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Abstract 

This paper deals with the problem of testing for a unit root in the framework of the 

near-integrated process proposed by Phillips (1987b). The convergence of the near­

integrated process to the Ornstein- UhleRbeck process is a key to this paper. A se­

quence of Fourier type transformations Zk, k = 1, ... associated with the Karhunen­

Loeve expansion of the Brownian motion is considered. The likelihood functions of 

the family of the Ornstein-Uhlenbeck processes based on Z(K) = (Zll ... , ZK), K = 

1, ... and their approximations are derived. Two tests for a unit root against local 

alternatives are given as the discrete analogues of those for the Brownian motion 

against the Ornstein- Uhlenbeck process. Our tests are shown to be locally efficient 

in the sense that the asymptotic distribution under either of the null and the local 

alternative hypotheses is the same as that of the exact loglikelihood ratio statistic 

of the Gaussian AR(l) models. The consistency of the tests are also given. 

Key Words: Brownian Motion; Karhunen-Loeve Expansion) Locally Efficient Test) 

Near-Integrated Process) Ornstel:n-Uhlenbeck Process, Unit Root 



1 Introduction 

Consider a time series model generated by 

Yt :::;: P Yt -1 + Wt (1) 

where Yo :::;: ° and Wt is a zero mea,n error process satisfying suitable assumptions. 

The parameter p dominantly specifies the long-run behavior of the time series. This 

paper deals with testing for a unit root, that is p ::;: 1, while the alternatives Ipl < 1 

and Ipl > 1 mean stability and explosiveness, respectively. 

The problem of testing for a unit root has been attracting a great deal of at­

tention of many authors. Fuller (1976) brought the problem explicitly into the 

literature. Dickey & Fuller (1979,1981) examined the properties of the Gaussian 

maximum likelihood estimator of p and of the likelihood ratio statistics a.ssuming 

the autoregressive models for Yt in (1). Said.& Dickey (1981,1984), Solo (1984) and 

Hall (1989) are among those who proposed a variety of testing procedures assuming 

general classes of ARMA models for Yt and investigated their asymptotic behavior 

under the null hypothesis. Phillips (1987a) proposed a test procedure assuming a 

quite general class of stocha,stic processes for the error term. 

Suppose, for a while, that Wj is a zero mean Gaussian white noise with Etu; :::;: o~. 

The maximum likelihood estimator (MLE) of P is the least squares estimator (LSE) 

p, and the loglikelihood ratio statistic A for the hypothesis p :::;: Po is approximately 

ZY'L1(P - po)2/s2, the squared deviation of the LSE adjusted by the observed 

Fisher-Information, where 8 2 :::;: T- 1 L:(Yt - PYt_I)2. The asymptotic distribution 

of P ( VVhite (1958), Dickey & Fuller (1979) ) a.nd /\ ( Dickey & Fuller (1981) ) 

under the null hypothesis p = 1 are ratios of some functionals of the standa.rd 

Brownian motion {W(r),r E [O,l}}: T(j3- p)':!:'" JW(r)dW(r)j JW(r?dr and 

A ..:!.,. {] Vv( r)dW( r)p I ] TlV( r?dr, respectively, where and throughout this paper 

,.:!:.,., denotes the convergence in distribution, ,.£,., denotes the convergence in prob-

ability a.nd integrals are over the interval [0, I} unless explicitly indicated. On the 
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other hand, it is well known that {Tj(l- p2)}1/2(p_ p) ~ N(O, 1\ if Ipl < L When 

Ipl> 1, it is also shmvn that the limiting distribution of p is a Cauchy distribution 

(White (1958») a.nd that of ). is X2(1) distribution (\tVhite (1958) and Anderson 

(1959)). 

The gap of the asymptotic distributions of this kind is filled with the class of 

near-integrated processes, in which the parameter p is defined by p =:;: exp( -aIT) 

or by 

p == 1- afT, (2) 

which are equivalent in the limit. This class of models was considered by many 

authors, e. g. Ahtola & Tiao (1984)) Chan & Wei (1987), Phillips(1987b), and 

Phillips &; Penon (1988)) mainly as local alternatives in the analysis of a unit root 

and has been useful in power studies. 

Define the normalized near-integrated process YT( T) == Y[TTJiTl/2 j T E [0, 1], 

where raj denotes the largest integer not exceeding a. Then it is a special case of 

Chan (1988) that YT( T)/ (Jw converges weakly to the Ornstein-Uhlenbeck process 

in D[O, 1], the space of functions x on [0,1] that are right-continuous and have left~ 

hand limits. The Ornstein-Uhlenbeck process is a one-parameter family of stochastic 

processes {X 0'( r» -00 < a < 00) 0 ::; r ::; 1} defined by the \tViener integral 

(3) 

and is known to be the solution to the stochastic differential equation 

dX(r) + aX(T)dr:::: dW(r)) (4) 

with initial condition X(O) =: O. 

Rewriting (1) with (2) as 

(5) 

2 



where L1 is the difference operator, we see that (4) is a continuous time parameter 

analogue of (1), Hence we could expect Cl, close relation between the inference on the 

near-integrated process (1) with p defined by (2) and that on the Ornstein~ Uhlenbeck 

process (3). 

