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Abstract 

A result is presented on weak convergence of sequences of mul­
tivariate, higher order autoregressive processes in discrete time, to 
certain limit processes in continuous time. The emphasis is on per­
forming the limit in such a way, that the order of the sequence is 
preserved in the limit. The simplest, and well known case, is that of 
first order autoregressive processes converging to a (Gaussian) diffu­
sion limit. For sequences of higher order, the class of limits include 
processes with sample paths, that are differentiable a different number 
of times in different directions. The main limit result is formulated as 
an invariance principle. 

Keywords and phrases. Multivariate time series, higher order Markov 
processes, processes with differentiable sample paths. 
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1 INTRODUCTION 

Consider a sequence (Yn)n>l of autoregressive processes of order '{' + 1, given 
by -

r 

Yn,k = I: An,IYn,k-l-l + En,k (k 2:: '(' + 1), (1) 
1=0 

where each Yn,k E Rdxl is viewed as a d-dimensional column vector, and 
where the An,l E Rdxd are non-random coefficient matrices, that do not 
depend on k. It will be convenient, but by no means necessary, to think 
of the error variables (En,k)k>r+l as independent and identically distributed, 
En,k f"V N(O,fn), where N(O,fn) denotes the Gaussian law on Rdxl with 
mean vector 0 and covariance matrix f n. 

The n'th process Yn is completely specified by describing in addition the 
initial values (Yn,k)O<k<r . Just now it will be convenient to keep in mind the 
simplest case with Yn;- - ... - Yn r - o. , , 

From the sequence (Yn)n>l in discrete time, create a new sequence of 
processes (Xn)n>l in continuous time by 

Xn (t) = Yn,[ntJ (t 2:: 0). (2) 

The problem is now to find conditions on the coefficients An,l and the 

errors En,k, such that Xn ~ X, with X some continuous process in continuous 

time. Here ~ refers to convergence in distribution on the Skorohod space 
DRdX1 ([0,00)). It is particularly important that the limit process should 
have properties, that identify the order '{' + 1 of the autoregressive sequence 
(Yn) . 

The case '{' = 0 (list order autoregressive processes) is standard: consider 
for B E R dXd, writing Id for the d x d identity matrix, 

Ynk = (Id + !B) Ynk- 1 + Enk (3) 
1 n' , 

and assume that En,k f"V N (0, ~f) where f is a covariance matrix. Writing 
£1h for the difference operator 

£1hf(t) = f(t) - f(t - h) (4) 
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(3) may be written as 

b.~Xn(t) = ~BXn (t - ~) + fn,[ntj, 

which in the limit resembles the SDE 

dX(t) = BX(t) dt + rt dW(t), 

where W is standard d-dimensional Brownian motion. In fact we have the 
following well known result: 

Proposition 1.1 Suppose that the sequence (fn) of error processes satisfy 
that 

( Efn'k) ~ U 
k=l t2: O 

(5) 

with U a continuous semimartingale. Then for Xn given by (2) with Yn as 

in (3) and Yn,o - 0 for all n, it holds that Xn ~ X, where X is the unique 
solution to the SDE 

dX(t) = BX(t) dt + dU(t), 

subject to the boundary condition X(O) - O. 

For a proof in the univariate case, see [1, Lemma 2.1]. (Using a martingale 
functional central limit theorem, they show convergence of a certain sequence 

(Xn) of processes to a Gaussian limit X. But Xn(t) := (1 + ~)[ntj-n Xn(t) 

is then the same as our X n, converging to X(t) := eB(t-l)X(t), which is the 
Ornstein-Uhlenbeck process). Using the techniques from [3], a different proof 
is given in the multivariate case in [9]. 

Note that if for each n, the fn,k are i.i.d N (0, ~r), then (5) holds with 

U g rtw. In this case X is a Gaussian, homogeneous di:ffusiqn,. see e,g the 
surveys [4], [5]. 

Already if r = 1, the situation is much more complex. For instance, 
modifying (3) to 

Ynk = (Id + ~B) Ynk-l + ~2CYnk-2 + fnk, , n' n ' , 
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we would still obtain the same limit as in (3) (the term involving Yn,k-2 is 
immaterial), while if 

one will obtain a Gaussian limit process with differentiable sample paths, 
provided the order of magnitude of the errors is changed with e.g (En,k) an 

i.i.d sequence with En,k rv N (0, ;3 r). Also, the distribution of the limit 
process will depend on both matrices Band C. 

To obtain results about converging schemes of autoregressive processes 
of arbitrary order r + 1, we shall first in Section 2 discuss a certain class 
of continuous processes in continuous time, and then show in Section 3 how 
they arise as limits. It will turn out that each of these processes will be the 
limit of a converging scheme of the form (for r 2:: 1) 

r (r+l 1 ) 
Yn,k = L L ns(3s,1 Yn,k-I-l + En,k, 

1=0 s=l-r 
(6) 

with each (3s,1 a d x d-matrix not depending on n. In the final Section 4, which 
contains our main result, we state an invariance principle with sufficient 
conditions for the sequence (Xn) determined by (2) from (6), to converge in 
distribution to one of the limit processes. 

As limits in continuous time of higher order AR-processes, it would be 
natural to call the processes that we shall discuss in Section 2, higher order 
CAR-processes (autoregressive processes in continuous time). The standard 
definition however [7, Section 3.7.5] requires CAR-processes of order k, to be 
k times differentiable in time, and so, our class of processes is much larger: 
the standard definition would correspond to taking V(O) = V(l) = ... = 
v(r) = R1xd in (8) below. 

It may be noted already that for r 2:: 2, strictly negative powers of s 
are allowed in (6). Thus, for r = 2 it is for instance possible to obtain 
convergence from schemes of the following form, 

Yn,k = t (n(3-1,1 + (30,1 + ~(33'1) Yn,k-I-l + En,k 
1=0 n 

and with all three (3-matrices affecting the limit distribution! 
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2 THE CLASS OF LIMIT PROCESSES 

Let X = (X(t))t>o be a Rdxl-valued continuous process. If v E RIXd is a 
row vector, we shall say that X is p times differentiable in the direction v, 
provided 

t -7 vX(t,w) (7) 

is, for almost all w, at least p times continuously differentiable for all t E 
Ro := [0,(0). Also, for V C RIxd a linear subspace, we call X p times 
differentiable in the direction V, if for almost all w, (7) is at least p times 
continuously differentiable, simultaneously for all v E V. 

