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Abstract

This paper deals with the problem of testing for a unit root in the framework of the
near-integrated process proposed by Phillips (1987b). The convergence of the near-
integrated process to the Ornstein-Uhlenbeck process is a key to this paper. A se-
quence of Fourier type transformations Z;, k = 1,... associated with the Karhunen-
Loéve expansion of the Brownian motion 1s considered. The likelihood functions of
the family of the Ornstein-Uhlenbeck processes based on Z) = (Zl, R ZK), K =
1,... and their approximations are derived. Two tests for a unit root against local
alternatives are given as the discrete analogues of those for the Brownian motion
against the Ornstein-Uhlenbeck process. Our tests are shown to be locally efficient
in the sense that the asymptotic distribution under either of the null and the local
alternative hypotheses is the same as that of the exact loglikelihood ratio statistic

of the Gaussian AR(1) models. The consistency of the tests are also given.

Key Words: Brownian Motion, Karhunen-Loéve Expansion, Locally Efficient Test,
Near-Integrated Process, Ornstein-Uhlenbeck Process, Unit Root



1 Introduction

Consider a time series model generated by

Y= p Yi-1 + Wy (t=12...,7), (1)
where 9o = 0 and w; is a zero mean error process satisfying suitable assumptions.
The parameter p dominantly specifies the long-run behavior of the time series. This
paper deals with testing for a unit root, that is p = 1, while the alternatives |p| < 1
and |p| > 1 mean stability and explosiveness, respectively.

The problem of testing for a unit root has been attracting a great deal of at-
tention of many authors. Fuller (1976) brought the problem explicitly into the
literature. Dickey & Fuller (1979,1981) examined the properties of the Gaussian
maximum likelihood estimator of p and of the likelihood ratio statistics assuming
the autoregressive models for g, in (1). Said & Dickey (1981,1984), Solo (1984) and
Hall (1989) are among those who proposed a variety of testing procedures assuming
general classes of ARMA models for % and investigated their asymptotic behavior
under the null hypothesis. Phillips (1987a) proposed a test procedure assuming a
quite general class of stochastic processes for the error term.

Suppose, for a while, that wy is a zero mean Gaussian white noise with Ew? = o2,
The maximum likelihood estimator (MLE) of p is the least squares estimator (LSE)
p, and the loglikelihood ratio statistic A for the hypothesis p = pg is approximately
STy? 1(p — po)?/s?, the squared deviation of the LSE adjusted by the observed
Fisher-Information, where 3% = 77! 3 (y, — py_1)?. The asymptotic distribution
of p ( White (1958), Dickey & Fuller (1979) ) and A ( Dickey & Fuller (1981) )
under the null hypothesis p = 1 are ratios of some functionals of the standard
Brownian motion {W(r),7 € [0,1]}: T(p — p) > JW(rydw(r)/ f W(r)*dr and
it {fW(r)dW(r)}?] [ W(r)*dr, respectively, where and throughout this paper
' denotes the convergence in distribution, >’ denotes the convergence in prob-

ability and integrals are over the interval [0, 1] unless explicitly indicated. On the
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other hand, it is well known that {7/(1—p* ) }V%(p—p) 4 N(0,1), if |o| < 1. When
lpl > 1, it is also shown that the limiting distribution of p is a Cauchy distribution

(White (1958)) and that of X is x*(1) distribution (White (1958) and Anderson

(1959)).
The gap of the asymptotic distributions of this kind is filled with the class of

near-integrated processes, in which the parameter p is defined by p = exp(—a/T)

or by
P= 1~C¥/T, (2)

which are equivalent in the limit. This class of models was considered by many
authors, e. g. Ahtola & Tiao (1984), Chan & Wei (1987), Phillips(1987b), and
Phillips & Perron (1988), mainly as local alternatives in the analysis of a unit root
and has been useful in power studies.

Define the normalized near-integrated process Yr(r) = yrn/TY% 7 € [0,1],
where [a] denotes the largest integer not exceeding g. Then it is a special case of
Chan (1988) that Yr(7)/o, converges weakly to the Ornstein-Uhlenbeck process
in D[0, 1], the space of functions z on [0, 1] that are right-continuous and have left-
hand limits. The Ornstein-Uhlenbeck process is a one-parameter family of stochastic

processes {X,(7), —00 < a < 00,0 < 7 < 1} defined by the Wiener integral

Xolr) = A " et g (') (3)
and is known to be the solution to the stochastic differential equation

dX(7) + aX(7)dr = dW (1), (4)

with initial condition X(0) = 0.
Rewriting (1) with (2) as

A /T + ayr [TP)1T) = w /T, (5)



where A is the difference operator, we see that (4) is a continuous time parameter
analogue of (1). Hence we could expect a close relation between the inference on the
near-integrated process (1) with p defined by (2) and that on the Ornstein-Uhlenbeck
process (3).

Indeed, it has been well established that the loglikelihood function of X(7) =

Xo(7) with respect to the Wiener measure is given by
a2/X(T)2dT+2a/X(T)dX(T), (6)

where the integral in the second term is interpreted as the Ito’s integral :
[X(r)dX(r) = (X(1)*> — 1)/2. The MLE of « for the Ornstein-Uhlenbeck pro-
cess is then given by & = — [ X(r)dX(r)/ [ X(r)*dr, while the MLE of « for (5)
is the LSE & = —T71 5 4 1Ay /(T2 5 y2 ). Obviously, & is the discrete time

analogue of &.. We can also show that

Qs

4 dy = / Xo(1)dXa(r)/ f X, (r)dr

i. e. to the same distribution as &.. First the denominator of & is expressed as
[ Yr(r)*dr which is a continuous functional of Yr(7), and thus converges in distri-
bution to its continuous time counterpart ol [ Xo(r)*dr, since Yr(r) S oy XolT)
in D[0, 1] and hence the continuous mapping theorem in Billingsley (1968) applies.
We can also show the convergence of the numerator as follows, though it is rather

indirect. It is easy to see that twice the numerator of & is

vp [T =Y (Aya)’/T, (7)

of which the first term converges in distribution to o2 X,(1)* by the same argument
as above and the second term converges to o2 = Ew? in probability by the law
of large numbers. Therefore the numerator of & converges in distribution to its

continuous time counterpart too. Though we have only discussed the estimation of



« so far, 1t 1s clear that similar argument could be given to the likelihood ratio test

statistics A for a unit root to show that

_ L Xa(r)dXo(r)}”
A = [ Xa(r)Pdr

Perron (1991) argued this kind of similarity in detail.

It 1s worth noting that the asymptotic null distribution of each of the test statis-
tics proposed so far is either of Ag and Ay according as it is essentially an estimate
of p or a likelihood ratio type statistic. Hence extensive analyses of these two distri-
bution are given by Satchell (1984), Evans & Savin (1981) and others. There does
not seem to have been enough power studies on previously proposed test procedures
under local alternatives, especially in the parametric framework. However, it might
well be conjectured that every reasonable inference has the same asymptotic perfor-
mance as the likelihood based procedure under the simplest case. Therefore we say
that an estimator of p or a test for unit root is locally efficient if it is asymptotically
distributed as A, or Aq, respectively, for all finite a.

