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Abstract 
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This paper presents a survey of the statistical analysis of the cointegration model for 

vector autoregressive processes. The focus is on likelihood based inference, but for 

comparison the regression approach is briefly discussed. It is not the intention to give 

a complete survey of all results obtained in cointegration, but rather to present in an 

informal way the basic problems and some results, in the hope that those who catch an 

interest in the problem area, will be able to find the relevant references for a deeper 

study. 
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1. Introduction 

This paper deals with likelihood inference for non-stationary time series and as 

application and motivation we consider some simple economic problems and show how 

the analysis of the statistical model helps in gaining insight and understanding of 

economic phenomena. This section contains the basic definitions of integrated 

variables, cointegration, and common trends and discuss by examples the formulation 

of models and processes in terms of common trends and the error correction model. 

The notion of cointegration has become one of the more important concepts 

in time series econometrics since the papers by Granger (1983) and Engle and Granger 

(1987). 

The basic idea is very simple: Let {Xt' t 

stochastic process, we then give the definitions. 

0,1,. .. } be a p-dimensional 

Definition 1. If Xt is non-stationary but I1Xt = Xt - Xt- 1 is stationary we call Xt 

integrated (of order 1). 

Definition 2. If Xt is integrated of order 1 but some linear combination, Jl 'Xt, Jl f. 0, is 

stationary then Xt is called cointegrated and Jl is the co integrating vector and Jl/ X = 0 

the co integrating relation. 

Just to get an idea of the concept consider the following simple example of a three 

dimensional stochastic process: 

Example 1 We define the 3-dimensional process by 

t 

Xlt = i~l tli + t2t' 

t 

X2t = t i~l t1i + t3t' 

X3t = t4t t = 1, ... ,T. 
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Here all E'S are independent identically distributed Gaussian variables with mean zero 

and variance (J2. It is seen that Xt is non-stationary and that LlXt is stationary. 

Thus Xt is an 1(1) process. It is also seen that Xlt - 2X2t is stationary, such that Xt 

is cointegrated with (1,-2,0) as a cointegrating vector. Note that (0,0,1) is a 

cointegrating vector too, such that the process has two cointegrating relations and one 

common (stochastic) trend which is a random walk, EI Eli . Hence we can include 

stationary processes in the analysis at the expense of adding an extra cointegrating 

vector. The processes we consider are composed of a stationary process plus a random 

walk. If we want to define a linear combination of Xt as a common trend, then this is 

not uniquely defined. We can take Xlt or X2t or any combination of these except of 

course (1,-2). 0 

The idea behind cointegration is that sometimes the non-stationarity of a 

multidimensional process is caused by common stochastic trends, which can be 

eliminated by taking suitable linear combinations of the process, thereby making the 

linear combination stationary. 

In economics and other applications of statistics the autoregressive processes 

have long been applied to describe stationary phenomena and the idea of explaining the 

process by its past values has been very useful for prediction. If, however, we want to 

find relations between simultaneous values of the variables in order to understand the 

interactions of the economy one would get a lot more information by relating the value 

of a variable to the value of other variables at the same time point rather than relating 

it to its own past. In the above example Granger I s idea is to relate a variable like Xlt 

to 2X2t rather than to Xlt- 1 to obtain stationarity. 

A totally different line of development starts with the so called error 

correction model. These ideas can be traced back to Phillips (1954) who used ideas 

from engineering to formulate continuous time models and to Sargan (1964) who used 

the ideas to formulate models for discrete time data. The simplest example of such a 
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model which still illustrates the main idea is given by 

Example 2 We define the processes by the autoregressive model 

.6.X2t = t 2t , t = 1, ... ,T. 

This model expresses the changes in Xt at time t as reacting through the 

adjustment coefficient a1 to a disequilibrium error Xl - 2X2 at time t-l. It is not 

difficult to see that for 0 < a1 < 2 the model defines Xt as non-stationary, but that 

.6.Xt is stationary, and also Xlt - 2X2t is stationary. 

In fact we can solve the equations for Xt as a function of the initial values Xo 

and the disturbances tl' ... ,tT and find, since Xlt - 2X2t is an autoregressive process of 

order 1 the representation 

t-1 i t 
Xlt - 2X2t = i~O (1-a1) (tl -2t2)t_i + (1-a1) (XlO-2X20), 

so that 

t t-1 i t 
Xlt = 2i~1 t2i + i~O (1-a1) (tl -2t2)t_i + (1-a1) (X10-2X20) + 2X20. 

t 

X2t = i~l t2i + X20. 

Thus Xt is a non-stationary 1(1) variable, such that Xlt - 2X2t is stationary if the 

initial value X10 - 2X20 is given its invariant distribution, hence Xt is cointegrated 

with the cointegrating vector (1,-2). 0 

The conclusion of this is that the simple error correction model can generate 

processes that are non-stationary but cointegrated. 

The first example shows how the presence of common trends in the moving 

average representation of Xt can generate cointegration. The second example shows 

that suitable restrictions on the parameters of the autoregressive process will produce 

cointegration. A general result about the relations between the two approaches were 
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proved by Granger, see Engle and Granger (1987), and is given in the next section. 

