Tue Tjur

StatUnit - AN ALTERNATIVE

TO STATISTICAL PACKAGES?

Preprint
September

1993

4

™S

Institute of mathematical statistics
University of Copenhagen

ISSN 0902-8846

Tue Tjur

StatUnit - AN ALTERNATIVE TO STATISTICAL PACKAGES?

Preprint 1993 No. 4

INSTITUTE OF MATHEMATICAL STATISTICS
UNIVERSITY OF COPENHAGEN

September 1993

Tue Tjur

StatUnit — an alternative to statistical packages?

Summary. Some aspects of the author’s Turbo Pascal unit StatUnit
are discussed. The ability of this or a similar procedure library as an
alternative to a conventional statistical package is advocated.

American Mathematical Society 1980 subject classification.
Primary 62-04; secondary 62-07, 68N15, 65U05, 62J12.

Key words and phrases.
Statistical computing, Statistics procedure library, Statistical package,

Turbo Pascal, Generalized linear model.

0. Introduction.

StatUnit is a Turbo Pascal unit, i.e. a collection of procedures, functions
and variables that can be added to any Turbo Pascal program. The
present paper describes som aspects of this device, and defends the point
of view that this — or a similar piece of software, e.g. a C library — is
preferable to conventional statistical packages.

However, this should not be regarded as a general statement meaning
that Turbo Pascal and StatUnit would beat SAS, GENSTAT etc. in
any context. Our point of view concerns general computer languages
versus statistical packages as the primary tool for a professional statisti-
cian with a solid programming experience, working with broadly varying
sorts of data analysed by many different (standard and non-standard)
statistical models. Moreover, we are assuming a computational envi-
ronment based on IBM-compatibles under DOS. A further — perhaps
obvious — reservation is that we are not trying to give good advices to
statisticians working in highly specialized branches, such as chemomet-
rics, econometrics or image analysis, where specialized programs (and,
sometimes, quite different hardware environments) are required.

1. The statistical packages.

In the early days of statistical computing, most computations were per-
formed directly by programs written in general computer languages, usu-
ally FORTRAN. The most primitive form was the kind of programs that
performed, say, a two—way analysis of variance on a set of data of pre-
scribed dimensions, read from a file in a given standard format. During
the sixties and early seventies, a rapid development took place. Once a
program for two—way analysis is written, it is not difficult to do the same
for other design dimensions. Groups of such programs (e.g. for one-way—
ANOVA, two—way—ANOVA, perhaps k—way—ANOVA, multiple regres-
sion etc.) were collected together with simple routines for input/output
and data management and glued together by a more or less sophisticated
control language. This is what we call a statistical package. Some of
these packages (GENSTAT, for example) developed control languages
that are really structured programming languages; others (e.g. BMDP,
and to some extend SAS) never really escaped their origin as packages of
separate programs. Lots of statistical packages, some general and some
intended for more specialized applications, have been developed since the
mid-sixties; not least during the last 5-10 years, where the explosion of
the market for IBM—-compatibles has created a large group of users for
whom the concept of “mashine compatibility” is merely history.

It is not the aim of this paper to give a comparative review of statistical
packages. We have only mentioned a few, and these are selected because
they are old and well-established, not necessarily because they are the
“best” in some sense. Our point is a criticism that goes for all these

2

packages. This criticism has more to do with their control languages,
the “glue”, than with their nature as packages of separate programs.

Our criticism is this. Why not use a powerful, well-established all-
purposes programming language (like Pascal) with a fast and efficient
compiler (like the Turbo Pascal compiler) as the control language, rather
than a home-made shell based on a more or less inefficient interpreter?