Now let us proceed further along this line by weakening the assumption for the
error term. Phillips (1987b) proved under a set of fairly mild conditions on w;, which
are satisfied by the stationary ARMA models, a wide class of linear processes and
others, that the normalized near-integrated process Yz(7) converges to o0 Xo(7) for
each 7 € [0,1], where the so-called long run variance o = limp_, V(Ef;l w))/T
is assumed to exist and be strictly positive. Later we show the weak convergence
of Yp(7) in the space D[0,1] by a slight modification of his proof. Hence argu-
ments similar to what we have seen above for the case of Gaussian white noise
error can be traced with o2 replaced by o except one point ; >.(Ay)*/T in
the alternative expression (7) of the numerator of & converges in probability to
0§ = limp oo 771 ) Bw? instead of ¢ Phillips (1987a) and Phillips & Perron
(1988) proposed to collect the difference by estimating o* using the sample autoco-

variance functions.



In this paper we shall persist in the analogy between the near-integrated process
and the Ornstein-Uhlenbeck process in order to construct locally efficient tests for
a unit root. The basic idea is the following : Firstly, we pay attention to the
fact that Yp(r) converges, irrespective of the probabilistic structure of the error
term wy, to the same limit which is specified by the parameter « and o?. This
necessarily means that the short range properties of the data has little information
on « and that inference on « would be made properly based only on the long range
properties of the data at least in the asymptotic limit. That the behavior of the
periodograms with near zero frequencies reflects the long range property of time
series has been recognized and made use of in several papers in relation to co-
integration analysis, see Phillips & Ouliaris (1988) and Phillips (1988) for example.
Howerver, the periodograms employed in all of these papers are the conventional ones
which are based on the spectral theory of stationary processes. It is evident that the
spectral theory is useful because of its property of simultaneous orthogonalization
of the covariance matrices of all the stationary processes. Although, as is seen later,
in the family of near-integrated processes this eminent property unfortunately does
not hold, we could expect that the transformations associated with the orthogonal
expansion of the Brownian motion known as the Karhunen-Loéve expansion, e. g.
Wong (1971), would still enjoy some good property for inference of the Ornstein-
Uhlenbeck process and the near-integrated process. Secondly, the breakdown of the
analogy comes from the irregularity comprised in the Ito’s integral in (6) which
hinders the direct application of the continuous mapping theorem. So if we have
an efficient alternative estimator of « for the parameter of the Ornstein-Uhlenbeck
process as rather a smooth functional of the sample path, then we might well expect
that 1ts discrete time analogue has the same asymptotic property as &.. From this
point, the use of periodograms with near zero frequencies would also have a merit

because they are rather smooth functions of Y7 (7).



This idea is implemented in the rest of the paper as follows: Section 2 is pre-
liminary, where we discuss convergence of near-integrated process to the Ornstein-
Uhlenbeck process and the orthogonal expansion of the Ornstein-Uhlenbeck process.
In section 3, we derive an approximate expression to its likelihood function in the
frequency domain, that is, in terms of the transformations corresponding to the
Karhunen-Lo&ve expansion of the Brownian motion. Two test statistics for the
Brownian motion against the Ornstein-Uhlenbeck process are given based on the
approximate likelithood and their properties are discussed. Section 4 deals with
tests for a unit root which are naturally suggested by the findings of the preceding

section. We show local efficiency and consistency of our tests. In the final section,

we give miscellaneous remarks.

2 Preliminaries

We consider the near-integrated process generated by (1) with p defined by (2).
Following the framework employed by Phillips (1987b), we assume that the error

terms w; satisfy the following conditions with 8 > 2:
(1). BE(w,) = 0for all ¢ > 0 and sup, E|w?| < oo.

(i). o? = limf_,ooT_1V(E;‘r:1 w;) exists and is strictly positive.

(ii). {wy}$° is strongly mixing with mixing coefficients 7,, satisfying .7 P <

00.
We show weak convergence of the near-integrated process to the Ornstein-Uhlenbeck

process which is an extension of Lemma 1 (a) of Phillips (1987b) to function space.

Let Wp(r) = S0 w, /T2 7 € [0, 1], be the normalized sum of the error terms.



Lemma 1 Suppose that Wr(-) converges weakly to the Brownian motion oW (-) and
sup, Flw;| < oo, then the process Yp(1) = y[TT]/Tlm, T € [0, 1], converges weakly to

o Xo(+), the Ornstein-Uhlenbeck process.

Herrndorf (1984) proved that under the above assumptions (i)-(ii1) Wp(-) converges
weakly to oW (-). Hence this lemma implies weak convergence of Yp(-) to o.Xo(+),

which is the result that our argument in this paper depends upon.

Proof: By definition of Yp(7), we have

[T'7]
[84
Vo(r) = yza/TY?=) (1- f)[TT]_twi/Tlﬂ
i=1
_ / e )dWp () + 3 ofr, [TV (8)
0

1<[T'7]
where we put ¢(7,t) = {(1 — a/T)F7I=* — ¢=("=¥/T)} By integration by parts, we

have

/ e~ =" dWp(7') = Wr(r) + a/ e~ =TI Wy(r)dr.

0 0

Since a function f : D[0,1] + DI[0,1] which is defined by f(z)(7) = z(7) +

a fOT e~"=")g(7")dr’', is continuous on the support of the Wiener measure C[0,1] C

D[0,1] and Wp(+) 4 oW (-), the first term of the RHS of (8) converges weakly to
o{W(r)+ a/ e =TIW (rdr'},

0
which turns out to be 0 X,(t) again by integration by parts.
Thus it suffices to show that the remainder term, say R(7), converges in proba-
bility to 0 in the function space D[0, 1]. Since ¢(7,t) is bounded by C/7 uniformly
in 7 and ¢, where C is some constant, it holds that |[R(7)| < CT=3/2 5" |w| for

every 7 € [0,1]. Taking the expectation we have

Esup |R(1)| € Csup Blw,|/TY? - 0,
T 1



which implies the desired statement.O

Hereafter in this section we make a brief review of the orthogonal expansion of the
Ornstein-Uhlenbeck process. By definition, it is obvious that EX,(7) = 0. Simple
calculation using expression (3) leads to the following formula for the covariance
function : Ro(7,7") = EX (1) X,(7") = a texp{—a(r V ')} sinh{ca(r A 7')}, where
7V 7 and 7 A7’ are the maximum and the minimum of 7 and 7/, respectively. Xo(7)
is W(r) the standard Brownian motion, and lim,_.¢ Ro(7, 7") = 7 A 7', which is the
familiar covariance function of the standard Brownian motion.

The following Karhunen-Loéve expansion, see Loéve (1978), of the Ornstein-
Uhlenbeck process was derived by Chan (1988): The integral equation with Ry (7, 7')

as the kernel function
/Ra(r, (" ydr" = Ap(T) (9)

reduces to the differential equation 9(7) + (1/A — @®)¥(r) = 0, with boundary
conditions (0) = 0 and a¢(1)+¢(1) = 0 where a dot over the symbol of a function
denotes differentiation with respect to 7. For a > —1, the sequence of solutions to
this equation is given by Xy = 1/(a®+w}) and ¢y sinw, 7, where wy, k = 1,2,..., are
increasing positive solutions to tanw = —w/a and ¢;’s are normalizing constants.
Random variables Zy = [ Xo(7)ep sinwyrdr, k = 1,2,.. ., are mutually independent
and satisly EZ? = M\ and Xo(7) = ¥ o, Zic sinw, 7, where, and in the sequel of
this paper, the infinite sum of random variables is understood as the limit in the
mean square unless otherwise mentioned. When a < —1, an extra eigenvalue A¢ and
eigenfunction ¥p(7) of (9) are given by Ag = 1/{a® — w§) and 9o(7) = cpsinhwer
where wy is the unique positive solution to tanhw = ~wfa if « < —1 and by Ag =1

and (1) = /27 if o = ~1 respectively.