These definitions raise a number of interesting mathematical, statistical and 

probabilistic questions, as well as a number of questions concerning the interpretation 

of cointegration in the various applications. 

Mathematical: 

- What kind of non-stationary processes are 1(1)? 

- Which models generate cointegrated processes? 

Interpretational: 

- How does one formulate interesting economic hypotheses in terms of 

cointegrating relations? 

- What is the interpretation of the cointegration relations and how can error 

correction models be usefully applied? 

Statistical: 

- How does one determine the number of cointegrating relations and 

common trends? 

- How does one estimate the cointegrating relations and the common trends? 

- How does one test hypotheses concerning the cointegrating rank? 

- How does one test economic hypotheses on the cointegrating relations? 

Probabilistic: 

- What is the (asymptotic) distribution theory for test statistics and 

estimators? 

We discuss some of these questions in the following and illustrate with an 

application to an economic problem in sections 3 and 6. 
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2. Granger's representation theorem 

This section contains a mathematical discussion of properties of autoregressive 

processes with respect to the question of integration and cointegration. The results are 

given in Theorem 2 and illustrated by some examples. 

Only autoregressive processes will be considered, since they form a 

convenient framework for the statistical analysis. These processes are easy to estimate 

and their properties are well understood. 

Consider therefore the general vector autoregressive model for the 

p-dimensional process Xt defined by the equations 

(2.1) 

where Et, t = 1, ... ,T are independent Gaussian variables in p dimensions with mean 

zero and variance matrix O. The initial values XO"",X_k+1 are fixed. 

Example 3 As a very simple example consider the univariate autoregressive 

process 

Xt = pXt - 1 + Et, t = 1, ... ,T. 

It is well known that the solution is 

t-1 i t 
Xt =i~l Et - i + P XO' 

ID· t ID i 
which shows that if Ipl < 1 we can choose Xo = E /E_. or P XO- E P Et_·, such 

. 0 1 . t 1 1= 1= 

ID • 

that Xt = E / Et_· becomes stationary. 
. 0 1 1= 

o 

Thus a condition on p is needed to produce a stationary process. In more dimensions 

the situation is a lot more complex. Consider the following simple example 
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It is seen that 

and hence 
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The process is generated by 

i1Xlt = Elt 

i1X2t = Xlt- 1 + E2t , t = 1, ... ,T. 

t t 

X2t =i~l Xli- 1 + i~l E2i + X20 

t i-1 t 
=.~ .~ El' +.~ E2i + tX10 + X20 

l=lJ=l J 1=1 

Thus X2t and hence Xt are not 1(1) processes since even i1Xt is non-stationary. 0 

This example shows that even simple autoregressive porcesses with 1 lag can 

generate a process which meeds 2 differences to become stationary. Thus we need a 

theorem that gives precise conditions for an autoregressive rpprocess to be an 1(1) 

process. 

We want to formulate this result for a multivariate process. As usual the 

properties of the matrix polynomial 

k Il(z) = 1 - Il1z - ... - Ilkz 

determine the properties of the process, and the first well known result see Anderson 

(1971) is given here for completeness. We let I Il(z) I denote the determinant of Il(z). 

Theorem L If Xt is given by (2.1) and if I Il(z)1 = 0 implies that I zl > 1, then Xt can 

be given an initial distribution such that it becomes stationary. In this case Xt has the 

representation 

CD 

X t = ~ C.Et " 
. 0 z -z Z= 

where the coefficients are given by C(z) = ~ C) = Il(z)-l, I zl < 1 + 8 for some 8 > 
. 0 z Z= 

o. 
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This result shows that if I IT(z) I has all roots outside the unit disk then the process 

generated by (2.1) is stationary. Thus we have to allow other roots of I IT(z) I for Xt to 

be non-stationary. In order to formulate a general result we expand the polynomial 

I IT(z) I around z = 1: 

2 IT(z) = - IT + (l-z)w + (1-z) IT2(z). 

k 
The matrix IT = - IT(l) = - I + E IT. has the interpretation as the "total impact" 

. 1 1 
1= 

k 
matrix and w = - dIT(z)/dz I -1 = E iIT. is the "mean lag" matrix. Finally for any 

z- . 1 1 
1= 

(pxr) (r < p) matrix a of full rank we let a denote a (px(p-r)) matrix of full rank 
.L 

such that a' a = O. We can then formulate Granger's representation theorem 
.L 

Theorem 2. If Xt satisfies (2.1), and if 

(2.2) 

(2.3) 

(2·4) 

I IT(z} I = 0 implies that I z/ > 1 or z = 1, 

a' W (3 full rank, 
.1 .1 

then !1Xt and (3' Xt can be given initial distributions such that Xt is I(1), and 

co integrated with co integrating relations (3, i.e. Xt is non-stationary, !1Xt is stationary 

and (3' Xt is stationary. 

Further the process Xt can be given the representation: 

t 
Xt = (3 (a' w(3 }-1 a' E f· + C1(L}ft + P(3 XO' 

.1.1.1 .1. 1 2 
Z= .1 

(2.5) 

and satisfies the reduced form error correction equation 

k-1 
(2.6) !1Xt = a(3' Xt- 1 +.E r i6.Xt_i + ft, t = 1, ... , T. 