The enormous progress in basic computer software during the last 5-10
years is felt only indirectly by the statistical package user. It has become
a lot easier to create these packages. In particular, it has become a lot
easier to equip these packages with shells of menus, associated editors
and help screens. But a fundamental problem with the packages still re-
mains, namely that once you are inside a program there are lots of very
simple operations which are almost impossible to perform. The pack-
ages are simply not designed to give you full control of your computer,
or even full access to your data. It is difficult to give specific examples,
because for almost any example you can give there will be some obscure
way of getting around with it in almost any package. But the problem is
well-known for anyone who has been working seriously with statistical
packages. Non-standard data transformations, non-standard graphics,
non-standard—formatted input, non-standard statistical models, any-
thing which is non-standard from the package’s point of view, tends
to create problems that are much easier to solve in a basic computer

language like FORTRAN, ALGOL, Pascal or C.

2. StatUnit.

My own experience with computational statistics comes from a combi-
nation of consulting and teaching an applied statistics course for many
years. In the late seventies, we used GENSTAT in a mainframe envi-
ronment. This was a great step forwards from the primitive ALGOL
programs used earlier. After the entry to the personal computer age,
which in this context took place around 1987-88, we turned towards
SAS, mainly because we had some problems with the early DOS imple-
mentations of GENSTAT. But in the same period, Turbo Pascal came,
and gradually it appeared more and more attractive to do a large part
of the work in Pascal. Basic data handling, simulation, nonparamet-
ric testing, graphics and the fitting of non—standard models, are very
often much easier to do in Pascal, and the programs usually run a lot
faster. Thus, around 1990, I found myself in the peculiar situation of
teaching a course in applied statistics with Turbo Pascal as the primary
tool, SAS and GENSTAT being used only for very short standard pro-
grams, typically of the form “read data from an ASCII file in standard
format and fit a standard model”. I am pretty sure that many other
statisticians are in a similar situation. Under these cicumstances, it is
an obvious idea to write a procedure library (a unit) of counterparts to

3

the relatively few standard procedures that are actually borrowed from
statistical packages.

Selected details about StatUnit follow in later sections. It remains to
be said that the concept of a statistical procedures library is clearly not
new. For example, the NAG library contains some statistical proce-
dures in FORTRAN and ALGOL. As far as I know, such libraries have
rarely been used by statisticians in mainframe environments, probably
because the handling of external procedures and variables was such a
tedious affair. In particular, the translation of a model formula (with
factors, covariates, interactions etc.) to a design matrix, which is an im-
portant core device in any proper statistical package, requires a complex
of interacting procedures and shared data structures which is not easy
to manage under the somewhat restrictive rules for external procedures
in the basic programming languages available for mainframe computers.
These things have changed completely. The Turbo Pascal concept of a
“unit” provides a flexible tool for handling of precompiled procedures,
cross—referring each other and sharing data in any complicated manner
and with full ability to limit the users “scope” to exactly those variables
and procedures that should be visible to him.

3. A StatUnit example.
Suppose we have an ASCII file EXAMPLE.DAT of the form

17.07691 1
1.57173 0
30.49753 1

containing 100 lines, each line giving the value of a covariate z and a cor-
responding binary response y. Suppose we want to perform a standard
logistic regression analysis with y as the dependent variable and log(z)
as the regressor. The following Turbo Pascal program will do this.

1 Program Example;

2 uses StatUnit;

3 const n=100;

4 var i:integer;

5 begin

6 Start(’Example’,’EXAMPLE.QUT’);
7 DeclareVariate(’X Y’,n);

8 OpenInFile(’EXAMPLE.DAT’);

9 for i:=1 to n do

10 begin

11 ReadValue(’X’,i);

12 ReadValue(’Y’,i);

13 AssignValue(’X’, i, In(Value(’X’,i)));
14 end;

15 FitLogitLinear(’Y=1+X’);

16 ListParameters;

17 FitLogitLinear(’y=1’);

18 TestModelChange;

19 Finish;

20 erd.
(The line numbers are only there for reference purposes.) After the
execution of this program, the output file EXAMPLE.QUT (which is not
shown here) contains output from line 15-18, reporting e.g. the estimates
of intercept and slope in the model (line 16) and the likelihood ratio test
for the hypothesis “slope=0” (line 18).

Most statisticans will probably find it easy to read and understand this
program. Some comments on selected lines follow here.