3 Likelihood of Ornstein-Uhlenbeck processes

In this section, we shall derive a sequence of approximations to the likelithood func-
tion of the Ornstein-Uhlenbeck process in the frequency domain, which turns out to
be equivalent to the exact one in the limit.

We wish that the orthogonal transformations discussed in the previous section
would take the role of the conventional periodogram in the analysis of Ornstein-
Uhlenbeck processes. This 1s in fact impossible since the transformations depend
on the parameter a. Nevertheless, we fix a transformation corresponding to o = 0,
because it is sensible to consider the null case as special. We note that, when o = 0,
the eigenvalues of (9) have an explicit form A\, = C;? where C; = n(k — 1/2)

k=1,2,..., and corresponding eigenfunctions are given by
’{ﬁk(t) = \/isin CyT.

Assume that an observation X(7) on 0X,(7) is given. According to the above

eigenfunctions, we consider the following sequence of random variables :
Zy = /X(T)\/ﬁsin Cyrdr, k=1,2,.... (10)

We make a brief remark on some properties of the above transformation. Let g(7) be
any continuous function defined on [0, 1] satisfying ¢(0) = 0 and define an extension
g (r),7 € [-2,2] of g by g*(r) = g(7),7 € [0,1], g"(2 —t) = g(7),7 € (1,2] and
g (1) = g*(—7),7 € [-2,0). Then by symmetry some of the Fourier coefficients

vanish, and the Fourier series for ¢*(7) is formally given by

oo

Z V281 Cy 7,

k=1
where ¢, = fol g(r)\/isin Cyr. This series converges if suitable additional condition

is satisfied. Since g(7) € L?[0, 1], the Parseval’s equality

oo

/g(v')zdr = Zcz

k=1



holds.
We derive some properties of Zj’s. Substituting (3) into (10), we obtain

7, = O//OTG_Q(T_T’)dW(T,)\/é-SiH Cyrdr
= O‘/dW(T’)/’l e=("=")\/25in Cyrdr

a/f;;(r’)dW(T’),

k=1,2,..., where we put

V2

M=

{Cy cos Ci T + arsin Oy 7 — (—1)EDgeme(-7},

The following formula for the covariance EZu 7 = o? [ fe(r)fi(7)dr is obtained by

straightforward calculation :

g3 5 bx1 a(l +e?)
By 2y = ——— — (=1)F 11
TR g T Y @y ey y
where k,l = 1,2,..., and §; is the conventional Kronecker’s delta.

Next we show that
¥
ZZ,? 2 02/XQ(T)20,’T (12)
k=1

as K — oo and that

oXo(T) = izk\/isin CyT. (13)

k=1

By simple calculation we obtain
1
E/XQ,(T)QdT = /RO,(T, T)dr = -4—3(@‘20‘ + 2a —1). (14)
a
It 1s easy to obtain the following Fourier coefficients of the function sinhar :
[ sinh ary/2sin Cyrdr = cosh a (—1)F"1v/2a/(a?+C?). Since sinh a7 satisfies Dini’s
condition at 7 = 1, we have a convergent Fourier series sinha = cosha 3,2,

2af(a? + CF). Thus we have obtained

2
tanha:Z = (15)
k

10



By the Parseval’s equality we also have

/sinh2 ardr = 2 cosh’ a Z(a2 +CH™2.

k=1

It is shown by straightforward manipulation using this identity, (11), (14) and (15)
that

ZEZf = 02/EXO,(T)2dT. (16)
Now define

K
XE(ry=3" ZyV/2sin Gy,
k=1
then we easily obtain
K i~
/{JXQ(T) — XBE()Pdr = az/XQ(t)sz - Z 2> 0.
k=1
By virtue of (16) the expectation of this tends to zero as K — oo, which implies
(12).
Inspecting the formula (11), it is obvious that

Y > IEZ 4| < oo (17)

k=1 I=1
From this and that |¢,(7)] < /2 we see that the sequence XENr) K =1,...,1s

fundamental for all 7. Hence

X (r) = lim XE)(7).

K—o0
exists. Since the bound (17) is independent of 7 it is easy to see that the above
convergence is uniform in 7 € [0,1]. Thus X(*)(.) is continuous in mean square

since it is the limit of uniformly convergent sequence of mean square continuous

11



processes X(¥)(.). On the other hand, we have

/E{UXQ(T) - X(oo)(T)}sz
- / Bl{oXu(r) = XB ()} + {XE)(r) = X))} Pdr

< 2[/ E{oX. (1) — X(K)(T)}2d1' + /E{X(K)(T) -~ X(m)(r)}2dr]

— 0.
Therefore, we have shown that
/E{OXQ(T) — XN (1)}2dr = 0.

Since the integrand of the above equation is nonnegative and X,(r) and X(®)(7)
are both mean square continuous, we have proved (13).
Let Z(E) denote the vector (Zl, Zoy ... ZK)’ and 0?Gx(a) its covariance matrix,
K = 1,2,.... As the Ornstein-Uhlenbeck process is by definition a zero mean
Gaussian process, the distribution of Z¥) is multivariate normal with EZX) =0
and its loglikelihood function log f(Z(K); a,o?) is given by
—glogcr? ~ %bglG’K(a)l - ;72<K>’GK(Q)—1Z(K). (18)
In view of (13), we might consider (18) as an approximation to the exact loglikelihood
(6). In the following, we derive explicit forms for Gx(a)™' and |Gx(a)| and their
limiting properties as K — oo. By the formula (11) for the covariances, we see that
Gx(a) is expressed as Gg(a) = diag{dxo} — a(l + ¢7**) dg1(a) d,(a), where
dxo(a) and dgi(a) are K-dimensional vectors with k-th entries 1/(a® + C}) and

(=1)*1/(a® 4+ C}), respectively. Its inverse and determinant are easily obtained:
Gr(a)™" = diag{dxo(a)} " + aBx(a) ix ix (19)
and

|G (a)| = |diag{dro(a)}| {1 — a(l +e7**) jirdxi(a) }, (20)

12



where we put jx = diag{dxo(a)} tdrxi(a)= (1,—-1,...,(=1)%"1) and

(1+e?)
1—a(l+e72) jrdr(a)

Bgla) =
Thus we have obtained the following explicit form for (18) :

K logo? + %[Z log(a® + C7) — log{1 — a(1 4 ¢72*) Z /(e + CHY]

)
1 = 2 2\ 52 a(1+e—2a) = 5 12
A+ DA s o (Y A (@

where the summation 1s over 5 =1 to K.

The apparent complexity of the likelihood function can be considerably reduced
in the limit K’ — oo as follows: Integrating both side of (15) over the interval [0, &,
the following formula for the logarithm of the infinite product is also derived :

oo 2
logcosha = kZ; log(1 + —gg) (22)
Let us define rg(a) = 3052y 2a/(@® +C}) the truncation error of (15). Then, not-
ing that jxdgi(a) = S5, 1/(a? + C}), it is easy to derive from (15) that Bx(a) =
2/{1 + rg(a)} and from (22) that log|Gr(a)|/|Gx(0)] = —a + Rg(a) + log{1l +
rx(a)}, where Rx(a) = [ rx(a)da. Evaluating the integral of 1/(z* + o?), we ob-
tain a bound |rg(a)| < (2/r)tan"'{|a|/Ck}. From this it follows that rx(a) — 0

as af K — 0. We then have

Jim By(a) =2 (23)
and

dim log{|Gx(a)|/|Gx(O)]} = —a. (24)

We make a few remarks concerning what are obtained above. Firstly, we see
from (21) that the triplet (E,‘:‘;l 7%, ﬁzle(—l)kék,z,f’:l C2Z2]K), which we
denote by (I}K, Vi, 5‘1{), is sufficient for parameters («, ¢?). The extra factors in the

definition of Vx and Sk are for later convenience.