2=1 

Example 2 continued 

We find in this case the matrix IT and W to be 
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so that 

[a l -2a1] [1-a1 2a1] 
I1(z) = 0 0 + (1-z) 0 1 

with determinant 

I II(z) I = (1 - z)(l + za1 - z), 

and roots z = 1 and z = (1 - a1)-1, a1 =F 1. Thus condistion (2.2) is satisfied for 0 < 

a1 < 2. We see that IT has reduced rank and a' = (-a1,0) and {J' = (1,-2). It is seen 

that a' = (0,1) and (J' = (2,1) so that a'w{J = 1, so that condition (2.4) is satisfied 
.1. .1. .1. .1. 

and the process is 1(1). o 

Example 4. continued 

For this example we find the coefficients 

IT1 = n ~] , IT = [~ ~] w = [i ~] , 
which shows that 

IT(z) = [1~ 1~]' I IT(z) I = (1-z)2. 

Thus z = 1 is a double root, condition (2.2) is satisfied and 

a = [~], {J = [6]' a.l. = [6]' (J.l. = [~] 
with the result that 

a'w{J =0 . 
.1. .1. 

Hence for this example condition (2.4) breaks down with the result that the process Xt 

is not 1(1). 0 

For a univariate series condition (2.3) says that the sum of the coefficients to 

the lagged levels add up to 1, implying that the characteristic polynomial has a unit 

root, and condition (2.4) then says that the derivative of the polynomial is different 

from zero at z = 1 so that the process has only one unit root. This condition is needed 
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to make sure that the process has to differenced only once to become stationary. 

The parametric restrictions (2.2), (2.3) and (2.4) determine exactly when the 

autoregressive equations define an 1(1) process that allows for cointegrating relations, 

and (2.5) gives the representation in terms of common trends or as a random walk plus 

a stationary process. The equations can be written in error correction form (2.6) and 

Granger's representation then shows that the common trends formulation and the 

error correction formulation are equivalent. Condition (2.4) guarantees that the 

number of roots of I IT(z) I = 0 at z = 1 equals the rank deficiency of IT, i.e. p-r. The 

proof of Theorem 2 is given in Johansen (1991). 

We can now define a parametric statistical model, the error correction model, 

given by the vector autoregressive model (2.1) with the restriction (2.3), or rewritten 

as (2.6), which we want to use for describing the statistical variation of the data. The 

parameters are (a,fj,f 1, ... ,f k_1'O) which vary freely. We thus express in parametric 

form the hypothesis of cointegration, and hypotheses of interest can be formulated as 

parametric restrictions on the cointegrating relations. What remains is, in connection 

with applications, to see which hypotheses could be of interest and then to analyze the 

model in order to find estimators and test statistics, and describe their (asymptotic) 

distributions. 

3. Purchasing power parity, an illustrative example 

The law of one price states that if the same quantity of the same commodity is 

purchased in two different countries at prices PI and P 2 respectively then 

(3.1) 

where E12 is the exchange rate between the two currencies. It is by no means clear 

that the same relation will be found if two price indices are compared with the 

exchange rate. This is due to the definition of the price index, which could vary 

between countries, and the different pattern of consumption in the different countries. 
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Still if this relation is not satisfied approximately there will be pressures on the 

economy either for changing the price levels or for changing the exchange rate. 

It is therefore of interest to see if such relations hold or to look for the so 

called purchasing power parity (PPP). 

The data we analyze is kindly supplied by Ken Wallis and analysed in 

Johansen and Juselius (1992). It consists of quarterly observations from 1972.1 to 

1987.3 for the UK wholesale price index (PI) compared to a trade weighted foreign 

price index (P2) and the UK effective exchange rate (e I2 ). These variables are 

measured in logs. Also included in the analysis are the three months treasury bill rate 

in UK (il) and the three months Eurodollar interest rate (i2)' The reason for 

including the interest variables is that one would expect that the interest rates. are 

related to the exchange rates through 

(3.2) i lt - i2t = ~eI2.t+l' 

if there are no restrictions in the movement of capital between countries. 

Inspection of the plots of the time series shows immediately that we have 

processes that are not stationary. We fit an autoregressive model with 2 lags and allow 

for seasonal dummies and a constant term in model (2.1). In order to find a reasonable 

description of the data we also included the world oil price and treated it as given for 

the present analysis. This gives added complications in the analysis, but we shall not 

go into these in this presentation but refer to Johansen and Juselius (1992) for a full 

discussion of the application. The residuals show no systematic deviation from 

independent Gaussian variables and we continue with the analysis of model (2.1). 

The economic relation (3.1) expressed in logs is the PPP relation 

(3.3) 

This equation is clearly not satisfied by the data. Granger's formulation is that in 

general a linear combination of variables will be non-stationary, just like individual 

variables, but one would like to find the most "stable" or stationary ones and identify 
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them as the interesting economic relations like (3.3), and the error correction idea is 

that changes in prices and exchange rates are influenced by disequilibrium errors like 

PH - P2t - e12t through adjustment coefficients. 