Now define V(O) = RIXd, and, for p ~ 1, 

V(p) = {v E R 1Xd : X is p times differentiable in the direction v}. 

Clearly V(p) is a linear subspace and 

Note that for almost all w, the paths (7) are p times differentiable in the 
direction V(p), as is seen by representing any v E V(p) as a linear combination 
of a given finite set of base vectors. 

Apart from the process X, we shall assume given a non-negative integer 
r, and shall then describe X itself, using only the subspaces 

(8) 

It is natural, but not necessary to impose the condition dim (v(r)) ~ 1, i.e 

that VCr) must not be the null space {O} . Note that the equality V(p) = V(p+l) 
is allowed. 

If dim (v(r)) ~ 1 and v(r+l) = {O} , we call r + 1 the order of the process 
X. Thus the order is the maximal number plus one of differentiations possible 
in any direction. Note that in the description of processes X to 'be given now, 
r + 1 need not be the order, not even if dim (v(r)) ~ l. 

With r and the nested subspaces (8) given, consider any decomposition 

(9) 
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of the space of d-dimensional row vectors, compatible with the structure 
(8): 

(10) 

for 0 ::; p ::; T'. 

Such a decomposition is in general not unique, but it always holds that 
H(r) = v(r). Note that since V(p) = V(P+1) may occur, H(p) = {O} is possible. 

Corresponding to the decomposition (9), there are uniquely determined 
linear maps 7r(p) acting on R 1xd, such that for any v E RIXd, 

v = V7r(O) + ... + V7r(r) 

with V7r(p) E H(p), 0 ::; p ::; r. We shall identify each 7r(p) with a d X d-matrix, 
and then note that the 7r(p) yield a decomposition of unity 

Id = 7r(O) + ... + 7r(r) 

with 
r 

Lrank (7r(p)) = d. 
P=O 

(If H(p) = {O}, 7r(p) = Od, the d x d null matrix). Note also that 

7r(p) 7r(p) = 7r(p) 

7r(p)7r(q) = Od 
(O::;p::; r) 

(0::; p -# q ::; r). 
(11 ) 

The 7r(p) were derived from the decomposition (9) of row vectors, but in 
turn define a decomposition of the space of column vectors, 

with J{(p) the subspace spanned by the columns of 7r(p) and such that for any 
x E RdX\ 

x = 7r(O)x + ... + 7r(r)x 

with 7r(p)x E J{(p), 0::; p::; r. For further reference, introduce also 

In the description of the process X we shall now present, the basic ingre­
dients are the (column) components 7r(p)X. Of course here, the sample paths 
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t --+ 7r(p) X (t, w) are at least p times continuously differentiable, and the idea 
is now to consider the collection 

(12) 

of all derivatives under consideration, and then set up a simple SDE for this 
big process Z. 

Notation. The upper index q in (12) refers to the q'th time derivative, 

(13) 

Note that an expression like (pX)(q) , where p is some matrix, makes 
sense only if the rows of p belong to V(q), and that it is not allowed to write 
e.g 7r(p) (X(q)) for the left hand side of (13): X may not have q'th order 
derivatives in all directions. 

We shall now present the SDE for the big process Z given by (12). Of 
course 

d (7r(p) X) (q) = (7r(p) X) (q+1) dt (O:Sq<p:Sr), (14) 

so it only remains to specify the SDE's for the maximal number p of deriva­
tives in each direction 7r(p) , and here we shall impose the following struc­
ture: let U be a continuous semimartingale, defined on a filtered probability 
space (n, F,:Ft, P) satisfying the usual conditions. Then we assume that for 
o :S p :S r, 

d ( 7r(p) X) (p) = t f M(p,m,q) (7r(m) X) (q) dt + 7r(p) dU (15) 
m=Oq=O 

where each M(p,m,q) E Rdxd is non-random and does not depend on time, 
and, viewed as a linear map acting on the space of column vectors, M(p,m,q) : 
K(m) --+ K(p). . 

It is possible to write (15) in a more compact form. Define 

'ljJ(p) ~ 7r(p) + ... + 7r(r) 

(so v'ljJ(p) = v for v E V(p), 'ljJ(p)x = x for x E L(p)). Then 

d (7r(p) X) (p) = t B(p,g) ('ljJ(g) X) (g) dt + 7r(p) dU, (16) 
g=O 
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with B(p,q) : L(q) -t J{(p) given by 

T 

B(p,q) = L M(p,m,q)7f(m) , 

m=q 

(recall that for m 2: q, 7f(m) = 7f(m)1jJ(q)). Obviously, any system of the form 
(16) is also of the form (15). 

With (15) or (16) satisfied, it is clear that Z itself satisfies a SDE of the 
form 

(17) 

where B is non-random and does not depend on time, and where D is a 
continuous semimartingale. 

Given a Fa-measurable random vector Za, the SDE (17) has a unique 
strong solution with Z(O) = Za. With this and the preceding discussion in 
mind, the following result is easy to show. 

Proposition 2.1 (i) With U a Rdxl-valued) continuous semimartingale) 
and x(p,q) E J{(p) given non-random vectors (0:::; q :::; p:::; r), there is a unique 
process X, which solves (16) for 0 :::; p :::; r, which is p times differentiable in 
the direction V(p) for each p, and which satisfies the initial conditions 

(18) 

(ii) If U is a Brownian motion) the solution X is Gaussian) and the big 
process Z determined by X is a Gaussian) homogeneous diffusion. 

Remarks. 

11 We call U a Brownian motion (defined on (,0, F, Ft, P) if U is adapted, 
continuous, U(O) = 0 a.s. and for some drift vector e E Rdxl and some 
d x d covariance matrix f, U(t) - U(s) is for 0:::; s :::; t independent of 
Fs and N ((t - s) e, (t - s) r) -distributed. 