13



Secondly, note that (12) and (13) imply that
1
Uxr 5 02/ Xo(7)*dr and I}im Vi = 0Xo(1).
0 —C0
Using the fact that Y (a® + C?)™' and Y (a® + C7)* are convergent, we can
also show that E(Sx) = o*1{Gg(0) 'Gr(a)}/K = 0® + O(1/K) and V(Sx) =
2041{Gx(0) ' Gr(a)}?/K? = O(1/K). Thus, as K — oo
(O, V2, 5i0) 2 0% [ Xl P, Xo(02,1), (25)
Thirdly, the equivalence of (18) to (6) in the limit X' — oo can be shown roughly
as follows: Suppose that the convergence (25) is almost sure, then in the space
12 the distribution of the sequence Z%® = (Zl, Za, .. .) 1s concentrated on the set
{(z1, 22,...) € 1% limg_oo Ef’ Cizi|K = o} By (23), (24) and (25) it is easily
seen that the likelihood ratio log{f(Z(K), a, 02)/f(Z(K), 0,0%)} converges to (6) on
this set . This gives the equivalence of inference based on Z(*) to that on the whole

sample path.

Hereafter we propose two tests for & = 0 based on Z®E) for finite K, which have
the same property as A, the exact likelihood ratio test, in the limit X — co. It is
quite natural that our tests should be based only on the minimal sufficient statistics
(Ux, V2, 5x).

The first one is naive. Let 7" (u,v) = (v — 1)?/4u. It is obvious from (25) that

POk [ 5k, VE]5x) 2 Aa
for all finite a as K — co. Thus the test based on 7(!) has asymptotically the same

property as the exact test.

Secondly, we make more use of what we have seen above on the likelihood func-
tion of Z(X). The exact loglikelihood function (21) is highly complicated. Howerver,
in view of (19),(20),(23) and (24) it is appropriate to approximate the loglikelihood
function (18) by Ix(«, o; Uk, Vk, 5'}(), where

1 1
lx(a,o5u,v,5) = =K logo + a + 5 log|Gx(0)] — E(I{S + o’u 4+ av?).

14



For fixed a, Ix(a, o;u, v, 5) is maximized with respect to o? at s6%(«a;u’,v') where
v = ufs and v/ = v?[s and 63 (a;u’,v’) = 1 + (a®u’' + av’)/K. The maximizing
procedure is then equivalent to maximizing the approximate loglikelihood ratio

L

K(azu' + av')} + a. (26)

Ar(a;u',v') = —K log{l +

Note that Ax(doo;u’,v") = £oo. This improper divergence of likelihood ratio to 400
reflects the fact that our approximation to the loglikelihood is valid only if o/ K is
small. However, we are interested in testing the hypothesis & = 0. So we need to pay
attention only to the behavior of the likelihood function in such a neighbourhood

of zero that the null distribution of the MLE for « is almost concentrated in it.

Therefore we consider
POn(Ux |5k, V2] 5x),

where i?g)R(u’, v') = maxX,e-rr Ax(a;u’,v"). The following Lemma gives the

asymptotic distribution of this statistic:

Lemma 2 Suppose that a sequence of random pairs (U, V,,) converges in distribu-
tion to ([ Xo(7)dr, Xo(1)?) as n — co. Let K, and R, be sequences such that

limg, oo Ky, = 00, limy, oo Ry, = 00 and lim, .o, R, /K, = 0. Then
A (AW
Proof : Differentiating Ax, (a; Un, V,,) with respect to «, we obtain
2aU, + V, — 6% (U, V1) = 0 (27)

This reduces to a quadratic equation (U, /Ky )a? —2(U, =V, /2K, )a—(V, —1) = 0.

Thus the local maximum of Ax, (a; Up, Vy,) 1s, if exists, attained at

o v, ~ Vo —1 28
by, = (K, 2Un)[1 \/1+KnUn{l—Vn/(ﬂ/frﬂn)}2 ! o
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Note that Ag,(a;Un,V,) is maximized at either edge of [—R,, R,] or at dgi €

[-Ry, R,]. Since by the assumption U, and V,, are of constant order, the sec-
ond term in the square root symbol in RHS of the above expression is O,(1/K,).
This implies that lim,_.c P(&gi is not real) = 0, that &gi = —(V, = 1)/(2U0,) +
O,(1/K}) and that the other solution &™) 1o (27) is Op(K,). Thus we have that
P(&% € [=Rn, Ry] and &) > R,)— 1 and thus P(ﬁg’Rn(Un, Vo) =

)\(égi; U, V,)) — 1. Finally by Taylor expansion of log(1 4+ #) around 0 we obtain

(a—17

O,(1/K,,).
L+ 0,(1/K,)

N&D 0., ) =
This completes the proof.0

This Lemma implies that the test based on 17(2,)}3;{ (ﬁg/g}{, Vé/S’K) -where Ry
satisfies the conditions limg_., Ry = oo and limg_.., Rx /K = 0, has asymptoti-

cally the same property as the exact likelihood ratio test too.

4 Tests for a unit root

This section deals with the discrete time counterparts of the tests given in the

previous section. Proofs of all the Lemmata in this section are given in Appendix.

We define a sequence of transformations

t—1/2

T
5 =T 2y sinC, k=1,2...T (29)
i=1

and statistics which are the discrete analogues of the sufficient statistics (U, Vi, 5;{)

for the Ornstein-Uhlenbeck process

K
g = E:zg
k=1

'S
g = \/52(—1)%
k=1
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and
K
ix =Y (Ci&n)/K,
k=1

where C}’s are frequencies defined in section 2 and K =1,2,.... We note that C}’s

are different from the frequencies of the conventional finite Fourier transformation
which are 2kr /T )k =0,1,...,[T/2].

By Lemma 1 and the note which follows the lemma, Y7(-) < 0Xo(") so that it is
easy to see that z; LA Zik =1,... K jointly. Hence (ig, g, 5x) A (ﬁ_;{, Vi, Sx)
for any fixed K. However, in order to achieve the local efficiency, it is clear that we
need to let K go to infinity in such a way that convergence similar to (25) holds.

The following lemma really shows how K should be increased with 7" :

Lemma 3 Suppose that the error term w, satisfies the assumption (1)-(iii) and let

Kp be an non-decreasing sequence of positive integer such that for some € > 0
(iv). limp_ o Kp[TY? = 00 and  limp_.o Kp /T = 0.
Then

(ke T2y, 5107) ~ 0 / Xo(r)dt, Xo(1)2,1).

It 1s thus clear from Lemma 2 that the two tests for unit root associated with

the following statistics are both locally efficient :
V) = 17(1)(?111% /35, U5 [3K7)

and
) = 582 iy 530, T )

where Kp satisfies (iv) and Ry satisfies limp_,oo Rp = 0o and limp_,o Rp/Kp = 0.
Though we are mainly interested in the local properties of our test procedures,

the consistency is a minimum requirement for any test to be valid. To see what
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happens if ¥ is stable let us examine briefly the limiting behavior of Zx in the
limit @ — co0. We may argue from the formula for covariances among 7y, that
o Z, Zy, . .., Zx) is distributed nearly as N(0,0%Ix) if « is large. Thus V2/Sx
is O,(1/K) and Sg/(KUx) & limg_o 3. C2/K® = n2}3. This fact suggests the

following Lemma

Lemma 4 Suppose that y, is generated by (1) with fized |p| < 1, and that {w,} and
HKrp are the same as in Lemma 3. Then it holds that
(T*/Kr )i, = (1—p) %0,

(T?/Kr®)sx, = (7 [3)(1 = p) 20"
and

B{(TY/ Kr )i, } = O(1).