In this formulation the PPP relation is identified with the vector 

(1,-1,-1,0,0) and one can test the hypothesis that it is a cointegrating vector, or the 

slightly weaker hypothesis that there exist cointegrating relations between the 

variables P1,P2' and e12, that is, there exists a vector of the form (a,b,c,O,O) which is a 

cointegration vector. One can also ask the even simpler question if (pl'P2,e12 ,il'i2) 

exhibit cointegration in which case one would like to know how many cointegrating 

relations there are. Our beliefs are that r = 2 as given by (3.2) and (3.3). Once the 

number of cointegration vectors is determined, a natural hypothesis is that relevant 

economic relations should only depend on the ratio of the prices, or in other words the 

coefficients to PI and P2 should add to zero. The next section contains a discussion of 

a number of hypotheses that can be formulated on cointegrating relations. 

4. Formulation of the reduced form error correction model and various 

hypotheses on the co integrating relations 

If model (2.1) describes an 1(1) process having cointegration we should restrict the 

parameters as given by (2.2), (2.3) and (2.4). The restriction in (2.2), that the roots 

are outside the unit disk, is very difficult to handle analytically. Fortunately it rarely 

turns out that the roots are inside the unit disk, and if they are, it is more important 

to know where they are than to force them to the boundary of the unit disk. Hence we 

disregard that part of condition (2.2) in the statistical calculations, but check that it is 

satisfied by the estimates. Condition (2.4) is easily satisfied, since matrices with full 

rank are dense in the space of all matrices, thus the estimator derived without the 

restriction that a' W (3 has full rank will automatically have full rank with probability 
.L .L 

one. 
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Definition 3 The reduced form error correction model 7,S described by the 

equations 

k-l 
I1Xt = a{3' Xt- 1 + ~ 1 r il1Xt_l + ft, 

where f p.",f T are independent Gaussian Np(Oi2) and the parameters 

The condition that IT = a{3' is sometimes referred to as that of imposing (p-r) unit 

roots, but we shall think of it as a parametric representation of the existence of (at 

most) r cointegrating relations. Thus the model is a submodel of the general 

autoregressive model defined by the reduced rank hypothesis on the coefficient matrix 

IT of the levels. 

The above allows one to formulate a nested sequence of hypotheses 

HO C ... C Hr C ... C Hp' 

and the test of Hr in Hp is then the test that there are (at most) r cointegrating 

relations. Thus HO is just a vector autoregressive model for Xt in differences and Hp 

the unrestricted autoregressive model for Xt in levels, and the models in between 

Hl'".,Hp_ 1 give the possibility to exploit the information in the reduced rank matrix 

IT. A standard way of analyzing non-stationary processes is to difference them 

sufficiently to obtain stationarity and then analyze the differences by an autoregressive 

model. Note that this model is just HO' the adequacy of which can be tested if we start 

with the general model H 
p 

Note that in model Hr the parameters a and (3 are not identified since IT = 

a{3' = a~-l({3~')' for any rxr matrix ~ of full rank, but that one can estimate the 

space spanned by a and (3 respectively. 

Thus cointegration analysis is formulated as the problem of making inference 

on the cointegration space, sp({3) , and the adjustment space, sp( a), and hypotheses in 



14 

the following will be expressed as restrictions on these. 

Once the cointegrating rank has been determined we can test hypotheses 

about the coefficients a and /3, and we next give examples of such hypotheses. 

The hypothesis that only real prices enter the cointegrating relations, can be 

expressed as the hypothesis that the coefficients to PI and P2 sum to zero, or 

(1,1,0,0,0)/3 = 0. This is the same restriction on all cointegrating relations 

(4.2) /3 = Hep 

where H =(1,1,0,0,0)' is known and ep (1xr) is unknown. This hypothesis on /3 does 
.L 

not depend on /3 being identified uniquely, since it is the same set of restriction on all 

the relations. If /3 satisfies (4.2) then so does /3e for any matrix e (rxr). Hence (4.2) is 

a testable hypothesis on the cointegrating space. 

The hypothesis that some cointegration vectors like (1,-1,-1,0,0) and 

(0,0,0,1,-1) are known can be formulated as 

( 4.3) /3 = (b,ep), 

where b (pxr l ) is known and ep(pxr2) is unknown, r1 + r2 = r. In particular it means 

that the test that an individual variable is stationary can be expressed in the form 

(4.3) for b equal to a unit vector. 

A more general hypothesis can, for r = 2 say, be formulated as 

( 4.4) 

where H. (pxs.) are known and cp. (s.xr.) are unknown, and r l + r2 = r, see Johansen 
1 1 I I 1 

and Juselius (1993). 

Example 5 An example of (4.4) is given by the hypothesis that PI' P2 and 

e12 cointegrate and that the interest rates cointegrate, see section 3. In this case we 

are looking for two relations of the form (a,b,c,O,O) and (O,O,O,d,e), which clearly form 

a set of uniquely identified equations. The hypothesis has the form (4.4) with 
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[
1 0 0] [0 01 H1 = 0 1 0 ,H2 = 0 0 . 
001 00 
000 1 0 
000 0 1 

o 

Thus we are, in the econometric language, testing for the overidentifying restriction 

that there is a cointegrating relation between the variables that has two zeros as 

coefficients to the interest rates. These hypotheses are hypotheses on the cointegrating 

space and thus do not depend on how the cointegrating relations are identified. 