Indeed, it has been well established that the loglikelihood function of X( r) -

XO!( T) with respect to the Vlliener measure is given by 

(6) 

where the integral in the second term 18 interpreted as the Ito's integral : 

J X(r)dX(T) = (X(I? - 1)/2. The MLE of Cl' for the Ornstein-Uhlenbeck pro~ 

cess is then given by ac ::::: - J X(T)dX(r)j J X(r)2dr, while the NILE of Cl' for (5) 

is the LSE 6: = _T-1 I: Yt_ 1LlYt/(T-2 1: yi-l)' Obviously, 6: is the discrete time 

analogue of ac. -VVe can also show that 

L e. to the same distribution as ac. First the denominator of 0: is expressed as 

J ¥T( r)2dr which is a continuous functional of YT( r), and thus converges in distri­

bution to its continuous time counterpart 0"; J XO!( T )2dT, since YT( r) .:!,. (YwXO!( r) 

in D[O, I} and hence the continuous mapping theorem in Billingsley (1968) applies. 

We can also show the convergence of the numerator as follows, though it is rather 

indirect. It is easy to see that twice the numerator of it is 

(7) 

of which the :first term converges in distribution to 0"~XO!(1)2 by the same argument 

as above and the second term converges to 0"; = Ew; in probability by the law 

of large numbers. Therefore the numerator of it converges in distribution to its 

continuous time counterpart too. Though we have only discussed the estimation of 



a so far) it is clear that similar argument could be given to the likelihood ratio test 

statistics 1\ for a unit root to show that 

A d {JXa:(r)dXAr)p 
-+Aa::;:: JXa:(r)2dr 

Penon (1991) argued this kind of similarity in detail. 

It is worth noting that the asymptotic null distribution of each of the test statis­

tics proposed so far is either of Ao and Ao according as it is essentially an estimate 

of p or a likelihood ratio type statistic. Hence extensive analyses of these two distri­

bution are given by Satchell (1984)) Evans & Savin (1981) and others. There does 

not seem to have been enough power studies on previously proposed test procedures 

under local alternatives, especially in the parametric framework. However, it might 

well be conjectured that every reasonable inference has the same asymptotic perfor­

mance as the likelihood based procedure under the simplest case. Therefore we say 

that a,n estimator of p or a test for unit root is locally efficient if it is asymptotically 

distributed as Aa: or Aa:) respectively, for all finite c¥. 

Now let us proceed further along this line by weakening the assumption for the 

error term. Phillips (1987b) proved under a set of fairly mild conditions on W(, which 

are satisfied by the stationary ARMA models, a wide class of linear processes and 

others, that the normalized near-integrated process ¥T(r) converges to O'Xa(r) for 

each r E [O,1L where the so-called long run variance (J2 == limT-+oo VCSi=l 'tflt)/T 

is assumed to exist and be strictly positive. Later we show the weak convergence 

of YT( r) in the space D[O, I} by a slight modification of his proof. Hence argu­

ments similar to what we have seen above for the case of Gaussian white noise 

error can be traced with (J~ replaced by 0'2 except one point ; E( llYt? IT in 

the alternative expression (7) of the numerator of 0: converges in probability to 

(J5 == IimT--+oo T~l L: Ew; instead of (J2. Phillips (1987a) and Phillips & Perron 

(1988) proposed to collect the difference by estimating (J2 using the sample autoco­

variance functions. 
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In this paper we shall persist in the analogy between the nea,r-integrated process 

and the Ornstein- Uhlenbeck process in order to construct locally efficient tests for 

a unit root. The basic idea is the following: Firstly, we pay attention to the 

fact that YT( r) converges, irrespective of the probabilistic structure of the error 

term W1, to the same limit which is specified by the parameter et and (T2. This 

necessarily means that the short mnge properties of the data has little information 

on a and that inference on a would be made properly based only on the long range 

properties of the data at least in the asymptotic limit. That the behavior of the 

periodograms with near zero frequencies reflects the long range property of time 

series has been recognized and made use of in several papers in relation to co­

integration analysis, see Phillips & Ouliaris (1988) and Phillips (1988) for example. 

However, the periodograms employed in all of these papers are the conventional ones 

which are based on the spectral theory of stationary processes. It is evident that the 

spectral theory is useful because of its property of simultaneous orthogonalization 

of the covariance matrices of all the stationary processes. Although, as is seen later, 

in the family of near-integrated processes this eminent property unfortunately does 

not hold, we could expect that the transformations associated with the orthogonal 

expansion of the Brownian motion known as the Karhunen-Loeve expansion, e. g. 

Wong (1971), would still enjoy some good property for inference of the Ornstein­

Uhlenbeck process and the near-integrated process. Secondly, the breakdown of the 

analogy comes from the irregularity comprised in the Ito's integral in (6) which 

hinders the direct application of the continuous mapping theorem. So if we have 

an efficient alternative estimator of Cl: for the parameter of the Ornstein-Uhlenbeck 

process as rather a smooth functional of the sample path, then we might well expect 

that its discrete time analogue has the same asymptotic property as !le. From this 

point, the use of periodograms with near zero frequencies would also have a merit 

because they are rather smooth functions of YT (r). 
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This idea is implemented in the rest of the paper as follows: Section 2 is pre­

liminary, where we discuss convergence of near-integrated process to the Ornstein­

Uhlenbeck process and the orthogonal expansion of the Ornstein-Uhlenbeck process. 