Put up = @x, [3x, and vp = 9%, /3x,. The Lemma implies that
Kpup 5 3/7% and vp = O,(1/K7). (30)

Thus we have that v /Ky = (vp — 1)?/(4Krpur) 2 72/12, which implies the
consistency of the test based on A1)

As for ® | note that the proof to Lemma 2 gives how to maximize Ax, («; uz, vr) on
[~ Rrp, Rr] given up and vp. Also note that Ax,(«;ur, vr) is monotone increasing if
(28) 1s not real. Indeed, it is easy to see from (30) that the quantity under the square
root symbol in (28) converges to 1 — 72/3 < 0 and hence limy_.oo P(Ax, (o; ur, vr)
is monotone increasing in @) = 1. Therefore limp_o, P(1?) = Mg, (Rr;ur, vr)) = 1.

It 1s obvious that
)‘KT(RT; ur, ’UT)/RT =1~ (f{T/RT)IOg(l + B%HT/K} + RT’UT/I{T) N 1,

since both ur and vp are O,(1/Kr). Thus we have proved the consistency of both

of the two tests under stable alternatives.
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Next we turn to the explosive case. The second term is dominant in (11) and
the covariance matrix Gg(«) is almost of rank 1 in the limit &« — —oco0. So the
distribution of Z) is one dimensional, i. e. Z&) = Z; jx in the limit @ — —o0
and hence V2 ~ 2K%72 U% ~ KZ? and 5% ~ K'Y C222 ~ (72[3)K2Z3.

The following Lemma suggested by this fact really holds :

Lemma 5 Under the same assumptions in Lemma 4 except that p > 1 nstead of
lpl < 1, it holds that
(T /5500, Kreaey [53c7) 5 (6/7%,3/7%).

Put up = g, /3x, and vp = ¥, /5K, again. By direct calculation this Lemma
implies that (M) JKp 5 (72 —6)2/1272 so that the test provided by (! is consistent
when p > 1. The Lemma also implies that 1 — vp/(2Kpur) EN 0, vp — 1 ER
6/7> —1 < 0 and Kpup — 3/7% > 0. Hence through inspection of (28) we see that
limz_,0o P(Ax,(c;ur, vr) is monotone increasing in «) = 1. Since vp LR 6/7? and
up = O,(1/Kp), we have that

/\KT(Of; ur, UT)/RT = 1- (I{T/RT) Iog(l + R%’U,T/I{T + RTUT/J:{T)
2 1-6/(r%) >0.

Thus the test associated with 2(?) is also consistent under the explosive alternatives.

5 Discussions

Testing for unit roots is intended for the pre-stage of model fitting. We test unit
roots only to see whether difference of data is needed or not. Because near-integrated
processes cover a wide class of models, 1. e. most of the models conceivable, the
necessity of differencing can be determined before the full analysis of data. If the
unit root hypothesis is accepted, the differenced data should be analyzed. If it is

rejected, then we fit a stationary model or some other models which do not include
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the difference operation. The point is that once we get conclusion about differencing,
we can apply any model to the differenced or undifferenced data according to the
result of the test. The merit of the nonparametric approach like ours consists in
this point. We note that, though estimators for « seems to be naturally suggested
similarly to the test statistics, we should not or at least do not need to estimate
«. The reason for this is clear from the above remark. Also note that the above
argument concerning the necessity of differencing 1s limited to the case of the model
fitting for univariate time series; in the context of co-intergration analysis of multiple
time series the problem of differencing is more complicated.

In the parametric frameworks such as AR models, the likelihood-based approach
1s usnally adopted and attention i1s paid automatically to the distribution of test
statistics under the alternative hypothesis. Our tests are semi-parametric in the
sense that we make use of the parametric family of the Ornstein-Uhlenbeck processes
as that of the asymptotic distributions. Thus the alternative hypothesis was taken
into account implicitly in the course of the construction of test statistics. As for
the nonparametric test we should keep attention to the alternatives. The following
pre-filtering method is an interesting counter example which shows the importance
of consideration of the alternatives : Suppose the observed sequence y; is generated
by (1) with p = 1. Assume ARMA models for w;, that is w; = ©(L)e, where € is
a white noise sequence and ©(L) is a rational function of the lag operator £. We
can obtain an estimate @(,C) based on the differenced data Ay, by some method.
Suppose for simplicity that we estimate it exactly. Then we obtain the residual
series € = (:)(ll)‘lA% = ¢. Define z; = E;’:l €. Since z; 1s the cumulative process
of an 1. 1. d. sequence, the test statistic calculated from it is distributed as Ag, the
Dickey-Fuller distribution. This seems quite a good test procedure.

Next, let us consider the alternative case. Assume the same framework as above
except that we assume that p = 0. We apply the above procedure to the data .
By assumption, Ay, = Aw; = ©*(L)e; where ©%(L) = (1—£)O(L). Again, suppose
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that we estimate ©*(£) exactly by ©*(£) and obtain the residual & = (@)*(ﬁ)‘lAyi =
€. It 1s clear that the test based on z; = Ez,:l éx 1s distributed as Ay too. Thus
this test has intrinsically no power, since the fitting of ®*(L) is designed to produce
white noise as residual sequence whatever we start with.

Two tests have been proposed. Lemma 2 gives only the first order asymp-
totics of the test. So it does not explicitly imply any superiority of either of
P NUg ]Sk, VE]Sx) and D}?)(I};{/g‘;{, V2/S%). However, since the latter is the like-
lihood ratio at least approximately, we could expect that it has good properties in
some sense. The comparison of () and 2 is less conclusive. It turns out that »(!
is obtained by the maximizing (') = —{a®u?4+a(v—1)}, where we put v = g, /5x,
and v = #%_/3x,. Hence if (u,v) is distributed as ( [ Xo(t)?dt, Xo(1)%), A is the
exact loglikelihood ratio of (u,v) and (! is preferable. While if (u, v) is distributed
as (Uky [ Sk, &}T/g;ﬁ, ), Y@ may be recommended. Therefore the conclusion de-
pends on which of the above two the true distribution of (u,v) is closer to. This
requires inspection of the terms of order 1/Kp which we neglected in the proof of

Lemma 3 and so far we have had no conclusion on this problem.
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Appendix

We often deal with quantities which depend on the sample size T', the number of Z’s
Kor Kp,indicest = 1,...,Tand k = 1,..., K or K7 and so on. By expressions like
ay; = O(1/k) we mean that |a;| is bounded by R/k for some constant 2 uniformly
in t,7 and so on. We also denote by O(1/%) terms bounded by Rfk uniformly in
t,T and so on.

Fach 7 is expressed as follows in terms of w; :

T’3/2\/—Z Z P w, sin C]c 1/2 = Z by,

=1 7=1

where we put @, = w;/T/? and

T-1/2 Cv  Cy,
by = 5 —
et T -—2pcosC’k/T{(1+p)sm cos T(t 1)

+(1 — p)cos gf sin 2—1(t —1) = (=1)*(1 — p)cos -2%:”; PP (ad)

The following Lemma is useful in the course of proving the Lemmata in Section 4.