11 If U is a Brownian motion with non-singular covariance f, then the 
process X obtained by Proposition 2.1 has order r + 1. In that case, if 
also d = 1, X is an example of a (Gaussian) r'th order Markov process 
in the sense of [2, p. 272]. 
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@I With U still Brownian, the big process Z is an example of what [5] 
called a Gaussian homogeneous diffusion with smooth components. 
Any such process in d dimensions satisfies an SDE of the form 

(19) 

with Wad-dimensional standard Brownian motion and the matrix D 
of reduced rank < J. 

Cl It should now be clear, that the idea behind the system of equations 
(14) and (16) is to set up, in the case where U is a Brownian motion, 
the most general class of processes X, such that the corresponding 
big processes Z are Gaussian, homogeneous diffusions. Note that this 
is achieved without incorporating constant drift terms (such as A in 
(19)) in (16) or (17): these terms are included in the driving Brownian 
motion U. 

It is somewhat unsatisfactory that Proposition 2.1 depends on the arbi­
trary subspace decomposition (9). However, it is possible to describe X as 
the solution to a system of SDE's that are intrinsic in the sense that the co­
efficients in the finite variation terms depend only on the fundamental spaces 
V(p), not on the arbitrary H(p)/S. 

Theorem 2.2 (i) Let the semimartingale U and the vectors x(p,g) be as in 

Proposition 2.1. If X denotes the unique solution to (16) with (1r(p)X) (g) (0) = 

x(p,q), then there exist linear maps (not depending on the x(p,q)) 

for 0 ::; p, q ::; rand 

for 0 ::; p ::; r, such that 

(20) 

for 0 ::; p ::; r and all v E V(p). 
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The ob,q) and the 1(P) satisfy the consistency conditions that for 0 :::; p :::; 

r -1, 

va(p,,) = { ~ 

V1(P) = 0 

(ii) Suppose conversely that 

(q i- p + 1, v E V(PH)l 

(q=p+1, VEV(p+I) , 

(v E V(P+I)) . 

R 1Xd = V(O) ~ ... ~ v(r) 

(21 ) 

(22) 

are given subspaces} and let oJp,q) : V(p) ---7 V(q) and 1(P) : V(p) ---7 R 1 xd be 
linear maps that satisfy (21) and (22) respectively. Let furthermore f(p,q) : 
V(p) ---7 R be linear functionals such that for 0 :::; q :::; p :::; r - 1 

(23) 

Then} with U a given continuous semimartingale} there is a unique process 
X, p times differentiable in the direction V(p) for all p, that satisfies (20) for 
all 0 :::; p :::; r, v E V(p) subject to the initial conditions 

(vX)(q) (0) = vf(p,q) (24) 

Proof. (i) Let v E V(p). From (16) and (14), since v = L:~=p V1!"(m) for 
v E V(p), it follows that 

d (vX)(p) = t vB(p,q) (-f(q) X) (q) dt + t v (1!"(m) X) (pH) dt + V1!"(p) dU, 
q=O m=p+l 

which is of the form (20) with 

{ 
B(p,q)-f(q) 

a(p,q) - ( ) - B(p,p+I) + Id -f(p+l) 

1(P) = 1!"(p). 

(qi-p+1) 

(q=p+1), 
(25) 

It is obvious that va(p,q) E V(q) if v E V(p). Since V1!"(p) = 0 for v E 

V(pH), (22) holds. (Here and in the sequel, (11) is used without comment). 
Since B(p,q) : L(q) ---7 J{(p) , we have B(p,q)-f(q) = 1!"(p) B(p,q)-f(q) and hence 
vB(p,q)-f(q) = 0 if v E V(pH). Since also then v-f(pH) = v, (21) follows. 
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(ii) Suppose there is a process X satisfying the requirements in part (ii) 
of the theorem. Consider a decomposition (9) satisfying (10) and define 1r(p) 

in the usual way. Then (20) implies 

d (1r(p) X) (p) = t (1r(p)a(p,g) X) (q) dt + 1r(P)1(P) dUo 

q=O 

Here 1r(p)a(p,g) = 1r(p)a(p,g)7jJ(q) because a(p,q) : V(p) -+ V(g), and it is seen that 

X satisfies (16) with 
B(p,q) = 1r(p)a(p,g) (26) 

and the U in (16) replaced by U := 1(P)U. Furthermore x(p,g) := (1r(p)X) (q) (0) 
for 0 :S q :S p :S r is given by 

x(p,q) = 1r(p) j(p,q). (27) 

Thus X satisfies the conditions of Proposition 2.1, and hence, by that 
proposition, X is at most unique. To show that there is an X obeying 
the requirements of the theorem, consider the solution X to (16), where 
U is replaced by U, B(p,q) is given by (26), and x(p,q) by (27). We must 

then show that X satisfies (20) with (see (24)) (vX)(q) (0) = vj(p,q) for 

o :S q :S p :S r, v E V(p). 

Since X satisfies (16), part (i) of Theorem 2.2 and its proof applies to X, 
in particular it follows that X satisfies an equation of the form 

d(vX)(P) = t (v&(p,q)X)(q) dt + v;y(p) dU, 

q=O 

where ii(p,q) = 1r(p)a(p,q)7jJ(q) if q =I p + 1 and = (1r(P+I)a(p,P+I) + Id) 7jJ(P+I) if 

q = p + 1, is given by (25), using the B(p,q) from (26), and where ::y(p) = 1r(p). 

Thus, to show that X satisfies (20) itself, it suffices show that for v E V(p), 

vii(p,q) = va(p,q), V1r(P)1(P) = V1(P). (28) 

But for v E V(p), if q =I p+ 1, 

V1r (p) a(p,q) 7jJ (q) 

v1r(p)a(p,q) 

v (1r(p) + 7jJ(P+I)) a(p,q) 

va(p,q) , 
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where we have first used that v1r(p)a(p,q) E V(q) and then that v7jJ(p+l) a(p,q) = 0 
by (21). And if q = p + 1, 

v ( 1r(p)a(p,p+l) + Id) 7jJ(p+l) 

v1r(p)a(p,P+l) + v7jJ(P+l) 

v1r(p)a(p,p+l) + v7jJ(P+l)a(p,p+l) 

va(p,p+l) , 

using (21) for the third equality. 
This proves the first identity in (28). The second follows from (22) since 

for v E V(p), 

It remains to check that X satisfies the proper initial conditions, 

for 0 :; q :; p :; r and v E V(p). But (see (27)) 

(vX) (q) (0) = t (V1r(m) X) (q) (0) = t V1r(m) j(m,q) 

m=p m=p 

and since by (23), V1r(m) j(m,q) = V1r(m) j(p,q) for m ~ p, it follows that 

(vX)(q) (0) = t V1r(m)j(p,q) = vj(p,q) 

m=p 

holds. 0 

3 SEQUENCES OF AR-PROCESSES CON­
VERGING TO A GIVEN LIMIT 

As a first step towards our main result, we shall in this section show how any 
limit process X of the type discussed in Section 2, may be obtained as the 
limit of sequences af autoregressive processes. 