Often one want to estimate structural equations, rather than just the 

cointegrating space, which is more difficult to interpret. Thus we have a number, 2 

say, of meaningful economic relations that satisfy linear restrictions like exclusion 

restrictions. One should then check the rank condition and if it is satisfied (in a 

generic) sense one can then go on to formulate the hypothesis as (4.4), with H. = R. ,i 
1 1.L 

= 1,2. The problem of identification in this formulaton is discussed by Johansen and 

Juselius (1993). 

The economic insight is used in formulating the problem of interest, and 

therefore in the choice of variables, as well as in the discussion of which economic 

relations we expect to find. The statistical model is then used as a description of the 

non-stationary statistical variation of the data. The cointegration relations are used 

as a tool for discussing the existence of long-run economic relations and the various 

hypotheses are then tested in view of the statistical variation of the data. The 

interpretation of the cointegrating relations also require a thorough understanding of 

the underlying economic problems. 

5. Estimation of co integrating relations and calculation of test statistics 

This section contains a brief description of the OLS solution to the estimation problem 

and then discuss how the estimation problem of the various hypotheses from section 4 
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can be solved by analysing the Gaussian likelihood function. 

A time honored procedure for finding linear relations between two variables 

Yt and Xt is to regress Yt on Xt and then to discuss the properties of the estimator, 

,801s' under various assumptions on the processes. This was of course the first to be 

used by Engle and Granger (1987) in their fundamental paper. The problem with the 

analysis is that since the regressor Xt in general is a non-stationary process the usual 

simple asymptotic normality does not hold for the estimator. 

Stock (1987) proved the, at first sight, rather surprising result that one gets a 

superconsistent estimator in the sense that 

1 0 ~ P 
T - (,801s - ,8) -1 0, 0 > 0, 

under the assumption that the regressor is an 1(1) process, and that (Yt,Xt ) 

cointegrate with cointegrating vector (1,-,8), i.e. Yt - {iXt is stationary. 

Behind this result is the following very simple idea: In the simple regression 

model 

Yt = {iXt + ft, 
where f t are independent Gaussian variables with mean zero and variance (J2, and the 

~ 

X's are deterministic one finds that ,801s is Gaussian with mean ,8 and variance 

(J2/~ Ix;. If the X's are bounded away from zero and infinity then the sum will 

increase like T and usual asymptotics holds in the sense that 

is asymptotically Gaussian. For 1(1) processes, however, it holds that Xt behaves 

asymptotically like a random walk, see (2.5), and then 

-2 T 2 w 1 2 
(5.1) T ~ 1 Xt -1 JW(u) du, 

° 1 

where W(u) is a Brownian motion given by the limit of T-2X[Tu]' The faster rate 

(T2) implies that one gets superconsistency of the regression estimator and the random 

limit implies that the limiting distribution is not Gaussian, but a rather complicated 
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mixed Gaussian distribution involving Brownian motion and nuisance parameters. 

Inference for the remaining parameters '/J= (f1, ... ,fk_1,a,O) is relatively simple since 

superconsistency of the estimate for (3 implies that inference on '/J can be conducted as 

if f3 were known, in which case model (4.1) only involves the stationary observables 

f3'Xt_1 and the differences of Xt . 

This type of result has created a very large literature, see Stock and Watson 

(1988) for the estimation of the cointegrating rank and the cointegrating relations, 

Chan and Wei (1988) for inference in unstable processes and the work of Phillips and 

his coworkers, on how to do regression with integrated regressors Phillips (1987,1991), 

Phillips and Durlauf (1986), Phillips and Ouliaris (1990), Park and Phillips 

(1988,1989). It has lead to a new class of limit distributions, which are combinations 

of mixed Gaussian and the so call unit root distributions. This type of problem has 

also been taken up be Jeganathan (1992). 

The negative aspects of the findings of these authors is that the limiting 

distribution for the regression estimator is very complicated and this make inference 

and hypothesis testing difficult. There are ways of eliminating the nuisance 

parameters by modifying the regression method, see Park (1992) and Phillips and 

Hansen (1990). Another way of modifyig ordinary least squares is to analyse the 

Gaussian likelihood function and use that as a tool for generating estimators of the 

various hypotheses investigated in section 4. One would expect that if any estimator 

would have a simple limit distribution is would have to be the maximum likelihood 

estimator. Similarly one would expect that the likelihood ratio test statistic has a 

simple (asymptotic) distribution. It is therefore that section 4 contains a fairly 

detailed discussion of the model and the hypotheses, and we now turn to likelihood 

based inference for the cointegration model. 

Model (4.1) gives rise to a reduced rank regression and the solution is 

available as an eigenvalue problem. It was solved by Anderson (1951) in the regression 
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context and runs as follows: 

First we eliminate the parameters r 1,··· ,r k-l by regressing ~Xt and Xt- 1 

on ~Xt-l,···,~Xt-k+1. The residuals are ROt and Rlt respectively. Next form the 

sum of squares and products 

-1 T 
S .. = T ~ RtR'·t, i,j = 0,1 

IJ t=l 1 J 

and solve the eigenvalue problem 

(5.2) I AS U - S10S06S011 = 0, 
A A A 

for eigenvalues A1 > ... > Ap and eigenvectors V = (vl' ... ,vp)' that is, 

-1 . 
\S11 vi = SlOS00S01 vi' 1 = 1, ... ,p 

and V, S11 V = I. 