In section 3, we derive an approximate expression to its likelihood function in the 

frequency domain, that is) in terms of the transformations corresponding to the 

Karhunen-Loeve expansion of the Brownian motion. Two test statistics for the 

Brownian motion against the Ornstein-Uhlenbeck process are given based on the 

approximate likelihood and their properties are discussed. Section 4 deals with 

tests for a unit root which are naturally suggested by the findings of the preceding 

section. VVe show local efficiency and consistency of our tests. In the final section, 

we give miscellaneous remarks. 

2 Preliminaries 

We consider the near-integrated process generated by (1) with p defined by (2). 

Following the framework employed by Phillips (1987b), we assume that the error 

terms Wt satisfy the following conditions with j3 > 2: 

(i). E(Wt) = 0 for all t > 0 and SUPt E/w;,61 < 00. 

(iii). {wtHO is strongly mixing with mixing coefficients Fm satisfying Z~ 'T~-2/,6 < 

00. 

We show weak convergence ofthe near-integrated process to the Ornstein-Uhlenbeck 

process which is an extension of Lemma 1 (a) of Phillips (1987b) to function space. 

Let WT( T) = z~~1 wdTl/2, T E [0,1], be the normalized sum of the error terms. 
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Lemma 1 Suppose that WT() converges weakly to the Brownian motion o-WU and 

SUPt EIWt I < 00, then the process YT( r) = Y[TT]IT 1/ 2 , r E [0,1], converges weakly to 

o-Xo,('), the Ornstein-Uhlenbeck process. 

Herrndorf (1984) proved that under the above assumptions (i)-(iii) l!VT (·) converges 

weakly to 0-W (-). Hence this lemma implies weak convergence of YT (-) to 0-X 0'(.), 

which is the result that our argument in this paper depends upon. 

ProoJ: By definition of YT( r), we have 

[TT] 
YT(T) = Y[TT]IT1/2 = I)1- ;)[TT]-1 W t/T1/2 

1=1 
= iT e-O'(T-T')dWT( T') + I: c( T, t)Uh/T1/ 2, 

• 0 t::;[TT] 
(8) 

where we put c( r, t) = {(l - a/T)[TT]-t - e-O'(T-t/T)}. By integration by parts, we 

have 

iT e-O'(T-T')dVf;TT( r') = WT( r) + a loT e-O'(r-T')WT( r')dT'. 

Since a function J : D[O,l] H D[O,l] which is defined by J(x)(r) = x(r) + 
a JOT e-O'(T-T')x( r')dr', is continuous on the support of the Wiener measure C[O, 1] C 

d D[O,l] and WT(-) -+ o-W(·), the first term of the RHS of (8) converges weakly to 

o-{W( T) + a iT e-O'(T-T')W( T')dr'}, 

which turns out to be o-XO'(t) again by integration by parts. 

Thus it suffices to show that the remainder term, say R( T), converges in proba­

bility to 0 in the function space D[O, 1]. Since c( r, t) is bounded by C IT uniformly 

in T and t, where C is some constant, it holds that IR( r)/ :::; CT- 3/ 2 2:;=1 lw, I for 

every r E [0,1]. Taking the expectation we have 

Esup /R(T)I :s; CsupElwtl/T1/2 -+ 0, 
T t 
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which implies the desired statement.D 

HereoJter in this section we make a brief review of the orthogonal expansion of the 

Ornstein-Uhlenbeck process. By definition, it is obvious that EX<x( r) :;:: O. Simple 

calculation using expression (3) leads to the following formula for the covariance 

function: R",(r, T') == EXa(T)Xa(r') :::: 0:-1 exp{ -0'(7 V Tin sinh{a(T A r'n, where 

TV 7' and rAT' are the maximum and the minimum of r and r', respectively. X()( T) 

is lIV( T) the standard Brownian motion, and liffiot-+o Ro:( T, rl) == TArt J which is the 

familiar covariance function of the standard Brownian motion. 

The following Karhunen-Loeve expansion, see Loeve (1978), of the Ornstein­

Uhlenbeck process was derived by Chan (1988): The integral equation with Ro:( T) rl) 

as the kernel function 

J Ro:( r, T')1f( 7')dr' == A1f;( 7) (9) 

reduces to the differential equation ~(T) + (1/A - o:A)'I/;(7) ::::; 0, with boundary 

conditions '1/;(0) ::;:: 0 and a'l/J(l) + ~(1) ::= 0 where a dot over the symbol of a function 

denotes differentiation with respect to T. For (t > -I, the sequence of solutions to 

this equation is given by Ak ::= l/(aA+u)f) and cksinwkT, where Wk, k == 1,2, ... , are 

increasing positive solutions to tan W :::: -w / 0: and Ck'S are normalizing constants. 