It will be convenient at this stage to use Proposition 2.1 and describe X 
as the solution to (16) with initial conditions (18). 
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For f : Ro --7 RdxI a function, and h > 0 we define (cf (4)) flhf as the 
function 

flhf (t) = f(t) - f(t - h) (t?h). 

Repeated use of this difference operator gives 

p 

fl~f(t) = 2: C;:) (_l)m f(t - mh) (t ? ph) (29) 
m=O 

for pEN, and for p = 0 we define fl2f = f. 
The following observation forms the basis for the proofs in this section. 

Lemma 3.1 Let f : Ro --7 RdxI be q ? 1 times continuously differentiable. 

Then) for any p ? q, 

fl~f(t) = J dUI'" dUq fl~-q f(q)( uq) 

M~(t) 

where) writing Uo = t, 

(t ?ph), (30) 

o 
The lemma is obviously true for p = q = 1 and is easily proved in general, 

using induction on p. 
Let now X be the unique solution to (16) with initial conditions (18). 

We shall use Lemma 3.1 to obtain approximate difference equations for X, 
involving the process at the lattice time points ~, where n E N, kENo. 

Using (30) with p replaced by p + 1 and q = p, it follows from (16) that 
for n EN, k ? p + 1, 

fl~+1(1T(P)X) (~) = J dUI· .. dup ((1T(P)X)(P)(up)-(7l'(P)X)(P)(uP'-~) 
Mr(~) 

n' 

(31) 
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with errors 

~l= J dU1· .. dup(7r(p)U(up)-7r(p)U(up-~)). (32) 

Mr(~) 
n 

In what follows, consider only k such that ~ ~ T, where T > 0 is an 
arbitrary constant. 

Now, in the integral in (31), IUp+1 - ~I ~ ~, and since the integrand is 
uniformly continuous on [0, TJ, we may therefore write 

where 0(1) is a random vector, converging to 0 a.s as n -7 00, uniformly in 

k, Up+1 with ~ ~ T, Up+1 ~ T and lup+! - ~I ~ ~. Since the Lebesgue 

measure of Mi+! (~) is n-P-I, it follows that 
n 

6.p+1 (7r(p) X) (k) = ~ 1 B(p,q) 6. q (1jJ(q) X) (k-1) + tp) + Ok (_1_) 
1. n ~ nP+1- q 1. n n,k ,p nP+1 
n q=O n 

(34) 
for r + 1 ~ k ~ [nTJ, where Ok,p (n- p- 1) is a random vector such that 

max nP+1110k (_1 ) 11 ~ 0 k:r+1SkS[nT] ,p nP+l 
(35) 

as n -7 00. Here 11·" denotes the Euclidean, or any other equivalent norm on 
Rdx1. 

Remark. For (33) we just needed some good approximation to the 
q'th derivative of 1jJ(q) X in terms of X evaluated at the lattice points * for 
j ~ k-l. We could equally well have replaced k:1 on the right of (33) by, say, 

k:2, and even used an approximant other than (n6.;) q to the differentiation 

operator ft:. Thus the converging scheme presented below, is by no means 
the only one with X as limit. 

Proposition 3.2 Let (Yn)n>l denote the sequence of autoregressive processes 
of order r + 1 given by (1)) where 

An" = t. [1(1';') (::n (-1 )',,(P) + t, np;,-q (-1)' m B(P,q) ,p(q)], (36) 
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(37) 

and with initial values (Yn,j )o:Sj:Sn given by 

r 

y: . - '" 7r(p)y: . n,J - L... n,J 
p=O 

where) for each p, 1r(p)Yn,j is determined recursively by 

{ 4xW,j) - t (i){-l)i,,(P)y'- (O~j~p) nJ . 2 n,J 2 

7r(p)y: . = 2=1 (38) 
n,J P () -Lx(p,p) - 2:= r: (-1 )i7r(p)y: ._. (p < j ~ r). nP ., n,J 2 

2=1 

Defining Xn by Xn(t) = Yn,[ntj, it then holds that 

X a.s.u.c X n -+ . 

Remark. (38) may be written 

n j 6.l (7r(p) Xn) (*) x(p,j) (O~j~p) 

n p6.i (7r(p)Xn) U) x(p,p) (p < j ~ r). 
(39) 

n 

Notation. a.s.u.c is short for 'convergence almost surely, uniformly on 
compact intervals of time'. 

Proof. In (34), sum once over k to obtain (since the number of terms in 
the sum is ~ nT) 
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By (32) 

~k= J dUl ... dUp7f(p)U(Up) 

Mi(*) 
n 

J dUI . .. dup 7f(p) U (up) 

Mi (k~l) 
n 

and hence 

uniformly in k, r + 1 :s; k :s; [nTJ, since U is continuous. 

Now define Xn by Xn(t) = Xn (¥) and, c.f (34), for k ;::: r + 1, 

~P+l (7f(p)X ) (lE.) = ~ 1 F(p,q) (~q X ) (k-l) + E(P) (41) 
1. n n L.J nP+1- q 1. n n n,k' 
n q=O n 

where F(p,q) = B(p,q)1jJ(q). 