The statement uses StatUnit in line 2 has the effect that all StatUnit
procedures can be used in the program. At compile time, those actually
used will be linked in from the precompiled unit.

The statement Start (’Example’,’EXAMPLE.QUT’) in line 6 is a techni-
cal matter, which has to do with the “activation” of StatUnit. Some ini-
tialization is performed, in particular a primary output file EXAMPLE . OUT
is opened and a heading (containing the program name Example) is writ-
ten to it.

In line 7 the statement DeclareVariate(’X Y’,n) creates two “vari-
ates” of length 100. Variates are arrays of single precision real numbers,
stored in dynamic memory (the heap) and identified by StatUnit refer-
ence names (here *X’ and ’Y’).

In lines 8 to 14 data are read and the data transformation = := log(z)
(line 13) is performed.

The statement FitLogitLinear(’Y=1+X’) in line 15 is an example of
a model fit directive. Here, the right hand side of the equation Y=1+X

is a model formula. The symbol 1 represents a constant term and the
symbol X means that X is to enter the model in a linear manner. Hence,

the model becomes

logit (P (Y; =1)) = a + Bz;.

The syntax for model formulas is similar to what is known e.g. from

GLIM, GENSTAT and SAS.

The above example illustrates the application of StatUnit to a stan-
dard problem that might as well be solved by any proper statistical
package. The set of “ready—for—use models” in StatUnit is not much
different from what is standard for statistical packages. Apart from
the procedure FitLogitLinear, the core of StatUnit has the procedures

5

FitLinearNormal for regression and analysis of variance and FitLog-
Linear for multiplicative Poisson models. The advantages of StatUnit
over the statistical packages, which have more to do with flexibility in
data handling and program structure than with model selection, are not
illustrated by the example.

There are, however, some differences between the class of models avail-
able in StatUnit and those available in standard packages. This has to do
with the procedures FitGLM and FitUserDefined, which are described

in the following two sections.

4. Generalized linear models.

Generalized linear models were introduced by Nelder and Wedderburn
(1972) and described in further detail by McCullagh and Nelder (1983).
This concept covers a large class of statistical models, where the (one-
dimensional, discrete or continuous) observations are independent with
distributions from the same one—parameter family. The term “linear”
refers to the assumption that the individual parameters for observations
are linear combinations of “covariates”, just like the means for obser-
vations in an ordinary regression or analysis of variance model. In this
way, a lot of useful concepts from classical regression and analysis of
variance (main effect, interaction, parallel regression lines etc.) become
meaningful and manageable in a much broader class of models.

From a computational point of view, the decisive advantage of these
models is that the Newton—Raphson maximization of the log likelihood
function can be based on a program for linear normal models with
weights. As noticed by Nelder and Wedderburn, the computations per-
formed in each iteration are formally equivalent to the solution of a
weighted regression problem. This means that a lot of source code can
be reused, in particular the tedious algorithms for translation of a model
formula to a (code for computation of the) design matrix, the formation
and inversion of the information matrix and the treatment of overpa-
rameterizations.

Nelder and Wedderburn assumed that the one—parameter family was an
exponential family of order one, with its parameter equal to some one—
to—one function of the canonical parameter. However, this assumption
is an unnecessary restriction which, in my opinion, makes the concept
more complicated than necessary. For this reason I have redefined (and
slightly extended) the concept of a generalized linear model by allowing
arbitrary one—parameter families of distributions in the definition. The
procedure FitGLM estimates such an arbitrary generalized linear model,
specified by the log density or probability function log p(y, 6) (as a func-
tion of two variables, the observation y and the parameter 6), the first
and second derivatives of this function with respect to 6, and a model
specification defining the linear structure and the response variate.

6

It must be admitted that this definition does not extend the concept
of a generalized linear model much in practice. The majority of rele-
vant examples are generalized linear models in the sense of Nelder and
Wedderburn as well, and most of them can be handled by GLIM or
GENSTAT. The advantage of the definition given here is that it makes
the concept of a generalized linear model easier to understand, and,
accordingly, the syntax more transparent.