Random variables Zk ::= J Xa( T )Ck sin Wit rdT, k == 1,2, .. , ) are mutually independent 

and satisfy EZ; :::: Ak and X<x(T) == E~l ZkCk sinwk7, where, and in the sequel of 

this paper, the infinite sum of random variables is understood as the limit in the 

mean square unless otherwise mentioned. When et S -1, an extra eigenvalue Ao and 

eigenfunction 'l/;o(r) of (9) are given by >'0:= 1/(0:2-w6) and '1/;0(7) == cosinhwQT 

where il.lO is the unique positive solution to tanh W == -w/a if 0'< -1 and by AO ::= 1 

and '1/;0 ( T) ;: hr if a == -1 respectively. 
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3 Likelihood of Ornstein-Uhlenbeck processes 

In this section, we shall derive a sequence of approximations to the likelihood func­

tion of the Ornstein- Uhlenbeck process in the frequency domain, which turns out to 

be equivalent to the exact one in the limit. 

We wish that the orthogonal transformations discussed in the previous section 

would take the role of the conventional periodogram in the analysis of Ornstein­

Uhlenbeck processes. This is in fact impossible since the transformations depend 

on the parameter CL Nevertheless, we fix a transformation corresponding to ex = 0, 

because it is sensible to consider the null case as speciaL We note that, when ex = 0, 

the eigenvalues of (9) have an explicit form Ak = C;;2 where Ck = 7r(k - 1/2) 

k = 1,2, ... ) and corresponding eigenfunctions are given by 

Assume that an observation X( T) on (J XO!( T) is given. According to the above 

eigenfunctions, we consider the following sequence of random variables: 

Zk = J X( 7)h sin CkTdT, k = 1,2, .... (10) 

We make a brief remark on some properties of the above transformation. Let g( T) be 

any continuous function defined on [0,1] satisfying g(O) = 0 and define an extension 

g*(T),T E [-2,2] of g by g*(T) = g(T),T E [0,1], g*(2 - t) = g(T),T E (1,2] and 

g*(T) = g*(-T),T E [-2,0). Then by symmetry some of the Fourier coefficients 

vanish, and the Fourier series for g*( T) is formally given by 

co 

I: ck-i2 sin CkT) 
k=l 

where Ck = Jo1 g(T)-i2sinCkT. This series converges if suitable additional condition 

is satisfied. Since g( T) E L2[O, 1 L the Parseval's equality 

J g(T?dT = I:d 
k=l 

9 



holds. 

We derive some properties of Zk'S. Substituting (3) into (10), we obtain 

Zk = er J .for 
e-O!(r-r'\lW( 1')-/2 sin Ck,dT 

(J J dVV(T') 1,1 e-O!(r-r' )j2sinCkTdT 

(J J 1k( TI)dW( TI), 

k = 1,2, ... ) where we put 

jk( T) = 2 V2C2 {Ck cos CkT + a sin CkT - (_1)(k-l)ae-O!(l-r)}. 
a + k 

The following formula for the covariance E ZkZ! = er2 J jk( T )11 ( T )dT is obtained by 

straightforward calculation: 

-2 - - _ bkl k+1 a(l + e- 20!) 
er EZkZI - a 2 + Cf - (-1) (a2 + Cf)(a2 + Cn] 

where k] l = 1,2, ... ] and <hi is the conventional Kronecker's delta. 

Next we show that 
K 

L zf ~ er2 J XO!(T)2dT 
k=l 

as K -+ 00 and that 
CXJ 

erXO!( T) = L ZkV2sin CkT. 
k=l 

By simple calculation we obtain 

E J XO!(T)2dT = J RO!(T] T)dT = 4~2(e-20! + 2a -1). 

(11) 

(12) 

(13) 

(14) 

It is easy to obtain the following Fourier coefficients of the function sinh aT : 

J sinh an!2 sin ek TdT = cosh a (-1 )k-1V2a/( 0'2+ Cf). Since sinh 0:1 satisfies Dini's 

condition at 1 = 1, we have a convergent Fourier series sinh a = cosh a 2:;;=1 
20'/( 0:2 + cD. Thus we have obtained 

Loo 2a 
tanh 0: = 2 2· 

0: +C 
k=l k 

(15) 
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By the ParsevaI's equality we also have 

J sinl? CtTdT = 2 cosh2 a f( a 2 + Cl)-2. 
k=l 

It is shown by straightforward manipulation using this identity, (11), (14) and (15) 

that 

(16) 

Now define 

K 

X(K)(T) = L ZkV2sinCkr, 
k=1 

then we easily obtain 

K J {o-XO!(r) - X<K)(r)}2dr = 0-2 J x Q (t)2dr - L zf 2:: 0. 
k=l 

By virtue of (16) the expectation of this tends to zero as K -:> 00, which implies 

(12). 

Inspecting the formula (11), it is obvious that 

00 00 

L L fEZkZd < 00. (17) 
k=l 1=1 

From this and that hh( r)1 :; V2 we see that the sequence X(K)( r), K = 1, ... , is 

fundamental for all r. Hence 

X(OO)(r) = Fm X(K)(r). 
11->00 

exists. Since the bound (17) is independent of r it is easy to see that the above 

convergence is uniform in r E [0, I}. Thus X(oo)O is continuous in mean square 

since it is the limit of uniformly convergent sequence of mean square continuous 
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processes X(K)(J On the other hand, we have 

/ E{crXa(r) - X(oo)(r)pdr 

= J E[{crXa(r) - X(K)(r)} + {X(K)(r) - X(OO) (r)}pdr 

< 2[/ E{crXa(r) - X(K)(r)pdr + J E{X(K)(r) - X(oo)(r)Pdr] 

-+ O. 