Since the leading term on the left is 7f(p) Xn (~) and all other terms involve 

Xn at points *' where j < k, this is a recursive system determining Xn = 
I:p 7f(p) Xn once the initial values 

are fixed. 
In the remainder of the proof, write ~ = ~1. and introduce 

n 

and 
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An = max {np J,=Lr
k
+. 1 [( E~; - E~;) + OJ,p (np1+1 ) ] } p,k:O:::;p:::;r,r+l:::;k:::;[nTj . 

with 0j,p (n- p- 1 ) as in (34). 
The random variable K,n refers to the initial difference (before time ~) 

between X and X n, while An describes the discrepancy between the error 
terms in (34) and those used in the definition of X n , see (41). From (35) and 
(40) it follows, that for any T > 0, 

\ a,s 0 
An --+ . ( 42) 

We now claim that for T > 0 sufficiently small, there is a constant K > 0 
such that for 0 ::; m ::; p ::; r, 

(43) 

This claim is true for any p, m and J with m ::; p, m ::; J :::;: r by the definition 
of K,n, provided K 2: 1. Next, sum once over k in (34) and (41) to obtain, for 
r + 1 ::; k ::; [nT], 

,6.PD~ (~) = 6.PD~ (~) + t t np+ll_qF(p,g) (,6.gDn) (~) (44) 
j=r+lg=O 

+ j=tl [E~} - E~} + OJ,p (np~l)] . 

We can now show by induction on J that 

(45) 

for any m ::; p and any j with m::; J ::; [nT] : assuming that (45) is true for 
all m::; p and 1 ::; J ::; k - 1, it follows from (44) that 

. "" . 

II,6.p D~ (~) 11 < ~ + ,t t np\l IIF(p,g)11 (r + 1)K(K,n + An) + ~ 
J=r+lg=O 

< ;P (K,n + An) (1 + (r + 1)KT g~O IIF(P,g)ll) . 
( 46) 
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(For M a square matrix, IIMII denotes the operator norm corresponding to 
the vector norm 11·11 already in use). Thus (45) holds also for m = p and 
j = k provided T > ° is first chosen so small that (for all p) 

and then K 2: 1 is chosen so large that 

r 

1 + (1' + I)KT L IIF(p,q) 11 :::; K. 
q=O 

With these choices of T and K, (43) has been proved for m = p, at time ~. 
For other values of m, use induction backwards on m. So if (43) is true for 
m, use 

k 

l1m-lD~(~)= L l1mD~(*)+l1m-lD~(~) (47) 
j=r+l 

to obtain 

which shows (43) for m-I at time ~ provided T < 1 and K is sufficiently 
large. 

With the claim (43) established, take m = ° and sum over p to obtain 

Because of (42) it will follow that Xn ~ X, uniformly on [0, T] provided 

a.s ° Kn -7 . ( 49) 

Assuming this for the moment and repeating the argument leading to (48), 
one finds that Xn ~ X, uniformly on an interval starting fractionally to the 
left of T (to get the new 'initial values' in place before time T), at (1-8)T say, 
and of length T. Thus Xn ~ X uniformly on [0, (2 - 8)T] and continuing, 
the assertion Xn a.~.c X follows. 

It remains to prove (49) and to read off the coefficients (36). The latter 
is easy, just use (41) and (29), isolate 7r(p)Xn (~) on the left, and sum over p 
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to obtain (c.f. (1)) 

r 

Xn (~) = I: An,[Xn (k-~-l) +cn,k 
[=0 

with the An,[ as in (36) and Cn,k as in (37). 
Finally, to prove (49), note that from (30) and the initial condition 

(1f(p)X) (q) (0) = x(p,q), it follows that for all p and all m,j with 0 :::; m :::; 
p, m:::;j:::; r,' 

(with 0(1) random, ~ 0). It is then clear that (49) follows if we show that 
(39) implies, for p, m,j as above 

(50) 

(with 0(1) non-random since the Xn (*) are non-random for j :::; r). But by 
(39), (50) is true for j = m where 0 :::; m:::; p, and for m = p and p < j :::; r. 
The simple observation (use (39)) 

j 

n mllm1f(p)Xn (*) = nm I: llm+11f(p)Xn (*) + x(p,m) (51) 
i=[+l 

now permits a proof of (50) using backwards induction in m, starting from 
m = p: by the induction hypothesis each term in the sum in (51) is 0 (n-m - 1 ) 

and the right hand side of (50) becomes x(p,m) + 0 (n-1 ). 0 

The expression (36) is not particularly useful and not very illuminating! It 
is clear that the geometric structure of the limit process X has been well and 
truly obscured by the autoregressive representation. It appears impossible 
to use (36) to recognize converging systems of autoregressive processes, so 
when addressing this problem in the next section, we shall rely on a different 
approach. However, the technique used in the proof of Proposition 3.2, will 
prove useful in Section 4 also. 

Instead of using the method described above for determining AR-processes 
Xn converging to X, one could have started with the big process Z (an Ito­
process) determined by X, and considered the standard Euler scheme [6, 
Chapter 9] converging to Z. Converting this into AR-processes converging to 
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X is however cumbersome (the expression (36) is at least explicit), and in 
any case we find it more informative to work directly with X as it was done 
above. 

4 SUFFICIENT CONDITIONS FOR WEAK 
CONVERGENCE OF SEQUENCES OF 
AR-PROCESSES 

In the previous section a concrete sequence of AR(1' + I)-processes was 
exhibited, converging a.s.u.c to a given limit X of order 1'. The sequence 
in question is of the form (1) with coefficients given by expressions of the 
following type (see (36)) 

(52) 

where each f3s,l E Rdxd and the range Rr of summation always includes s = 0 
and further consists of all values s = p + 1 - q obtainable when 0 ::; p, q ::; 1'. 
Thus 

Rr = { {O, 1 } ~f l' = 0 
{-1' + 1, -1' + 2, ... ,1', l' + I} If l' :;::: l. 

Note that if l' :;::: 2, strictly negative values of s may occur, cf. the closing 
remarks of Section 1. 

We shall now consider arbitrary sequences (Yn) of AR(1'+ I)-processes of 
the form (1) with the An,l as in (52), and shall then find sufficient conditions 
on the f3s,z, the errors En,k and the initial conditions for each Yn, that ensures 
that the sequence (Xn) of continuous time processes derived from (Yn) as in 
(2) converges in distribution to a limit process X of the type discussed in 
Section 2. 