A maximum likelihood estimator for fJ is given by 
A A 

(5.3) fJ = (v1,···,vr)· 

An estimator for et is then 

et = S01fJ, 

and the maximized likelihood function is given by 

-2!T _ r A 

L - ISool IT (I-A.), 
max i=l 1 

(5.4) 

see Johansen (1988) and Johansen and Juselius (1990) for details and applications. 

One can interpret \ as the squared canonical correlation between ~Xt and Xt- 1 

conditional on ~Xt-1' ... ,~Xt-k+1. Thus the estimate of the "most stable" relations 

between the levels are those that correlate most with the stationary process ~Xt 

corrected for its lags. 

Since only sp(fJ) is identifiable without further restrictions, one really 

estimates the cointegration space as the space spanned by the first r eigenvectors. This 
A A 

is seen by the fact that if fJ is given by (5.3) then fJ~ is also maximizing the likelihood 

function for any choice of ~ (rxr) of full rank. 

This solution provides the answer to the estimation of the models Hr' r = 
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O, ... ,p and by comparing likelihoods one can test H in H , Le test for r cointegration 
r p 

relations, by the statistic 

P A 

-21nQ(rlp)=-T.~ 1ln(1-A). 
l=r+ 

(5.5) 

The above estimator (5.3) is an estimator of all cointegrating relations and it 

is sometimes convenient to normalize (or identify) the vectors by choosing a specific 

coordinate system in which to express the variables in order to facilitate the 

interpretation and in order to be able to give an estimate of the variability of the 

estimators. 

If c is any pxr matrix, such that f3'c has full rank, one can normalize f3 as 

f3 = f3( c' f3) -1 
c 

which satisfies c'f3c = I provided that I c' f31 f. o. A particular example is given by c' 

= (1,0) and f3' = (f31,f32) in which case f3 ' c = f31 and f3~ = (I,f311f32) which corresponds 

to solving the cointegrating relations for the first r variables, if the coefficient matrix of 

these (f31) has full rank. 

The maximum likelihood estimator of f3c is then 

{J c = (J( c' (J) -1. 

The hypotheses (4.2) and (4.3) are easily analyzed the same way. If (4.2) 

holds then af3'Xt = acp'H'Xt , which shows that the cointegration relations are found in 

sp(H) by solving the eigenvalue problem 

(5.6) I AH'SllH - H'S10So6S01 HI = O. 

Under hypothesis (4.3) there are some known cointegration relations and af3'Xt = 

a1 b'Xt + a2rp'Xt , which shows that the coefficients to the observable b'Xt_1 can be 

eliminated together with the parameters (r 1,···,r k-1) such that the eigenvalue 

problem, that has to be solved, is 

(5.7) I AS11.b - S10.bSo6.bS01.b I = 0, 

where 
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S .. b = S .. - S'lb(b'S11b)-lb'Sl" 
1]. IJ 1 J 

The maximal value of the likelihood function is given by expressions similar to (504) 

and the test of hypotheses (4.2) and (4.3) then consists of comparing the r largest 

eigenvalues under the various restrictions. 

The hypothesis (404) is slightly more complicated, but can be solved by a 

switching algorithm, where each step involves an eigenvalue problem, see Johansen and 

Juselius (1993). The problem of estimating uniquely identified relations admits a 

simple solution in the likelihood framework. 

Thus it is seen that a number of interesting hypotheses can be solved 

provided one has an eigenvalue routine and that one can perform the basic operations 

on a covariance matrix, namely that of marginalization (transformation) and 

conditioning. We have programs written in RATS which perform these analyses, and 

programs exist in SAS, AREMOS and GAUSS. 

6. The empirical example continued 

For the example of section 3 we find by solving (5.2) the results in Table 1 

TABLE 1 

Eigenvectors and eigenvalues for the UK data in section 3 . 

0401 .285 . 254 .102 

P1 -16.64 -1.68 4.71 9.94 

P2 15.12 1.92 -5.99 -23.84 

e12 15.51 5.65 5.24 11.15 

11 56.14 -59.17 12.93 --4.06 

12 31.45 55.27 -13.34 29.67 

.083 

-9.93 

14042 

4.77 

-22.61 

-7.57 
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Note that the first eigenvector has coefficients for P1,P2' and e12 which looks like the 

PPP relation, corresponding to the relation (3.3), whereas the two next have equal 

coefficient with opposite sign for the interest rates corresponding to the interest rate 

differential (3.2). The challenge in the analysis lies in the interpretation of the 

eigenvectors corresponding to the largest eigenvalues. We often find that they have an 

immediate interpretation, but one should remember, that what one estimates is the 

cointegration space spanned by the eigenvectors. Thus one should sometimes "rotate" 

or take linear combinations of the vectors to find out what they mean, or still better 

re-estimate them under (over) identifying restrictions as expressed in (4.4). 

We discuss the asymptotic distribution of tests statistics and estimators in 

the next section, but continue here with a brief description of the findings in the data. 

The first question is how many cointegration vectors that are consistent with 

the data. Table 2 contains the test statistics and fractiles for the hypotheses HO, ... ,HS' 

see (5.5). 