Ezample. Suppose we have a data file EXAMPLE.DAT of the form

0.7571 13

4.7117 22

7.9793 25

9.4457 23
consisting of, say, 200 lines. Imagine a situation where the Poisson
distributed counts y = 13, 22, ... are sums of two independent, non—

observable Poisson components, one with mean proportional to the co-
variate z = 0.7571, 4.7117, ..., and one (a “background noise”) with a
constant intensity. That is, we are thinking of a model of the form

Y; ~ Poisson ()\;) with A\; = Ay + fz;.

This is a generalized linear model. The relevant one-parameter family
is the Poisson distribution, parameterized by its mean A (not to be con-
fused with the standard log—linear models for counts, where the Poisson
distribution should be parameterized by log(\)). The following program
estimates this model.

1 program Example;

2 uses StatUnit;

3 const n=200;

4 var i:integer;

5 {$F+}

6 function logp(y,lambda:double):double;
7 begin logp:=y*1n(lambda)-lambda; end;
8 function Dlogp(y,lambda:double) :double;
9 begin Dlogp:=y/lambda-1; end;

10 function D2logp(y,lambda:double) :double;
i1 begin D2logp:=-y/sqr(lambda); end;
12 function m(lambda:double) :double;
13 begin m:=lambda; end;

14 function v(lambda:double) :double;
15 begin v:=lambda; end;
16 {$F-}
17 begin
18 Start(’Example’,’EXAMPLE.QOUT’);

7

19 DeclareVariate(’X Y’,n);

20 OpenInFile(’EXAMPLE.DAT’);

21 for i:=1 to n do

22 Dbegin

23 ReadValue(’X’,1i);

24 ReadValue(’Y?,i);

25 end;

26 InitParameter(i, Mean(’Y’));

27 FitGLM(’Y=1+X’,logp,Dlogp,D2logp,m,v) ;

28 ListParameters;

29 DeclareVariate(’FITTED RES NRES’,n):

30 SaveFitted(’FITTED’,’RES’,’NRES’);

31 List(°X Y FITTED NRES’);

32 Finish;

33 end.
The important directive here is
FitGLM(’Y=1+X’,logp,Dlogp,D2logp,m,Vv)

in line 27. The five function arguments are declared in line 6-15. logp
is the function log(p(y,A)) = ylog(A) — A, the logarithmized probabil-
ity function for the Poisson distribution (up to an additive function of
y). Dlogp and D2logp are merely the first and second derivatives of
this with respect to A. The last two functions m and v return the mean
and variance in the Poisson distribution as a function of the parameter.
These functions are not used directly by FitGLM, but they are stored for
possible later use by other procedures. They are actually used in line
29-31, where fitted values and normed residuals are listed in parallel
with covariate values and counts. Notice the {$F+} ... {$F-} embrace-
ment of the five function declarations. This is a technical matter, which
has to do with the Turbo Pascal compiler. Compilation in “force far
calls” mode is required for procedures entering as arguments in other
procedures. Apart from this, the program should be easy to read.

Notice the statement InitParameter(1, Mean(’Y’)) inline 26. The
default action of FitGLM is to take zero as the starting value for all
parameters. This would not work here because log(p(y, A)) is undefined
for A = 0. The statement sets the first parameter (the intercept \y) equal
to Mean(’Y’), i.e. the average of the responses y;. This is obviously a
good choice if f is close to zero. If this is not enough, one could do even
better by an initial estimation of intercept and slope by ordinary least
squares. This could be done as follows.

26a FitLinearNormal Y=1+X’);

26b InitParameter(1, Parameter(1));

26c InitParameter(2, Parameter(2));

5. User defined models.

The procedure FitUserDefined can, in its simplest form, be used for
Newton—Raphson maximization of an arbitrary log likelihood function.
All one has to do is to specify the log likelihood and its first and second
derivatives. The tediuos part of the job (matrix inversions, the handling
of overparametrizations etc.) is performed by the procedure.