Initially we shall fix the limit X, and use the description (20), (24) pro­
vided by Theorem 2.2. From Lemma 3.1 and (20) it follows that for any p 
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with 0 :::; p :::; '(' and any v E V(p), writing ~ = ~l., 
n 

(53) 

while for X n , (see (1) and (52)), 

~p+1VX (k) = ~ " ~vf3(p) X (k-l-1) + VE k (54) n n 0 0 n S s,l n n n, 
1=0 sERr 

where 

(55) 

The main problem is to find out how the geometric structure of the limit X, 
i.e the subspaces V(O) ~ ... ~ v(r), is reflected in the matrices f3s,l. The idea 
we shall use is the following: the first term on the right of (53) is 

_1_ ~ (vo:(p,g) X) (g) (k-1) + 0 (_1 ) 
nP+10 n np+l 

q=O 
(56) 

and we then aim for the sum on the right of (54), where Xn is replaced by X, 
to approximate (56) with sufficient accuracy, i.e to within order 0 (n- p - 1 ) . 

Thus we want 

_1_ ~ (vo:(p,g)X) (g) (k-1) = ~ " ~vf3(p) X (k-l-1) + 0 (_1 ). (57) 
n P+1 0 n 0 0 n s s,l n np+l 

g=O I=OsERr 

For this to be possible, one must be able to Taylor expand, for an arbitrary 
sample path for X, the sum on the right of (57) around time k~l with suffi-

cient accuracy, which forces each v f3l~) to belong to an appropriate subspace 

V(m)-we must demand that f3l~/ ma~s V(p) into sortie V(~)or'{O} . 
We have indicated ~ome of the conditions on the f3s,!, that will appear 

later. But the first task is to argue that the idea just sketched can be made 
to work. 

Suppose that X, Xn are as above, but defined on the same probability 
space. Define Dn = X - X n. 
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Lemma 4.1 Suppose that there is a constant T > 0 such that for all p, 0 :::; 
p :::; r and v E V(p), 

where 

K~(V) 

).~(v) 

p~(v) 

P ( ) a.s 0 Kn V ---+ , ).~(v) ~ 0, p~(v) ~ 0, 

Assume also that for all p, v E V(p) and s :::; p, 

Th X a.s.u.c X en n ---+ . 

r 

Lv!1;j) = o. 
1=0 

(58) 

(59) 

Remarks. Note that (58) holds for all v E V(p) iff it holds for finitely 
many vectors forming a base. The first condition in (58) ensures that Xn is 
close to X initially, the second controls the errors, and the third is a precise 
formulation of (57). 

Proof. The proof resembles that of Proposition 3.2. For each p, let E(p) 

be a finite set of base vectors for V(p). We want first to show that for T > 0 
sufficiently small, there is a constant ]{ > 0 such that for all p and m with 
0:::; m:::; p:::; r and v E E(p), 

(60) 

where 

(n = max {K~(V) + ).~(v) + Tp~(v) + vo(l) : p, v with 0 :::; p:::; r, v E E(p)}. 

Since (n ~ 0, it will then follow, arguing as in the proof of Proposition 
3.2 (using m = 0 in (60)), firstly that Xn ~ X, uniformly on [0, TJ and 
subsequently that Xn a.~.c X. 
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In establishing (60), the important case is m = p. For m < p, argue as in 
the proof of Proposition 3.2, the paragraph containing (47). 

Let v E V(p). To show (60) for m = p, sum once on k in (53) and (54) to 
obtain (cf. (44)) for k;:: r + 1 

b.PvDn (;) 

+ ~ (_1_ (vo:(p,q)X) (q) (cl) _ ~ '" ...Lv f-I(p) X (i-I-I)) 
. L..J np+l n L..J L..J n S f-/ s,1 n 
J=r+l 1=0 sERr 

+ ~ ~ '" ...Lvf-l(p) D (i-I-I) 
. L..J L..J L..J nS f-/ s,1 n n 
J=r+ll=O sERr 

k 

+ n~ v,(p) (U (~) - U (0)) + vOk (n~) - . ~ VCn,j 
J=r+l 

where max nP /VOk (n-P)/ ~ O. Thus, with 0(1) ~ 0 not depending on 
k:r+19::;[nT] 

k, 

nP /b.PvDn (~) /:::; K~(V) + A~(V) + Tp~(v) + vo(1). (61) 

+nP . t t ~ ;s /v(3;~( Dn (j-~-I) / ' 
J=r+ll=O sERr , s2:p+l 

where we have used assumption (59). Now, to show by induction in k, 
that this is :::; the expression on the right of (60), one must be able to 
control the triple sum in (61). By the induction hypothesis, estimates of 
/b.mvDn e-~-l) / of the form (60) are available for all p, v E E(p), in partic­

ular, for m = 0, v E E(O) 

For the given v E E(p), write v (3;~) as a linear combination of the vectors in , 
E(O) (which span R 1 Xd). It is then clear that there is a constant C;:: 0 such 
that for all p, s, I 

and hence 

23 



with Cl a constant not depending on T or p. With the sum over j in (61) 
containing :::; nT terms we may now proceed as in the proof of Proposition 
3.2, (45), and obtain (60) at time ~ for T sufficiently small and K sufficiently 
large. 0 

We need one further result, the following curious combinatorial identity. 

Lemma 4.2 For non-negative integers i,p with 0 :::; i :::; p + 1, define 

Then 
1 
I-(p+I)! 

Note. Use 0° = 1 in the definition of Sp,o, 
Sketch of proof. Because 

( p) (p + 1) (p + 1) (p + 1) 1 + 1 - p 1 + 1 = -1 1 + 1 

one immediately verifies the recursion formula 

Sp,i+1 = (p + 1) Sp-1,i - pSp,i 

for i ~ 0, p ~ 1. Now proceed by induction on p and i. o 

Let now (Yn)n>l be a sequence of AR(r + I)-processes of the form (1) 
with coefficients of the form (52), and define Xn(t) = Yn,[ntj as usual. Recall 

the definition (55) of (3!~). , 

Theorem 4.3 Suppose there exists subspaces R1xd = V(o) ~ V(l) ~ ... ~ 
v(r) (with v(r) = {O} allowed)) linear maps ,(p) : v(p) --+ R 1xd satisfying 

(22) and linear functionals f(p,q) : V(p) --+ R satisfying (23)) such that the 

following three conditions hold: 
(i) (Initial conditions) For all p, v E V(p), 

nj~{ (vXn) U) = vf(p,j) 
n 
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n j ~i (vXn) (*) = vfp,p) 
n 

(p<j~r). 