TABLE 2 

Likelihood ratio test statistics for testing the number 

.083 

.102 

.254 

.285 

.401 

of co integration relations 

r 

4 

3 

2 

1 

o 

5.19 

11.66 

29.26 

49.42 

80.77 

95% fractile 

8.08 

17.84 

31.26 

48.41 

69.98 
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It is seen from Table 2 that the hypothesis HO which gives a test statistic of 80.77 

corresponds to an extreme observation in the asymptotic distribution of the test 

statistic, but that the test statistic for HI and H2 linger around the 95 % fractile. 
A A 

Note that A2 and A3 are almost identical. 

In the further investigation of the data we took r = 2, and performed various 

tests of the type mentioned above. In particular we found that the hypothesis that 

both cointegration vectors have the form (a,-a,-a,b,c) was easily accepted by the data. 

This is of the type (4.2) of a common restriction on both cointegration relations. 

When we investigated if the vector (1,-1,-1,0,0) was a cointegration vector it was 

strongly rejected by the data. Thus our main relation (3.3), the PPP relation, does 

not hold, but the stationarity can be achieved by including the interest rates in the 

relation. It turns out, however, that the vector (0,0,0,1,-1) is a cointegrating relation, 

such that the interest rate differential is stationary, in accordance with equation (3.2). 

Finally one can ask if PI' P2 and e12 are cointegrated. This hypothesis is of the form 

(4.4) and was found not to be supported by the data. 

Our understanding of the two-dimensional cointegration space is then the 

following: One of the vectors is just (0,0,0,1,-1) indicating that the interest rate 

differential is stationary. If we choose as the other vector the PPP relation 

(1,-1,-1,0,0,) then it is inconsistent with the data, but we have to include the interest 

rates and can choose a vector of the form (1,-I,-I,a,b), which describes a modified 

PPP-relation. Note that in the system consisting of the relations (1,-I,-I,a,b) and 

(0,0,0,1,-1) the first is not identified, but if we put either a or b to zero we get a 

uniquely identified system of cointegrating relations. This clearly does not conclude 

the economic analysis of the data, but the findings are useful for formulating an 

empirical economic model that describes this small set of variables. Thus the methods 

presented here are meant only as a tool for investigating long-run relations in the 

economy. 
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It is also of interest to discuss the estimates of the adjustment coefficients C\(, 

since they show how the various variables change with past disequilibrium errors, like 

the (modified) PPP relation. We found in the present data that the changes in foreign 

prices were not influenced by the disequilibrium errors, that is, the fr-Coefficient was 

zero. This has the consequence that the whole analysis can be performed conditionally 

on the foreign prices, or differently expressed: The foreign prices were weakly 

exogenous for the cointegrating relations, see Johansen (1992). 

7. Asymptotic theory 

Section 7 contains a brief description of the asymptotic theory of test statistics and 

estimators, as well as a discussion of how the results can be applied to conduct 

inference about the cointegrating rank and the cointegrating vectors. 

The reason that inference for non-stationary processes is interesting and that 

so many people work on it now, is that it is non-standard, in the sense that estimators 

are not asymptotically Gaussian and test statistics are not asymptotically X2. This 

was systematically explored by Dickey and Fuller, see Fuller (1976), in testing for unit 

roots in univariate processes. 

Consider the simple model of an autoregressive process of order 1 

Yt = pYt- 1 + Et, 

where Et are independent Gaussian variables with mean zero and variance (}"2. The 

hypothesis of interest is 

p = 1, 

and it is seen that it means that Yt is a random walk, i.e a non-stationary process. 

They found among other results that under the null of p = 1, it holds that 

~ -1 T -2 T 2 w 1 1 2 
T(p -1) = T ~ 1 Et Yt- 1/T ~ 1 Yt - 1 --1 JWdW / JW (u)du. 

o 0 
1 

where Wet) is a Brownian motion on [0,1] and JWdW = HW(1)2_1). The implication 
o 
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is that the likelihood ratio test statistic is asymptotically distributed as 

1 1 
[jWdW] 2 / JW2(u)du. 
o 0 

This distribution is often called the "unit root" distribution and its multivariate 

version plays an important role for the asymptotic inference for cointegration. We give 

the main results obtained for likelihood inference, and refer to Johansen (1988,1991) 

and Ahn and Reinsel (1990) for the technical details. 

Theorem 3. Under the null of r co integrating relations it holds that 

Awl 1 1 
-2InQ{r) = -TEP+lln(l-A) -I tr{fWdW'!fW{u)W{u)'dujlJWdW'}. 

r 2 0 0 0 

The process W is a (p-r )-dimensional Brownian motion with covariance matrix equal 

to 1. Thus the limit distribution only depends on the number of common trends of the 

problem. This distribution has then been tabulated by simulation, see Johansen 

(1988), Johansen and Juselius (1990), Reinsel and Ahn (1990) and Osterwald-Lenum 

(1992). It is seen that the distribution is a multivariate generalization of the unit root 

distribution. This is not surprising, since one can think of testing p = 1 in the above 

model as a test for no cointegration, i.e. of r = 0, when p = 1, and k = 1. 