An additional feature of this procedure has to do with the frequently oc-
curring situation where the parameters of primary interest enter in a lin-
ear way, similar to the way they enter in a generalized linear model, with
a small (fixed) number of “additional” parameters determining other as-
pects of the model (scale parameter, shape parameters etc.). Examples
are

— Cox’s partial likelihood for the proportional hazards model (no addi-
tional parameters).

— McCullagh’s model for grouped continuous data from a linear position
parameter model, grouped by unknown cutpoints (cutpoints as addi-
tional parameters. See McCullagh 1980).

— log-linear models for negative binomial data (one additional parame-
ter)

— conditional logistic regression (e.g. analysis of case—control studies by
conditioning on sums of responses in case—control groups, no additional
parameters)

— a large number of non-linear regression models with normal errors
(with the variance and, perhaps, parameters determining the form of
the non-linear dependence, as additional parameters)

— position—scale parameter problems with (non—normal) error distribu-
tion of a given type, common scale, general linear position parameter
structure (one additional parameter, the scale parameter).

To settle the idea, consider the last example. Suppose we have a (fixed)
probability density p(z), typically one that is symmetric around zero.
This is considered our “normalized” error distribution, and the kind
of models we are thinking of can be stated as follows. Independent
observations yi, ...y, are assumed to be distributed as

Yi=pizin + - + rezir + 0oU;

where the normalized “errors” U; are independent with density p. If p
is the normalized normal density, this is merely the standard multiple
regression model. For fixed scale parameter o, the model is a generalized
linear model (in our sense, not in the sense of Nelder and Wedderburn),
but when o is regarded as a parameter to be estimated the model be-
comes more complicated. However, it is easy to express the log likelihood

9

and its two first derivatives in terms of the function log(p) and its two
first derivatives. The decisive advantage of the procedure FitUserDe-
fined in this context is that the “linear part” of the model, involving the
parameters f1,..., 3k, can be specified by a model formula. Thus, the
creation of “dummies” for factor levels etc. can be left to FitUserDe-
fined. In the procedure blocks for computation of the log likelihood and
its derivatives, the elements z;; of the design matrix and the (present
values of the) position parameters f12;1 + - - - + Brx;r can be referenced
directly, by calls to the StatUnit functions Xmatrix and Fitted. Hence,
it is an easy job to write a program for fit of a model of this kind. More
generally, one may write a standard procedure FitPosScale to be called

on the form
FitPosScale(MODEL,logP,DlogP,D21logP)

which, from an ordinary model specification MODEL (like ’Y=1+X’) and
the three functions logP, DlogP and D2logP (log(p) and its two first
derivatives) fits a model of this kind. This will not be explained in
details here, but a small unit PosScale, containing a procedure like this,
can be found in the StatUnit manual and on the accompanying diskette.
Having performed this task once and for all, we may, for example, fit a
linear regression model with logistic error distribution by a program of

the following form.

1 program Logistic;

2 uses StatUnit,PosScale;

3 constn= ... ;

4 var i:integer;

5 {$F+}

6 function logP(y:double) :double;

7 begin logP:= y-2¥1n(1+exp(y)) end;

8 function DlogP(y:double) :double;

9 begin DlogP:= 1-2*exp(y)/(1+exp(y)) end;
10 function D2logP(y:double) :double;

11 begin D2logP:= -2*exp(y)/sqr(1+exp(y)) end;
12 {$F-}

13 begin

14 Start(’Logistic’,’LOGISTIC.0UT’);

15 DeclareVariate(’X Y’,n);

16 reading X and Y from an input file .
17 FitPosScale(’Y=1+X’,logP,DlogP,D2logP) ;

18 ListParameters;

19 Finish;
20 end.

10

6. Program structure.

The last example illustrates an important aspect of StatUnit programs,
which really applies to Pascal programs in general. It is recommend-
able that main bodies of programs are kept short, with most statements
being performed indirectly by calls of procedures declared before the
program or in separate units. Procedures in Turbo Pascal can be nested
to any depth, procedures can be declared within procedures, and since
programs are compiled, not just interpreted, the price in computer time
for keeping programs well-organized and readable in this way is van-
ishing. You will soon discover that many programming tasks, which
are non—standard from StatUnit’s point of view, can easily be managed
by creation of your own “standard” procedures. There is a consider-
able difference in efficiency between the powerful procedure concept in
Pascal and the more heavy macro— and procedure concepts available in

advanced statistical packages.