(ii) (Error convergence) There is a continuous Rdxl-valued semimartin­
gale U, defined on some filtered space (n, F, Ft, P) with U(O) = 0 a.s) such 
that if for any p, v E V(p) one defines the scalar valued processes 

[n.] 

U~p)(v) := n P I: VCn,k 

k=r+l 

it holds for all NE N, 0 ~PI,P2, ... ,PN ~ r, VI E V(I),V2 E V(2),.:.,VN E 
V(N) that 

(U~Pl)( VI)' U~P2)( V2) ... ,U~PN)( VN)) ~ (W",/Pl)U, V2')'(P2) U, ... ,VN,(PN) U) . 

(62) 
(iii) (Subspace conditions). For all p, 1 with 0 ~ p, 1 ~ r 

(p + 1 - r ~ s ~ p). 

Also) for all 0 ~ 1 ~ r, 

(3s,1 : v(r+s) -+ {O} (min Rr ~ s < 0), 

({30,1- (-1)I(~:Dld) : v(r) -+ {O}. 

Finally) for min Rr ~ s < 0 

while for s = 0 

r 

r 

L lq (3s,1 : V(O) -+ {O} 
1=0 
r 

L lq (3s,1 : v(q+s) -+ {O} 
1=0 

Llq{3o,l- (-1)q1d: v(q) -+ {O} 
1=0 

and for 1 ~ s ~ r 

r 

L lq (3s,1 : V(q+s) -+ {O} 
1=0 
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(0 ~ q ~ -s -1) 

(-s ~ q ~ r - 1) 

(O·~ q ~r- 1). 

(0 ~ q ~ r - s). 

(63) 

(64) 

(65) 

(66) 

(68) 



Then it holds that 
V 

Xn ---t X, 

where X is given as the unique solution to (20) with initial conditions (24)) 
and where the linear maps a(p,q) from (20) are determined by 

a(p,q) = ~ ~(-l)qf3(p) 
, L..J p+l-q,1 

q'I=O 

(69) 

and satisfy (21). 

Remarks . 

.. Condition (i) should be compared with (39). Because of (23), it should 
be clear that the equations in (i) are consistent and define Xn (*) for 
o ~ j ~ r . 

.. Condition (ii) is a condition of process convergence of the sequence 
of errors from (1). It may be given in a different form, more useful 
for applications. Consider a decomposition (9) of RIXd, which satisfies 
(10), and let 7r(p) denote the corresponding 'projections'. Now suppose 
that for each p there is a H(p)-valued, continuous semimartingale U(p) 

such that if 

it holds that 

[n.) 

U~p) := n P L 7r(P)cn,k 

k=r+l 

(Skorohod convergence on (RdXlf+1), then (ii) is satisfied: for v E V(p) 

[n.) 

nP L VCn,k 
k=r+l 

t, v (np .E, ~(q)'n,.) 
~ vU(p), 

and similarly for the joint convergence in (62). Thus, defining U = 
L. U(p) , this limit is V7r(p)U, so (ii) holds with 1(P) = 7r(p) and these 
1(P) of course satisfy (22). It is clear that (ii) implies (70), so the two 
conditions are equivalent. 
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tiI Suppose that for each n, the tn,k for k 2 r + 1 are i.i.d with Etn,k = 

0, Cov tn,k = r n' Then, using the preceding remark, it is seen that 
condition (ii) is satisfied provided for all p, q there is S(p,q) E Rdxd with 
S(p,q) T = S(q,p) such that 

7r(p) r 7r(q) T = 1 7r(p) S(p,q) 7r(q) T . 
n nP+q+1 

(71) 

In that case, U is a Brownian motion with 0 drift and covariance matrix 
r (see the first remark after Proposition 2.1), 

r r T r = L: L: 7r(p) S(p,q) 7r(q) . 

p=Oq=O 

(T stands for 'transpose'). (71) shows clearly how the errors tn,k must 
be normalized differently in different directions. 

Proof of Theorem 4.3. We shall use Lemma 4.1. In order to do this, 
first note that by the Skorohod embedding theorem, [8] or e.g [3, Theorem 
3.1.8], we may assume that for any p, v E V(p), 

U (p)( ) a.s.u.c (p)U 
n V ---+wy . (72) 

Indeed, since (70) holds, the Skorohod embedding allows us to assume that 
all U~p) and U(p) are defined on the same probability space with 

(73) 

Since the limit process is continuous, the a.s convergence of the sequence 
(U~p») n,p of random variables with values in the Skorohod space DIt~l (Ro) rv 

DR dx(r+l) (Ro) translates into a.s.u.c convergence, and (72) follows. 
Assuming, as we now may, that (72) holds, the proof will be complete if we 

show that Xn a.~.c X, and this follows from Lemma 4:1 if we vetifyconditions 
(58) and (59). But the first assertion in (58) follows from (i) in the Theorem, 
copying the argument for (49) in the proof of Proposition 3.2. The second 
assertion in (58) follows directly from (72). To obtain the last assertion in 
(58), it suffices to show that for any continuous path w : Ro ---+ Rdxl with 
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t ---+ vw(t), p times continuously differentiable for any p, v E V(p) (so w is a 
typical sample path for X), 

uniformly in t E [0, T] for any T > O. 
For this to work, we first demand that the (s, l)'th term in the double sum, 

can be Taylor expanded around t to within order 0(1), which is a problem 
only if s :::; p, i.e we need that 

vf3(p) E V(p+l-s) 
s,1 (v E V(p), 1 :::; 1 :::; r, p + 1 - r :::; s :::; p) (75) 

v f3 ;j) = 0 (v E V (p ), 1 :::; 1 :::; r, min Rr :::; s :::; p - r) . ( 76) 