Therefore, we have shown that 

Since the integrand of the above equation is nonnegative and Xa( r) and X(oo)( r) 

are both mean square continuous, we have proved (13). 

Let Z(K) denote the vector (Z!, Z2, ... , ZK)' and cr2G K( a) its covariance matrix, 

K = 1,2,.... As the Ornstein-Uhlenbeck process is by definition a zero mean 

Gaussian process, the distribution of Z(K) is multivariate normal with E Z(In = 0 

and its loglikelihood function log f( Z(K); 0:, cr2 ) is given by 

K 2 1 1 - (K)I 1 - (K) -2 1ogcr -2"logIGK (0:)1- 2cr2 Z GK(o:t Z . (18) 

In view of (13), we might consider (18) as an approximation to the exact loglikelihood 

(6). In the following, we derive explicit forms for GK(at1 and IGK(o:)1 and their 

limiting properties as K -+ 00. By the formula (11) for the covariances, we see that 

GK(a) is expressed as GK(a) = diag{dKO } - 0:(1 + e-2a ) dK1(a) d~(l(O:), where 

dKO( 0:) and d K1( a) are K-dimensional vectors with k-th entries 1/(0:2 + Cn and 

(_1)k-l/(0:2 + CD) respectively. Its inverse and determinant are easily obtained: 

(19) 

and 

(20) 

12 



where we put il{ = diag{dKo(0:)}-ldK1(0:)= (I, -1, ... , (_l)K-l)' and 

(1 + e- 20') 
B [{( 0:) = ---:---'--::---:--:-'----:---:-

1 1 - 0:(1 + e-20') j'nrdKl(a) 

Thus we have obtained the following explicit form for (18) : 

where the summation is over k = 1 to K. 

The apparent complexity of the likelihood function can be considerably reduced 

in the limit K -+ 00 as follows: Integrating both side of (15) over the interval [0,0:], 

the following formula for the logarithm of the infinite product is also derived: 

00 2 

logcosh 0: == L 10g(1 + ~2)' 
k=l k 

(22) 

Let us define TK(O:) = Z~=K+120:/(0:2+Cf) the truncation error of (15). Then, not­

ing that jKd K1( 0:) = Z~=11/( 0: 2 + Cn, it is easy to derive from (15) that EK ( 0:) = 
2/{1 + TK(O:)} and from (22) that 10gIGK(0:)I/IGK(O)j = -0: + RK(O:) + 10g{1 + 

TK(O:)} , where RK(O:) = foO'TK(a)da. Evaluating the integral of 1/(x2 + 0:2 ), we ob­

tain a bound ITK(o:)1 < (2/7r)tan-1{10:IfCK }. From this it follows that TK(O:) -+ 0 

as Cif K -+ O. We then have 

!im EK(O:) = 2 
R-+oo 

(2.3) 

and 

(24) 

VVe make a few remarks concerning what are obtained above. Firstly, we see 

from (21) that the triplet (Z~=lZk,v'2Z~=l(-l)kZk)L~=lClZUK), which we 

denote by et! K, VK , SK), is sufficient for parameters (Ci, (72). The extra factors in the 

definition of f,k~ and SK are for later convenience. 
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Secondly, note that (12) and (13) imply that 

UK '£" (J"21
l Xa(r)2dr and Fm O'K = (J"Xa(l). 

R-+oo 

Using the fact that Z( a 2 + CD-l and :L( a 2 + Cf)-2 are convergent, we can 

also show that E(SK) = (J"2tr{GK(0)-lGK(a)}/K = (J"2 + O(l/K) and V(SK) = 

2(J"4tr{GK(0)-lGK(a)p/K2 = O(l/K). Thus, as K -t 00 

(UK, vi, Eh-):!:.. (J"2(/ Xa(r?dr, Xa(1)2, 1). (25) 

Thirdly, the equivalence of (18) to (6) in the limit K -t 00 can be shown roughly 

as follows: Suppose that the convergence (25) is almost sure) then in the space 

[2 the distribution of the sequence Zoo = (ZlJ Z2, ... ) is concentrated on the set 

((ZlJZ2,,,.) E [2;limK-+ooLr C;zi/K = (J"2}. By (23), (24) and (25) it is easily 

seen that the likelihood ratio log{f( Z(K) , a) (J"2) / f( Z(K), 0, (J"2)} converges to (6) on 

this set. This gives the equivalence of inference based on Z(oo) to that on the whole 

sample path. 

Hereafter we propose two tests for a = 0 based on Z(K) for finite K, which have 

the same property as Aa, the exact likelihood ratio test, in the limit K -t 00. It is 

quite natural that our tests should be based only on the minimal sufficient statistics 

(UK, Vi, SK). 

The first one is naive, Let D(l)(U,V) = (v -1)2/4u, It is obvious from (25) that 

-(l)(U-;' / Et V- 2 / Et ) d A v K 0K, K 0K -t a 

for all finite 0: as K -t 00. Thus the test based on D(l) has asymptotically the same 

property as the exact test. 