As an example (for further details, see the StatUnit manual), suppose
you are frequently in a situation where you want to select the best multi-
ple regression model in an interactive manner. StatUnit is not prepared
for this, but it is a straightforward programming exercise to write a small
procedure, named e.g. SelectLinearModel, which enables you to input
model specifications from the keyboard, examine output on the screen,
and select a “final” model for output to the primary output file.

You can even use StatUnit to write your own statistical packages for
special purposes, if desired. An advanced example of this kind is the pro-
cedure View on the auxillary unit InterAct, which allows you to perform
a menu—controlled exploratory analysis of the data present anywhere in
a program.

7. Data handling.

Computations on the unit (single-observation) level can be performed
directly by Turbo Pascal’s standard functions and the StatUnit functions
Value (returning a value of a variate) and AssignValue (setting a value
of a variate). The statement

AssignValue(’X’, i, 1n(Value(’X’,1i)))

in line 13 of the logistic regression program in section 3 is a simple ex-
ample of this. The syntax may appear somewhat clumsy and inefficient,
compared to similar Pascal statements like

X[i]:=1n(X[i]);

StatUnit has facilities for more elegant ways of doing it, which will not
be explained here. But again, if you prefer to have the operation of
logarithmizing a variate as a standard procedure, it is easy to write a
procedure Logarithmize (e.g. with two string arguments, one containing

11

the name of the variate to be logarithmized and one containing the name
of the result) and put it on your own unit.

StatUnit contains a few functions (Mean, Variance, ...) for computa-
tion of one—-dimensional statistics for variates. Additional functions of
this kind are easily constructed by the user, as desired.

In parallel to the concept of a variate, StatUnit has the concept of a
factor, similar to GENSTAT factors and SAS’s class variables. Factors
are physically stored as arrays of bytes, i.e. integers in the range 0, 1,
ey 255.

Missing values and restrictions can be handled in a way which need not
be explained in details here. Restrictions are taken into account by all
StatUnit procedures for which it seems relevant, including the model fit
procedures.

For fast storage and retrieval, respectively, StatUnit has two procedures
SaveData and GetData, to create and read files in an internal binary
format (StatUnit data sets). The examples given in the present paper
are slightly misleading concerning the input of data. The first program
in a statistical project will typically be one that reads data from one or
several more or less complicated ASCII files, creates the relevant variates
and factors and stores them on a StatUnit data set. From then on, input
of data is performed by a single call to GetData.

Other facilities to be mentioned without further explanation are

— a procedure Sort for parallel sorting of variates and factors (based on
the QuickSort algorithm),

— procedures List and List1 for (parallel and across—the—page) listing
of data,

— some procedures for control of the output stream, e.g. redirection to
the screen or DOS’s paper basket *nul’, change of maximal line length

etc.

8. Additional units.

An important advantage of a procedure library like StatUnit, in contrast
to standard statistical packages, is that a sharp limit between the users
scope and the scope of the “library author” is not present. In principle,
any user can take STATUNIT.PAS into an editor and change the source
code. I do not recommend it, and I would certainly not allow anyone to
publish a modified version. But on a more moderate level, any user can,
at least in principle, see what is going on by reading the source code,
and add his own improvements or extensions in the form of additional
units. It is not difficult to write additional units with procedures for
special purposes, and the efficiency of these can come very close to what
could be obtained by incorporation of similar procedures in the core of

12

StatUnit. Examples of such units, which, apart from their own specific
purposes, may serve as models for similar user created units, follow here.