(Recall that min Rr is 0 if r = 0 and -r + 1 if r ~ 1). Next, performing the 
expansion, the double sum becomes 

r p+l p+l-s 
L L nP+1- s L ~ (-~r (vf3;j)w) (q) (t) + 0(1) (77) 
1=0 s=p+ l-r q=O 

which for (74) to hold should equal 

r ( ) L (va(p,q)w) q (t) + 0(1). (7S) 
q=O 

View both (77) and (7S) as expansions in powers of n and the order q of 
differentiation. Then match the two expressions term by term to obtain the 
conditions 

(vEV(p), p+1-r:::;s:::;p, O:::;q:::;p-s), (79) 

V (t,~(-l)qf3~~l-q,) =va(p,q) (v E V(p), 0:::; q:::; r). (SO) 

We have now shown that (74) holds if (75), (76), (79) and (SO) hold. But 
(75) is just (63), and (76) is the same as (65) in the case s = 0 and follows 
from (64) in the case s < 0 since v E V(p) c v(r+s). Further, (SO) agrees with 
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the definition (69) of the a(p,q) and (79) follows from (66), (67) and (68) as 
we shall now see: if si:- 0, (79) just reads v ("2:.IIq/3s,l) = 0 for v E V(p), an 
assertion which is strongest for p as small as possible in agreement with (66) 
if s < 0 and with (68) if s > O. For s = 0 the left hand side of (79) is the 
same as 

v ("2:.1=0 Iq /30,1 - "2:.f=o Iq ( -1 Y (f:n Id) 
v "2:.1=0 Iq /30,1 - ( -1 )q Sp,q v 

v "2:.1=0 Iq /30,1 - ( -1 )qv 

for v E V(p) by Lemma 4.2. The smallest value of p allowed is p = q,and we 
see that (79) for s = 0 follows from (67). 

In order for us to apply Lemma 4.1, we still have to verify (59), but this 
is just (79) for q = O. Of the assertions from the theorem it now only remains 
to prove, that the a(p,q) map V(p) into V(q), which follows from (63) with 
s = p + 1 - q, and that they satisfy (21). But if v E V(P+1), for q i:- p + 1 we 
get 

in the case q < r by (79) with p replaced by p + 1, s = p + 1 - q, and in the 
case q = r by (76) with p replaced by p + 1, s = p + 1 - r, while if q = p + 1 

r 

va(p,p+l) = v'" _l_(_I)P+l (/301- (-1)11(1< ) (P+l) Id) . o (p+l)! , _p 1+1 
1=0 

By (79) with p replaced by p + 1, s = 0, q = p + 1, 

r 

V ~ IP+l /3~;Z+1) = 0 
1=0 

r 

(p,p+l) _ '" 1 ( I)p+l (( 1)11 (P+2) (1)11 (P+l)) va - v 0 (p+1)! - - (l~p+1) 1+1 - -c-.. . (l~p) 1+1· . 
1=0 

and with the notation and assertion of Lemma 4.2, this 

= V (P~l)! (Sp+1,P+1 - Sp,p+l) 

=V 
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as desired. o 

Of the many identities appearing in the subspace conditions of the The­
orem we emphasize one: taking q = 0 in (67) gives 

Referring back to (52) and (1), this shows that approximately Xn (~) IS 

represented as an average of the Xn (k-~-l) for 0 ~ I ~ r. 
We shall conclude with two examples that illustrate the effect of the 

subspace conditions in Theorem 4.3. 
Example. Consider the case V(l) = {O} with r arbitrary (so r = 0 

gives the standard case from Proposition 1.1). One finds that (63)-(68) are 
equivalent to 

(l = 0), 
(l ;::: 1), /3s,/ = Od (s < 0, alII). 

Thus, if the initial conditions and the errors behave, there will be convergence 
of the systems 

r r+1 1 
Xn (~) = Xn (k~l) + LL ns/3s,/Xn (k-~-l) + En,k. (81) 

/=0 s=l 

But very few of the coefficients will affect the limit: by (69) 

r 
",(0,0) - ~ /3 
u. - L.J 1,/, a(O,q) = 0 (q;::: 1), 

1=0 

and all other a(p,q) are required to map {O} into {O} , which is automatic. 
So all terms with s ;::: 2 in (81) are immaterial, and for s = 1 only the sum 
I: /31,/ is relevant for the structure of the limit process. 0 

Example. Take r = 1 and assume that d1 := dim V(I) ;::: 1. The subspace 
conditions involve /30,/ and /31,/ only, not the /32,/. One finds that the /30,1 must 
satisfy 

(/30,0 - Id) : V(O) ~ V(l), 

(/30,0 - 2Id) : V(l) ~ {O} , 

30 

/3 . V(O) ~ V(l) 0,1 . , 

(/30,1 + Id) : V(l) ~ {O} , 

(82) 

(83) 



/30,0 + /30,1 = h, 
while for the (31,1 it holds that 

/31,[ : v(1) -7 V(I), 

(84) 

We can learn a little more about the structure of the /30,/. Let R1Xd = H(O) E8 
V(l) be a decomposition- as in (10), with 'projections' 11"(0), 11"(1). Then from 
(82) we get 

(85) 

for some matrix ,. In particular, rank /30,1 :::; d1 and since by (83),11"(1) (/30,1 + Id) = 
Od it follows that 

rank (30,1 = d1 . 

Also by (83), /30,1 + Id = 11"(0) ((30,1 + Id) , so rank (/30,1 + Id) :::; d - dl . With 
(/30,1 + Id) 11"(0) = /30,1 (Id -11"(1») + 11"(0) = 11"(0) as follows from (85), we find 

rank (/30,1 + Id) = d - d1 (86) 

and we have shown that 

is a decomposition of unity with 

rowspan /30,1 = V(l). (87) 

If conversely /30,1 is such that (87) and (86) hold, then (30,1 (/30,1 + Id) = 0, 
and so, defining /30,0 by (84), (82) and (83) hold. 

The maps ob,q) are given as follows 

0:(0,0) (3 + /3 _ 1,0 1,1 
0:(0,1) - (30,1 
0:(1,0) (3 + (3 2,0 2,1 
0:(1,1) - (31,1. 

In particular, for the (32,1 only the sum (32,0 + /32,1 and how it acts on V(l) is 
of interest. 0 
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