Lemma A.1 Let Iy C [1,7] be an interval and |Ir| denote the number of integers

in Ip. Then the following hold :

(a). Var(z o) = O(maxa [Lp|/T)
tefy
T
(b). | f\; Coply g | = O( max lew)
T—m
(c). B Z(“’fwﬂrm ~ Ed@im)| = O{(m 41727 4 1)/ 7"/%}
t=1
(d). Bl Y (@@, - Bdgi,)| = O(T7Y?), where 2<m <2T.
1<1<s<T i s—m
T
(e). Bl > cltyiiy — By )| = O(T*? | fnax Jew|)

t,1f=1
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Proof : The following bounds for the moments are derived from Theorem 17.2.2 of

Ibragimov and Linnik (1971) together with assumption (i) :
| Bwitwiym| = O(’Y]t;le’e) (a2)

a11d if tl f; tz jg i3 f; t4,

o). (a.3)

ICOV(wfIZU12, 'wfswf&)l = Vis 13

We note that, though the Theorem assumes strict stationarity for wy, stationarity

is not used in its proof so that (a.2) and (a.3) are true. Thus by assumption (iii) we

have
Z sup |Ewwy1m| < 00 (a.4)
=0
and
o0
sup | Cov(wr, Wiy, wiywy,)| < 00 (a.5)
m:0i1§12,12+mzf3§t4

From (a.4), (a) and (b) are easily derived.

(c): We evaluate

T T t4m-1
Z COV('U/ Wi, w—;lwt'+m) = E( Z E ) Cov(wwam, w~¢7W11+m)
1<t <F =1 =i ' =t4+m

The second part of the summation is bounded by

Z Z |Cov (w4 m, w ﬂwﬂml__ZO(l) o(T)

=1 t'=t+m
by (a.5). As for the first part, we note that
Ewtwf'wt+mwt'+m = COV(wfwt', ’wt+m’wt'+m) + Fwywy Bwi pm Wi ym

= Cov(wiwi—f-m; wi’w1’+m) + Ewtw1+mei'wi’+m

sothat if t <t' < t+mand m >0,

1-2/p

lcov(yj'fwf-{-m; wi’wt’-i-m), S R{,qu(l—%/ﬁ) + ’Y(-{_‘_m)_-‘l + ’Yff(l 2/ﬁ)}
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for some constant E. Hence
T t4+m-1

Z Z [Cov(wiwy ym, Wi Wy pm )|
l

m—1

< RT{m~X1-2/F) 4 272(1 2/6) Z"'l 20y,

51 =0 s'=0

Therefore by assumption (iii) we obtain

T—m
Var( y diiign) = O{(my2* =) +1)/T}.
1=1

By the relation between variance and mean absolute deviation, this implies (c).
- (d): For simplicity of notation we assume without loss of generality that m < T
We evaluate Var(zlgtg[m/g] Wy, ). It suffices to show that
Z Cov(wy Wy 1, Wy Wy ) = O(T').
1<t <[m /2]
We have, similarly to the evaluation of the covariance in the proof of (¢), that for

1<tLd < [mf2]

[Cov{(wiwm—r, Wy Wy )]

< [Cov(wiwy, Wn—pWm—1 )| + [ EwiWm _« Ewowe | + |Bwawy BEWp oW, ¢

1-2 2 1-2 2(1-2
S R(’Tm—Z/f""ym ”/;ﬁ’}’m 2/;l’6 1’(—1 /ﬁ))

,since 1 <t <t/ <m —i" < m—t, where R is some constant. Therefore by (a.4)

and (a.5) we have

[m/2][m/2]
| Z Z COV wt'wm ty Wyt Wy, — f')l
t=1 ¢'=t
[m/2][m/2]
2 1-2 1-2 1-2
S— Z Z R(’Ym 2/f +,Ym 2/fﬁ7rr> ‘7/t"5+’yt’( /ﬁ))
i=1 =t
[m/2]

< ZR’
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where R’ is some constant. This implies desired result.

(e): By (a) and assumption (i) we have

E| Z Cﬁ"@t'wt'l S B Z |’15't“ Z Cﬁ'@z*l < Z I’@tlzl Z Cﬂ”&}t’b
1,4 1 1 1 1
= O(max cw|T"/?).0

Proof of Lemma 3 : Define ¢(z) = 27 %(cosx — 1 +z2/2), then when p = 1 — /T

we have
2 2 Ci 2 2
(14 p —2pcos~j—;—)=a + C{(1 = wr) (a.6)
where ppr = 2(1 — /T Cy f[TYCLJT + «fT, k = 1,2,.... Since lim, o ¢(7) =0,
it holds that
wpr = O(K[T) (a.7)

and hence limy_, SUp; < g, |¢xr| = 0. Thus we have a bound for [by], k < Kr
2v2
%

for sufficiently large T" such that sup, g, |oxr| < 1/2and |1 + p|/2 < 2, that is

lbei] £ —=5-{2C% + |af(1 + min(1,e7*)}

by = O(1/k). (a.8)

Convergence of @iy, : Because fig 2 02Uy for all fixed K and Ug 4 [ Xo(t)*dt by

(25), it suffices to show that for any € > 0

lim limsup P(|ég, — x| >€) =0,

K—oo 7,00
owing to Theorem 4.2 of Billingsley (1968). In the course of proving the above state-
ment, we first fix /' so that we may assume that Kp > K. Since ]Ef:KH bribrs| =
O(1/K) by (a.8) and @, — @x > 0, we have

Kp
Blig, — x| =BY_ Y bubwindy = O(1/K)
i k=K+1
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because of (b) of Lemma A.1. Hence, letting K tend to infinity, we have the desired

assertion.

Convergence of Ux,: As in the case of #ix,, we need only to show that
lim limsup P(|0x, — x| > €) =0
K—o00 —00

for any € > 0. We define

- Y
2 t—1
Zr =) bW where b}, = — cosCy( ).
2 G 7
Now we show that
lb}” — bzfl = O(l/k2 4 I/T). (a.9)

It is obvious from (a.6) that the second and the third term in (a.1) are O(1/C}?) =
O(1/k*). The first term of (a.1) is

V2(1 4 p)T sin(Cy [2T) AT + p* — 2pcos Ci JT)}

= V20:(1+ @ir)/{e® + CH(1 + gur)},

where @rp = (1 — «/27)d(C/2T) — 1 and ¢(7) = sin7/r. Since #(r) is bounded
and lim,_,g 7 {g(7) — 1} = 0, we have

Ger = O(kJT).
From this and (a.7) we see that the difference between the first term of (a.1) and

b, is bounded by

V2{a? + Cllprr| + @) H[Ce{® + CH1 = ¢rr)]
= O[{1+Ci(k/T)}/C{] = O(1/K’ +1/T).

Therefore we have shown (a.9).

Define

.
T = V2 (15 =2 Bia,
k=1 1
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where we put By, = Efﬂ(—-l)’“b};. Then by (a.9) and (a) of Lemma (A.1) we obtain
that Var(ix — %) = O{(1/ K+ K/T)} and Var(Vx, — 0%, ) = O{(1/Kr+ Kr/T)?}.
Hence it suffices to show that

lim himsup P(|0%, — 0| >¢€) =0 (a.10)
H—00 Too i

for any € > 0. Note that sin C4(1~7) = (=1) "tcos Cy7. Put 7 = ('~ t +1)/T and
gx(r) = K sinCyor/Cy — T, 8in C1/Cy, then By, = gre(7) + Yy sin C1/Cy.
Note that Ef:l sinCp/Cy = Ef:__l(——l)"“l/Ck is a convergent series and is O(1)

and that

Er 1 00 (_1)k—1 o0 (_1)&7—1
—sin C| < e et = O{1/K).
|y gemal<) Y S Y S - o)
k=K+1 E=K+1 E=Kgp+1

We evaluate gg(7) as

K .
" T osint K7
{ —_ C !d,__l _ """T"""""""“'d ?
g (7) /1 ; cos Cy7'dr /1 Son(r ]2 T
costKr' | Y rcosn K1l cos(mj2)r
[ ~ 2 ¢ /]"y" + > : n2 dT?
2r K sin(x [2)r ,  4ArK{sin(7/2)r'}
where the last equality is obtained by integration by part. Let 0 < é < 1, then for

I

§ < 7 < 1 the RHS of the above equality is and thus gx(7) is bounded by R/(K6%)
for some constant R, since (2/r)r <sin7, for 0 < 7 < 7/2.