OURUNIT.PAS — a unit with many auxillary procedures for different pur-
poses. Among these are procedures for output of two— and three-way
tables of counts, a procedure Tabulate for the formation of unit counts
or variate sums in the groups determined by one or several classifying
factors, two graphics procedures (using an associated unit StatPlot for
graphics on a VGA screen or a HP laser printer) for scatter plots and his-
tograms, procedures performing Bartlett’s test for variance homogeneity,
Wilcoxons two sample test, Spearman’s rank correlation and Pearsons
x? test for goodnes of fit of a log-linear model. There is also a proce-
dure for computation of “correctly normed” (t-distributed) residuals in
regression analysis, useful for “exact outlier—detection”.

POSSCALE.PAS — the unit for position—scale parameter models men-
tioned in section 5.

COXUNIT.PAS — a unit with a procedure for Cox’s proportional hazards
model in the simplest case (time independent covariates, no ties).

MCUNIT.PAS — McCullagh’s models for discrete ordinal data, arbitrary
“link function”, arbitrary linear parameter structure (McCullagh 1980)

NEGBIN.PAS — Log linear models for negative binomial responses. Use-
ful when ordinary Poisson models fail due to overspread.

CLOGIT.PAS — Conditional logistic regression. For matched case—control
studies and conditional estimation in the Rasch model.

ANOVA.PAS — Analysis of variance models in orthogonal designs, includ-
ing variance component models in the “balanced” case.

INTERACT.PAS — contains a procedure View for exploratory data anal-
ysis. From View’s menus you can draw scatter plots and histograms
on the screen. Tables of counts and listings of data can be produced,
examined, and optionally written to the primary output file.

The units mentioned here are documented by comments in their inter-
face sections and distributed with StatUnit. Apart from this, many
illustrative examples are included. '

The StatUnit manual and diskette can be obtained from Institute of
Mathematical Statistics (address below) for D.Kr. 45. Turbo Pascal 5.0
or later on an IBM-compatible with a numerical coprocessor is required.
For graphics, a VGA color screen is required, for hardcopies a HPlaserJet
or a plotter/printer with HP-GL.

13

References.

" J. A. Nelder and R. W. M. Wedderburn (1972)
Generalized Linear Models
J.R.S.S. A 135, pp. 870-384.

P. McCullagh and J. A. Nelder (1983, sec. ed. 1989)
Generalized Linear Models
Chapman and Hall, London.

P. McCullagh (1980)

Regression models for ordinal data

J.R.5.S. B 42, pp. 109-142.

T. Tjur (1993)

. StatUnst — Turbo Pascal unit for statistical analysis

(the StatUnit manual)

Institute of Mathematical Statlstlcs Unlver51ty of Copenhagen.

Tue Tjur

Institute of Mathematical Statistics
University of Copenhagen
Universitetsparken 5

DK-2100 Copenhagen

DENMARK

14

PREPRINTS 1992

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE
OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, DK-2100 COPENHAGEN @,
DENMARK. TELEPHONE + 45 35 32 08 99.

No. 1 Johansen, Soren: The Role of the Constant Term in Cointe-—
gration Analysis of Nonstationary Variables.

No. 2 Paruolo, Paolo: Asymptotic Inference on the Moving Average
Impact Matrix in Cointegrated I(1) VAR Systems.

No. 3 Johansen, Seren and Juselius, Katarina: Identification of the
Long-Run and the Short-Run Structure. An Application to the
ISIM Model.

No. 4 Johansen, Seren: Identifying Restrictions of Linear

Equations.

Preprints 1993

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR
OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS,
UNIVERSITETSPARKEN 5, DK-2100 COPENHAGEN ¢, DENMARK.
TELEPHONE +45 35 32 08 99.

No. 1 Hansen, Henrik and Johansen, Sgren: Recursive Estimation
in Cointegration VAR-Models.

No. 2 Stockmarr, A. and Jacobsen, M.: Gaussian Diffusions and
Autoregressive Processes: Weak Convergence and Statistical
Inference.

No. 3 Nishio, Atsushi: Testing for a Unit Root against Local
Alternatives

No. 4 Tjur, Tue: StatUnit - An Alternative to Statistical Packages?