Secondly, we make more use of what we have seen above on the likelihood func­

tion of Z(K). The exact loglikelihood function (21) is highly complicated. However, 

in view of (19M20),(23) and (24) it is appropriate to approximate the loglikelihood 

function (18) by [K( a, (J"; U K, VK , SK), where 

lK(a, (J"; u, v, s) = -Klog(J" + a + ~ logIGK(O)I- ~(Ks + a 2u + av2 ). 
2 2(J" 
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For:l1xed a, lK(a,(7iU,v,S) is maximized with respect to (72 at soj{(a;u', v') where 

u' = u/ s and Vi = v2 j sand o-l( a; u', Vi) = 1 + (a 2u' + av')/ K. The maximizing 

procedure is then equivalent to maximizing the approximate loglikelihood ratio 

AK( a; u', Vi) = -K 10g{1 + ~( a 2u' + av')} + a. (26) 

Note that AK(±OO; u') Vi) = ±oo. This improper divergence of likelihood ratio to +00 

reflects the fact that our approximation to the loglikelihood is valid only if a/ K is 

smalL However, we are interested in testing the hypothesis a = O. So we need to pay 

attention only to the behavior of the likelihood function in such a neighbourhood 

of zero that the null distribution of the MLE for a is almost concentrated in it. 

Therefore we consider 

-(2) (U- /;; V- 2/5:; ) 
VK,R K OK, K K, 

h -(2) ( I ') '( I ') Th f 11 . L h were vK,R u ,v = maxaE[-R,R] AK a; u ,v. e 0 owmg emma gIves t e 

asymptotic distribution of this statistic: 

Lemma 2 Suppose that a sequence of random pairs (Ur!, Vn ) converges in distribu­

tion to (J Xa(r)2dr, Xa(1)2) as n -+ 00. Let Kn and Rn be sequences such that 

Proof: Differentiating AKn(a;Un , Vn ) with respect to a) we obtain 

(27) 

This reduces to a quadratic equation (Un/ Kn)a2 - 2(Un - Vn/2Kn)o: - (Vn -1) = o. 
Thus the local maximum of ).K" (a; Un) Vn) is) if exists, attained at 

(28) 
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Note that AKn(a;Ur"Vn) is maximized at either edge of [-Rn,RnJ or at &~~ E 

[-Rn, Rn]. Since by the assumption Un and V;, are of constant order, the sec­

ond term in the square root symbol in RHS of the above expression is OAll Kn} 

This implies that limn .-+oo P( &~:. is not real) = 0) that &~:. = -(Vn - 1 )/(2Un) + 
Op(l/ Kn) and that the other solution &(+) to (27) is Op(I<n). Thus we have that 

P( &~~ E [-Rn, Rn] and &(+) > Rn) -!- 1 and thus p(fi~LRJUnJ Vn) = 

/\( &~~; Un) Vn)) -!- 1. Finally by Taylor expansion of log(l + x) around 0 we obtain 

This completes the prooLD 

This Lemma implies that the test based on V}l?RKCUK/SK, Vj}/SK) ,where RK 

satisfies the conditions limK--too RK = 00 and limK.-+oo RK/K = 0, has asymptoti­

cally the same property as the exact likelihood ratio test too. 

4 Tests for a unit root 

This section deals with the discrete time counterparts of the tests given In the 

previous section. Proofs of all the Lemmata in this section are given in Appendix. 

We define a sequence of transformations 

T 
3/2" . c: . t - 1/2 

Zk = T- L.t v2Yt sm Ck T 
t=l 

k = 1,2) ... )T, (29) 

and statistics which are the discrete analogues of the sufficient statistics (U K) V K) S K) 

for the Ornstein-Uhlenbeck process 

K 

UK = LZ~ 
k=l 

K 

VI( v22)-ltzk 
k=l 
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and 
K 

SK = 2:) CkZk)2j K, 
k=l 

where Ck's are frequencies defined in section 2 and K = 1,2, .... We note that Ck's 

are different from the frequencies of the conventional finite Fourier transformation 

which are 2krr IT, k = 0,1, ... , [T /2]. 

By Lemma 1 and the note which follows the lemma, YTO ~ O"Xo{) so that it is 

easy to see that Zk ~ Zk,k = l, ... Kjointly. Hence (uK,il]{,h{) ~ CUK, VK,SK) 

for any fixed K. However, in order to achieve the local efficiency, it is clear that we 

need to let K go to infinity in such a way that convergence similar to (25) holds. 

The following lemma really shows how K should be increased with T : 

Lemma 3 Suppose that the error term W1 satisfies the assumption O)-(iii) and let 

KT be an non-decreasing sequence of positive integer such that for some E > 0 

(iv). limT-l-oo KT /T 1/ 2+E = 00 and 

Then 

It is thus clear from Lemma 2 that the two tests for unit root associated with 

the following statistics are both locally efficient : 

and 

where KT satisfies (iv) and RT satisfies limT-l-oo RT = 00 and limT-l-oo RT/KT = O. 

Though we are mainly interested in the local properties of our test procedures, 

the consistency is a minimum requirement for any test to be valid. To see what 
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happens if Yt is stable let us examine briefly the limiting behavior of ZK in the 

limit 0: -+ 00. We may argue from the formula for covariances among Zk that 

0:( Zl) Z2, ... , ZK) is distributed nearly as N(O, (J2 IK) if 0: is large. Thus Vll SK 

is Op(1/K) and SK/(KUK) ~ limx--+oo 2.: Cf/K3 = Jr2/3. This fact suggests the 

following Lemma 

Lemma 4 Suppose that Yt is generated by (1) with fixed Ipl < I, and that {wd and 

KT are the same as in Lemma 3. Then it holds that 

and 

(T2/KT)UKT ~(1-pt2(J2, 

(T2jKT2)SKT ~ (Jr2j3)(1-pt2a2 

(30) 

Thus we have that 1)1) j KT :=; (VT - I? j( 4KTUT) J:..,. Jr2/12, which implies the 

consistency of the test based on V(l}. 

