence, by this, (A.50) and (A.51),
= 1 z? 1 3z
(A.59) ; AD;_Dp_j41 = 3 (1 + ﬁ) ((T -3) (cosh z— ﬁ(&c sinh z + z2 cosh ) + ?sinh :t:) +

T/, 1 ). 1
+ - (smh:l:—-— —2—1:(6z coshz +z smh:z:))) +0 (T) =

T sinhz 6 1
=3 (cosha:+ T Tcosha:) + 0 (T) ,

and, inserting (A.53), (A.54), (A.55), (A.58) and (A.59) in (A.29),
sinh z sinh z

x

(A.60) detPy-a19 = —2coshz + %w sinhz +T —coshz — —:;—1 (cosh z - ) + —;-z' sinh z—

—-7—1 cosha:-!—smhz +3coshz + 0O l =
2 z T

= T (coshx— smha:) +zsinhz + O (—1—) ,
z T

generalizing (A.30).
T-1

As for agy we will, in view of (A.38), need a second order approximation of Z_: D?_,Dr_;. But from

(A.23), (A.24), (A.56) and (A.57), i=1
Di_yDr-; = (%)T_B 20172 ((C\t(l +0)— %) 1+0)2- (a(l —o)— -f;) (1- a.)i—z) .

: ((g—(l +0)—1) (1+0)T~1 - (5(1 ~0)=1) (1~ a)T-i-l) =

+ (1 - g%) (140)~}(1=0o)T~i"1 = (1 - g%) (1-0)"2(1+ a)T-"‘l) +0 (7—}2-) .
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But, since by (A.51),

T-1
i e 1 (1407 1=(1-0)T-1
i—-2 1— T—-i-1 — =
(1) 1=0) o -

T z . 1 9 . 1
= (1 - T) (smhw - ﬁ(2x cosh z + z*sinh z)) +0 (T)

and

z

T-1
) ) T R ) 1
—o)? T=i-1= — 1 - 2. —
;(1 0)~*(1+0) (1 + T) (smh:c 2T(2:c coshz + z smh:l:)) +0 (T) ,

we have from (A.38), (A.50) and (A.51) that

T-1
(A.61) detPp-az = Z D Dr_; =
=1

T (Ez . 1 2 . 5 1.
=5z (1 + 5—7;) ((T -1) (smhx - 5—7-1—(6.1: coshz + z*sinh z) + 77 cosh l‘) + ismhz) +0(1) =

_Esinha: T coshz +
T2 =z 4

sinh z

)00

z
It remains to deal with ajgx10, and to this end it follows from (A.28) that

(detPo)Zamxlg =tr ((detPo . Po_lhllo)z) =

T-2 T-1
=Y (D}_3ADr_i41+ AD}_ 1 Dr_iy1)* + Y A’D; D}, + Dy_," + O(1).
i=2 i=1
Here, as usual
T-2 1

2
Z(D;‘_ZADT_,-H +AD}_ Dp_iy1)? = T/(sinh(:cy) sinh(z(1 — y)) + cosh(zy) cosh(z(1 — y))) dy =
=2 0

= Tcosh’z + 0(1)

and

= / T (sinhz

_S_ AD;D;_; = T/sinhz(xy)dy =3 ( coshz — 1) +0(1),
z

i=1 0

which together with (A.55) yields

. . 2
(A.62) (detPo)zamxm = Tcosh?z + g (smxh:c coshz — 1) + (Tsmwh:c — cosh :c) +0(1) =

. 2 .
=T? (smmhx) +T (coshz:c - gsm:w cosh z — %) +0(1).
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Now, plugging in (A.52), (A.60), (A.61) and (A.62) into (A.49), Taylor expanding and simplifying, we get

1 -3
g(z,u) = (cosh T sinh :c) .

1 . T?2sinhe T sinh
. (—(1 + 2u) (cosh:c - ﬁxsmhz) (T - 7 (co hz + ))+

1 sinhz 2 . 2
+Z —T | coshz — . + zsinhz ) +

T? (sinhz\?> T 9 3 sinhz 1
+—2—(T) +§(cosh T-5— cosh:l:—E) +0(1) =

= T?(cosh m)_% (gu(x) + ugi2(z) + %(921(17) + Uy22(f'3))) + 0(1),

where

def 1 2 sinh z 3 [sinhz?
g11(z) = 4cosh z - cosh:c+4< " ,

sinh z
cosh z,

def
912(1') = -

coshz and

def 1 9 1 3 15 sinh®z  1sinhz
g21(z) = 4cosh :L'+4 16a:smh.1:coshz+ 6rcods "3 2

def 1 2 3 1sinhz
ga2(z) = ~3 cosh”z + it 3 cosh z.

However, since
T, 1 “f-tgy= L __ 1 1
/(1+2u) du_T and /u(1+2u) du_T(T—?)_T2+O(T3 )
0 0

(A.48) implies

(A.63) TE (Z(ZZS?I g‘gt ) / z(cosh z)~% (gn(:c) + %gg(z)) dz+1+ % +0 (%) ;

where

15 sinh®z  3sinhz

1 3
= - cosh? - R .
g2(z) = g12(z) + g21(z) = cos T + 1° 16 zsinhz coshz + — T6rcoshs 7 2 cosh z

Hence, since
o)

/(cosh )~ % sinh zdz = 2
0
we obtain (6.3) from (A.63), which completes the proof.
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