Although the limit distribution given in Theorem 3 only depends on the 

degrees of freedom or the dimension of the Brownian motion, it turns out that if a 

constant term or a linear term is allowed in the model then the limit distribution 

changes. This leads to a number of complications as described in Johansen (1993). 

It is quite satisfactory, however, that the other tests described in section 4 on 

a and (3 all have asymptotic X2 distributions. Thus the only non-standard test is the 

test for cointegration rank. The reason for this is that the asymptotic distribution of 

the estimator of (3 is a mixed Gaussian distribution: 
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Theorem 4. The asymptotic distribution of f3 c is given by 

Awl 11 
(7.1) T{f3c- f3d -I {I-f3cc~f3J.[~WlU)W1{U)'duj- ~W1dW2" 

where W1 and W2 are independent Brownian motions of dimension p-r and r 

respectively. The asymptotic conditional variance matrix is 

1 
(7.2) (I-f3 c~f3 [j W1{u)W1{u)'duj-1 f3 (I-cf3') ® (c'II'O-lIIc)-l, c J. O J. c 

which is consistently estimated by 

(7.3) T{I-~cc!)Sl~{I-c~~)® (c'TI'O-lTIc)-l, 

Thus for given value of W 1 the limit distribution of f3 is just a Gaussian distribution 

with mean zero and variance given by (7.1). It is this result that implies, by a simple 

conditioning argument, that the likelihood ratio test statistics for hypotheses about 

restrictions on f3 is asymptotically distributed as X2, which again makes inference 

about f3 very simple if likelihood based methods are used. 

Another way of reading the results (7.1), (7.2) and (7.3) is that since 
A A 

c'(f3c - f3c) = 0 we need only consider the coefficients c~(f3c - f3c)' It now follows from 

(7.3) that we can act as if these are asymptotically Gaussian with a "variance" matrix 

given by 

Despite the complicated formulation the result is surprisingly simple since it only 

states that if f3 is estimated as identified parameters the asymptotic variance of f3 is 

given by the inverse information matrix which is the Hessian used in the numerical 

maximization of a function. This result is exactly the same as the result that holds for 

inference in stationary processes. The only difference is the interpretation of (7.3), 

which for a stationary process would be an estimate of the asymptotic variance, but for 

1(1) processes is a consistent estimator of the asymptotical conditional variance. The 

basic property, however, is the same in both cases, namely that it is the approximate 
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scale parameter to use for normalizing the deviation j3 - j3. 

~able 1 contains a lot of information. W~ use~\+l, ... ~Ap to test the model, 

and vl'".,vr to estimate j3. The remaining vectors v = (vr+ 1,.",vp) together with D = 
~ ~ ~ 

diag(A1, ... ,\) contain information on the "variance" of the estimate of j3. This can be 

exemplified in the form of a Wald test. One can prove that under the hypothesis K'j3 

= 0, which is of the form (4.2) for H = K , it holds that 
.L 

Ttr{K',B(1)-l_I)-l ,B'K)(K'~~'K)-l} 

is asymptotically X2 distributed. Thus in particular if r = 1, and ,B = (,B1""',BP)' say, 

and one wants to see if the coefficient j31 is significant, one can calculate the quantity 
1~ ~ 1 ~ 2 1 

T2j31{(Al-1)(E~V1j)}-2, 

and compare it to the fractiles in a normalized Gaussian distribution, see Johansen 

(1991). 

One can now discuss why inference about j3 becomes difficult when based on 

the simple regression estimator. This is because the limiting distribution of j301s is 

expressed as an integral as in Theorem 4, but with dependent W 1 and W 2' This again 

implies that for given W 1 the limit distribution of the estimator does not have mean 

zero, which implies that the test statistics based upon the regression estimator will 

have some "non-central" distribution with nuisance parameters. 

Inference for the remaining parameters {) = (a,f l'".,f k_1'O) is different. 

This is explained by Phillips (1991) and the idea is roughly the following. The second 

derivative of the likelihood function with respect to j3 tends to infinity as T2, see (5.1), 

whereas the second derivative with respect to {) and the mixed derivatives tend to 
1 

infinity like T. This means that j3 - j3 has to be normalized by T and {) - {) by T2. 

This on the other hand requires a normalization of the mixed derivatives by T3/ 2 and 

makes them disappear in the limit. Thus in the limit the information matrix, which is 
A 

usde to normalize (j3 - j3, {) - {)) , is block diagonal with one block for j3 and on block 

for the remaining parameters {). Thus inference concerning j3 can be conducted as if {) 
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were known and vice versa, see Johansen (1991). 

8. Conclusion 

We have shown that the notion of cointegration as a way of describing long-run 

economic relations can be formulated in the autoregressive framework as the 

hypothesis of reduced rank of a certain matrix. This allows explicit maximum 

likelihood estimation of the cointegration relations, both unrestricted as well as under 

certain types of linear restrictions that seem to correspond to interesting economic 

hypotheses. We have found the asymptotic distribution of the likelihood ratio test for 

the cointegration rank, and tabulated it by simulation, and shown that restrictions on 

f3 can be tested using the X2 distribution. This shows that the property of 

non-stationarity of the processes instead of being a nuisance to be eliminated by 

differencing can be used as a strong tool to investigate long-run dependencies between 

variables. 
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