As for v(2)) note that the proof to Lemma 2 gives how to maximize AKT (a; UT) VT) on 

[-RT) RT] given UT and VT. Also note that AK T ( 0:; UT) VT) is monotone increasing if 

(28) is not real. Indeed, it is easy to see from (30) that the quantity under the square 

root symbol in (28) converges to 1 - 7r 2/3 < 0 and hence limT--+oo P(AKT (0:; UT, VT) 

is monotone increasing in 0:) = 1. Therefore limT--+oo P(v(2) :=; AKT(RT; UT, VT )) :=; 1. 

It is obvious that 

since both UT and VT are Op(1/ KT). Thus we have proved the consistency of both 

of the two tests under stable alternatives. 
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Next we turn to the explosive case, The second term is dominant in (11) and 

the covariance matrix G K( et) is almost of rank 1 in the limit et -7 -00. So the 

distribution of Z(K) is one dimensional, i. e, Z(K) = Zl jK in the limit et -7 -00 

d h V- 2 2} T2 Z-2 U-2 KTZ- 2 d 5::;2 }T-1 ",K C 2 Z- 2 '" ( .... 2/3)}e<T2 Z-12 an ence K '" cs.. 1) K '" 1 an K rv cs.. L"k=1 -'k 1 " .l. . 

The following Lemma suggested by this fact really holds: 

Lemma 5 Under the same assumptions in Lemma 4 except that p > 1 instead of 

Ipl < 1) it holds that 

Put UT = UKT /SKT and VT = iJkT /SKT again. By direct calculation this Lemma 

implies that Z)1) / KT ~ (7r 2 - 6)2 /127r2 so that the test provided by 1)1) is consistent 

when p > L The Lemma also implies that 1 - VT /(2KTUT) ~ 0, VT - 1 ~ 

6/7[2 -1 < ° and KTuT .£... 3/7[2 > 0. Hence through inspection of (28) we see that 

limT -->00 P(>.KT (et; UT, VT) is monotone increasing in et) = L Since VT ~ 6/7r2 and 

UT = Op(1j KT)' we have that 

1- (KT/RT)log(l + RJ,uT/KT + RTvT/KT) 

~ 1 - 6/(7[2) > 0. 

Thus the test associated with 1/(2) is also consistent under the explosive alternatives, 

5 Discussions 

Testing for unit roots is intended for the pre-stage of model fitting, We test unit 

roots only to see whether difference of data is needed or not. Because near-integrated 

processes cover a wide class of models, i. e. most of the models conceivable, the 

necessity of differencing can be determined before the full analysis of data. If the 

unit root hypothesis is accepted, the differenced data should be analyzed. If it is 

rejected, then we fit a stationary model or some other models which do not include 
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the difference operation. The point is that once we get conclusion about differencing, 

we can apply any model to the differenced or undifferenced data according to the 

result of the test. The merit of the nonparametric approach like ours consists in 

this point. We note that, though estimators for 0: seems to be naturally suggested 

similarly to the test statistics, we should not or at least do not need to estimate 

0:. The reason for this is clear from the above remark. Also note that the above 

argument concerning the necessity of differencing is limited to the case of the model 

fitting for univariate time series; in the context of co-intergration analysis of multiple 

time series the problem of differencing is more complicated. 

In the parametric frameworks such as AR models, the likelihood-based approach 

is usually adopted and attention is paid automatically to the distribution of test 

statistics under the alternative hypothesis. Our tests are semi-parametric in the 

sense that we make use of the parametric family of the Ornstein-Uhlenbeck processes 

as that of the asymptotic distributions. Thus the alternative hypothesis was taken 

into account implicitly in the course of the construction of test statistics. As for 

the nonparametric test we should keep attention to the alternatives. The following 

pre-filtering method is an interesting counter example which shows the importance 

of consideration of the alternatives: Suppose the observed sequence Y1 is generated 

by (1) with p = L Assume ARMA models for Wt, that is Wt = 8(L)ft1 where f is 

a white noise sequence and 8(L) is a rational function of the lag operator L Vile 

can obtain an estimate 8( L) based on the differenced data i:::..Yt by some method. 

Suppose for simplicity that we estimate it exactly. Then we obtain the residual 

series Et = 8( Ltl i:::..Yt = ft. Define Zt = Z~'=l Et" Since Zt is the cumulative process 

of an i. i. d. sequence, the test statistic calculated from it is distributed as Ao, the 

Dickey-Fuller distribution. This seems quite a good test procedure. 

Next, let us consider the alternative case. Assume the same framework as above 

except that we assume that p = O. VVe apply the above procedure to the data Yt. 