Now let [y = [I,T = TK3|, I, = (T — TKY3T — TKp Y% and Iy =
(T' — TEp~Y/° T]. Note that we have a bound B¥, = O(log K) for all ¢ , since
. = O(1/k). From the above bound for gx(7) we have, By, — By = gr,(7) —
gx(r) + ity (~1F/C = O(K™%) in I, By, — By = 9o (7) = (Bl —

o (=1)F/C) = O(log K) in I and By, — B, = O(log Kr) in I5. Therefore we
obtain by (a) of Lemma A.1

Var($_(Biys — Bl i) = O(K /),

ey
V&I‘(Z(BZ,N - B}ir, )’fi};) = O((logﬁ’)z’/hﬂ/‘})
tely
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and
Var(y (Biy: = Bie)i0) = Of(log Kr )/ Kr'/°}
tels

since we assumed Kp > K. These together imply (a.10).

Convergence of §x,: The outline of the proof is as follows : §x, is a quadratic
form 21,1'(2121 brtbiy [ Kop ) Wy . It is true that, roughly speaking, far off diagonal
entries of this quadratic form vanish and nearly diagonal ones converge to unity as
T — oo. Hence Eiy, 1s close to 23}’:1 E0y which tends to o7, since the far off
diagonal elements of the summand vanish too by the mixing assumption. Moreover
because of the mixing condition, the law of large numbers holds for 3, ({(c) of
Lemma A.1) so that it converges to its limit of expectation. Implementation of this
idea is given in the following :

Define §% = K~ S0 ,(Ci7})?, then

K
Sk =8 = ) K'Y Cbubew — b by, Y.
k

i
Because of (a.8) and (a.9) we see that CZ(bybey — 85,05,) = O(1/k + k/T) and
thus Kp~' le Cbpsbpy — B1,0%,) = O(log Kp/Kr + Kr|T). Hence by (e) of
Lemma A.1 and the assumptions of Lemma 3, we obtain §g, — 8%, £ 0asT — .

Therefore it suffices to show that 5%, & o2,

Put
ud 1 sinwtKr
ki(r) =K' ; cos Cy1 = Kosmnr)s
It 1s obvious that
lex(r)l <1 AL/(K]|r]) (a.11)
and that
dPrg(r)fdr? |;=o=0 if p=13.... (a.12)

30



It is also clear that
|dPsx(r)fdr?| < |dPrg(T)/dr? IT:OI
= |(-1p/ K Z CIl < (nK¥[(p+1) = O(K?),

it p=2,4,.... (a.13)

It 1s easy to see that

iy = ZI"lz‘?cosC(

t,t!

t—
Ly cos Cr(—— )ty = 7 4

where 53 = T, s {(t = ¢)/T iyl and 550 = 3, , kg {(t + ¢ = 2){T hiyiiiy.

In order to obtain that s*(l) = 02, we show that

Jin B = Jim B3 e = o° (214
and that
Jim ElFd - EFil = 0. (a.15)

Let x(t, ') be the indicator function for [t —¢'| < M and My = (T/Kr)'/?. Then,

5 =S d@de =3 [xan (4, ) ae (8 — £)/T) — 1}
1,3 1,1

{1 = a1, )} oty (8 = )/ T) = 1)

Since #x,(0) = 1 and (a.12), we see that kg, (7) — 1 = &%, (07)7?/2 for some

0 < § < 1. Hence from (a.13) with p = 2 we obtain
Xaar (8, 8 ) {63, (¢ = )/ T) = 1} = O{(Kr Mz [T)'} = O(Kr[T)
and by (b) of Lemma A.1

B xuo (6, ) 5xp (8 = ¥)[T) = L}ty = O(Kr [T).

1,0
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We also obtain by (a.2) and (a.11) that
B> {1 = xaa (8, ¢ Hosrer (¢ = )/ T) = 1}l | < 2R Z y1=2/F
1,1 m=[Mr]
for some constant R. Since this vanishes as My — oo, we have shown (a.14).

As for (a.15), we see by (a.11) and (c) of Lemma A.1 that

T-1 TAT-m)
BIE,) —ESLI< 30 Y sk (m/T)| B, — Bai|

m=-T+11=1V(1-m)

T
< S s (m/TYT™2 O(m Py2/8 1) + O(T?)

m=1

T T
= > O(m' )T + TV Ky Y O(1/m) + O(T ).
m=1 m=1

-2/

The first term converges to zero, since by the summability of Yo we have

r
> (m /T2y 0.

m=1
The second term is clearly O(TY/2log T/ Kr). Thus the RHS of above equality tends

to zero as T — 0o by the assumption of the Lemma for Kp.

We turn to showing that 5;}:) %, 0. We note that cos Cy(2 — 1) = —cos C7 and
hence kx(2—7) = —rx(7). Since (a.4) implies 3, _  |[Bdd,| = O(T~1), we have
by (a.11)

T
1E5D) <23 Iswe(m/THO(T™!) = O(logT/ Kr)

m=0

so that limp_, Es*(2) = 0. We also have by (d) of Lemma A.1 and (a.11) that

BI5Y — E5Y)|

27 -2
< ZIKKT(m/T)I B(l Y (@b — B,
t+s=m-+2
r-1
< 2 |kxe (m/T)O(T™H?) = O(TY?log T/ Kr).
m=0
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Thus we have shown that Ezg) - Eé'*hg) L, 0. This completes the proof of Lemma

3.0

Proof of Lemma 4 :

Let wf = (1 — pL)tuy = ;,;10 o' wi_y, where £ is the lag operator. Since
[p] < 1isfixed, (1) is equivalently expressed as
Y= w;.

We show w} satisfies some condtitions similar to assumptions (i)-(iii).

By Minkowski’ inequality and assumption (i), we have

[wils < (1-p)7" sup fwis. (a.16)
It is easily seen that
lim T“1Var(z wy) = (1—p)?o’. (a.17)

T—co

Lemma A.2 Define Gys = Bwjw}, Y = Sup, [Graym| and & = SUPy i) 1 tmets<ia
ook ¥ o)k

Cov(w;, wi,, wiwy,). Then
o]
E Y < 00. (2.18)
m=0

and

Y b < c0. (a.19)

Proof 1s given in the end of Appendix.

Note that the proof of Lemnma A.1 was given essentially based on the summability
of moments given by (a.4) and (a.5). Thus it is easily confirmed that the statesments
of Lemma A.1 with w; and ’y;}ﬂ—l/ % in (c) replaced by w; and 6., Tespectively, hold

by virtue of (a.18) and (a.19). We prove the Lemma by evaluation of moments
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somewhat similar to those in the proof of Lemma 3. Hereafter we write simply
w; = wr and @ = w}/T"? in order to make the similarity clear.

Now we have
T

Tz = \/51:21 sin %k—(t - %)i}i

It is easy to see that }:f:l(——l)’“ sin Cy7 = sinn K(1—7)/{2sin Cy(1 —1)/2}. Hence
iy

Tig, = VIQ—’Z VEpiWr 141,
where vy, = {sinmKp(t — 1/2)/T}/{2sin7(t — 1/2)/(2T)}. Note that

[vEpi] < Kp A(2T]1). (a.20)

We divide the summation into two parts as ¥, = /K714 E;I:[T/KT]H. By (a)

of Lemma A.1,

[T/ K]
E( Z T!KT1QI/T_1+1)2 = O(.K?[’)

=1
The second part is evaluated using (a.18) and (a.20) as

Var{ }: U}{Tf@T~1+1)

$=[T/ K]
Vi ~ ~
zu:{T/};’T]+1 Poinir=y (VR [VEr 0 fCOV(Br —t 1, Wyt 1)

< Zf:[T/KT]+1(T/”)2 O(1/T) = O(Kr),

A

where the second inequality comes from (a.18). Thus we have proved that Ev%, =

O(Kr).

Proof of convergence T2@ig, [Kr is quite similar to that of §%, in Lemma 3 except
that limyp oo T E 3, , @hwe = (1 — p)~ o” instead of (a.14), because

- . . C 1 C
Tig. | Kr = ZZK Zsm -Ti(t—- ~2-)sm -—E(t — -—)wtwﬂ

1,7

> Arzn (8 = €)/T) = (8 + ' = 1)/ T},

%

il
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Proof of convergence T?3x, | Kp® is given similarly. We note that

3

Ko
o .o . Cy 1. . b 1. _
T2I&T ZSKT = fgs Krp 3 kE_l C]? sin ?(t — E)Sln -ZT(S - 5)w¢w5

~kok(1) ~x(2)
3}; - SKT 3

~xk(2

where we put 57 = Do (K g A=) [T Vb, 5 ) = > (=K )R A+
t' — 1)/T }@yby. Therefore similar argument to that in the proof of convergence of

$xr in Lemma 3 could be traced with sx(7) replaced by —«%(7)/K?. By direct

calculation we have

RilT) = —{w2f«’2—(w/2>2—%}nﬁf(r>

—{n?cos(r7/2)cos(r K1)} /(2sinm7/2)%.
Thus instead of (a.11) the following bound is available :
K265 (D) < RHLA LKD)} + {1 ALK+ {1 A L/(K7)*)] (a.21)

where R 1s some constant.

To see that

lim E5z" = lim (r/3)B ) dwe = (77/3)(1 = p) o,

T —o00
%
we note that
Jim {~ K7}, (0)} = 7/3,
that by (a.13) with p = 4 we have
atn (€)=K 2K (¢ — ¢)/T) — 7/3} = O{(Ky Mz [T} = O(Kr /)
and that

1B {1 = xaun (8, ) H{— K R, (¢ = 1)/ T) = 7° [3}eiba

1,7

< O( Z :)'[m)_)oy

m:[MT]
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since Kp 2k ((t — ¢')/T) is bounded. Then similar argument to that in the proof

of (a.14) gives desired equality.

To show
Jlim B3] M _psp =0

we need to evaluate Zfﬂzl KT_%'IQ (m/T)O(ml/ng + 1). It is easily shown that
Zi:o{l A(T[(mKrp))} = O(T logT/Kr). For p > 1 we have

T
Y {IA@/(mEr)Py=( Y 1)+(T/EryP > 1/m*=O(T/Kr).
m=0 m<T/Kp m>T/Kp

This implies

T

> Kr Kl (m[T)O(1/T?) = O(T*? 1og T[ K ). (a.22)
Finally we have

i 0 '
3 | 2 (m [T O(m Y26, [TY2 < RS (m/T) 26,0 — 0

m=0
Hence by virtue of (¢) of Lemma A.1 we have that
~kok( L ~sk(1)
Blsiy) = B3| — 0.
The evaluation of F§, *®) and El“k*(?) E§?§2)| is quite similar to that in the proof
of Lemma 3 using (a.22). This completes the proof of Lemma 4. O

Proof of Lemma 5 : Since p > 1 the third term is clearly dominant in (a.1), we

see that for k =1,..., Kp

_ 7
_ (p—1)T L/2 cos Ck/2T/_1)k ZPT_H—LJH‘
14 p?=2pcosCy [T \ p—

Because the coefficient of each Z; converges to a common limit uniformly, the claims

of the Lemma are obtained by simple calculation using the definition of g, , @ x,
and Skp.0
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Proof of Lemma A.2 :
i—1 s—1

|5'1,t+M| = Izzpt’JrS’Ewt—t'wt-ym—s'l

=0 s*=0

0o
< Z Ipltr-l—s")’]mﬁ-(ﬁ_sr)' < 2 ’Y|m+u||le

th,s'>0 Y=—00

Thus (a.18) is proved as

[00]

D A < =l 30 2 el

k=-o00 v<k

< (A=1e)?A+1e) D ey < oo

k=—c0
Let m > 0,t; < t3 and t3 = t2 + m < ty. We evaluate

R LA
Cov(ws, Wiy, Wiy ws, ) = E PRt TS Cov(wy, Wy, , Wy Way ),
1

where and in the sequel we put u; = ¢; — ¢},1 < 5 < 4, for simplicity of notation.
Let I = {(t),%5,15,t,); 0 < ¢ < T,1 < g <4}, To = {(#], 85, t3, 1)) € I; max(uq, uz) >
min(us, us)} and Iy = {(t],5,15,t,) € [;max(ui,u2) + &k = min(us,us)}, k =
1,...,7 — 1. Obviously, I = UL U---UIp_y. We denote {(¢],t5,¢5,¢ty) €

y o

I;uy > us)} simply by {u1 > us} and so on. Note that
I() C {’l&l Z U3} U {’LLQ Z U3} U {’Uq 2 ’d4} U {’Ul3 Z ’U4}.
We have a bound for the summation over {uq > u4}

| Z pf’1+t’2+f’3+fkcov(wu1 Wiy, Wi W )|

U1 g
< R DO [t > ol
11,1 1 >1a—11 41
< R(L— o) Y 1™ = R~ [o) ¥ (1 — o) ol
1
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where R is a constant such that sup |Cov(wy, Wy,, wu,wy, )| < R. It is obvious that

! ¢ H r
we have the same bounds for 3 . =~ p" 2% Cov(wy, wy,, wu,wy,) and others.

Hence

IZ pﬂHEHHﬁICOV(wmwuz: wuswu4)| <4R(1 - |p|)_3(1 - IPIZ)_IIle
I

Next let k& > 0, then
IkC{U1+k=U3}U{Ug+k=U3}U{’u1+k=ﬂ4}U{U3+k=u4}.

Note by (a.3) there is a constant R’ such that sup; [Cov(w,, wy,, wy,wy,)| <
I, 1 Yo 3 Wug

R”)f}:"z/ﬂ‘ Thus we have a bound

I Z ;013+7’2+1'3+12lcov(wu1wuzﬁw”3 w’“)l

{uﬁk:m}ﬂ[k

-2 ! o 7 !

< Ry N s N ol
1t th >t —1141}
1-2 - - %
< By = o)) = o) ol

and so on. Hence

M rq [ 1— — -
|ZP 1+’—+’3+74Cov(wu1wu2,wuswu&)| S 4R"}'k Z/ﬁ(l - IPD 3(1 - Iplz) llplm'
I

Finally we obtain

lcov(whwfzr w13w14), < 4(1 - |p|)_3(1 - |p|2)—1(R + R Z 7}:—2/ﬁ)|p|m.
k=1
This immediately implies (a.19).0
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