By assumption, i:::..Y1 = ilWt = 8*(L)ft where 8*(L) = (1- L)8(L). Again, suppose 
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that we estimate 8*(L) exactly by 8*(L) and obtain the residual Et = 8*(Lt 1 ,6.Yt = 
Et. It is clear that the test based on Zt = Z~'=l Et' is distributed as Ao too. Thus 

this test has intrinsically no power, since the fitting of 8*(L) is designed to produce 

white noise as residual sequence whatever we start with. 

Two tests have been proposed. Lemma 2 gives only the first order asymp­

toties of the test. So it does not explicitly imply any superiority of either of 

V(l)(UK I SK) fiX I SK) and f)~\[h-I SK) Vi! SK). However, since the latter is the like­

lihood ratio at least approximately, we could expect that it has good properties in 

some sense. The comparison of V(l) and v(2) is less conclusive. It turns out that v(l) 

is obtained by the maximizing A(l) = -{a2 u2 +a(v-1)L where we put u = uKrlsKr 

and v = VJ(T!SKT. Hence if ('11., v) is distributed as U XO!(t)Zdt,XO!(1)2), A(l) is the 

exact loglikelihood ratio of (u, v) and V(l) is preferable. While if (u) v) is distributed 

as (UKrISKr, VXrISKr), v(2) may be recommended. Therefore the conclusion de­

pends on which of the above two the true distribution of (u, v) is closer to. This 

requires inspection of the terms of order 1/ KT which we neglected in the proof of 

Lemma 3 and so far we have had no conclusion on this problem. 
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Appendix 

We often deal with quantities which depend on the sample size T, the number of z's 

K or KT) indices t = 1" .. , T and k = 1, ... ,}{ or KT and so on. By expressions like 

aid;:::;: O(lJk) we mean that laktl is bounded by Rlk for some constant R uniformly 

in t, T and so on. We also denote by O(l/k) terms bounded by Rjk uniformly in 

t, T and so on. 

Each Zk is expressed as follows in terms of Wt : 

TiT 

Zk :::::: T- 3/ Z,!2 L I: pi-r 'Wr sin Ck t -T1J2 ;:: I: bkiUlt, 
t;::::l 7::::1 t;::::l 

(a.1 ) 

The following Lemma is useful in the course of proving the Lemmata in Section 4. 

Lemma A.1 Let Ir C [I, T] be an interval and IIrI denote the number of integers 

,in Ir. Then the following hold : 

(a). 

(b ). 

T-m 

(c ). El I)WtWi+m - EWtWt+m)1 :::::: O{(m1/21'~-2/tl + 1)JT1/2} 
1;::::1 

(cl). El where 2 < rn < 2T. - -

(e). 
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Proof : The following bounds for the moments are derived from Theorem 17.2.2 of 

Ibra.gimov and Linnik (1971) together with assumption (i) : 

(a.2) 

(a.3) 

VVe note that, though the Theorem assumes strict stationarity for Wf, stationarity 

is not used in its proof so that (a.2) and (a.3) are true. Thus by assumption (iii) we 

have 

00 

I: sup IEW(WHml < 00 

1"11=0 1 

and 
00 

L sup ICOV(W11'Uh2,Wt3WtJI<oo 
m=O 1192 h+m=13 94 

From (a.4), (a) and (b) are easily derived. 

(c): Vve evaluate 

T T t+m-l T 

(aA) 

.E Cov( W,Wt+rr" '\1h'Wt'+m) :;:; 2~) L + L ) Cov( WtWi+r:r" Wjl'UJt'+m) 

1<t<1'<T t=1 1':=1 j'=i+m 

The second part of the summation is bounded by 

T T T 

L L !COV(WtWi+m,Wj'Wt'+m)!:;:; L 0(1) = O(T) 
1==1 

by (a.5). As for the first part, we note that 

so that i.f t ::::; t' S t + m and m 2:: 0) 
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for some constant R. Hence 

T Hm-l 

L L ICov(w,'UJt+m, Wtl'Wt'+m)1 
1:::1 t':::1 

m-I m-I 

< RT{ 2(1-2/,8) + "", 2(1-2/,8) + '\""" 1-2/,8} - m1m ~ 1S1 L...t 1S1 . 
51:::0 

Therefore by assumption (iii) we obtain 

T-rn 

Var( I: lVtiUt+m) = O{(m1;[1-2f!) + l)/T}. 
1=1 

By the rela.tion between variance and mean absolute deviation, this implies (c). 

(cl): For simplicity of notation we assume without loss of generality that m :::; T. 

We evaluate VarCL1:StS[m/2] 'lL'tWm-t). It suffices to show that 

L Cov(WtWm-tl Wt,Wm-'I'):=;: O(T). 
ISt:St' :S[m/2] 

VVe have, similarly to the evaluation of the covariance in the proof of (c), that for 

1 :::; t S; t' :::; [m/2] 

< R( 1-2/,6 + 1-2/,8 1-2/,8 + 2(1-2/,6») 
'Ym -2i' 1m-2t 1m-21' 1t l -1 

1 since 1 ::; t ::; t' s:: m - t f s:: m - t, where R is some constant. Therefore by (aA) 

and (a.S) we have 

[m/2] [m/2] 

! 2: L Cov( WtWm-t, WtIWm-tl)1 

1:::1 1':::1 

[m/2} [m/2] 

< " ~ R( 1-2/,6 + 1-2//3 1-2//3 + 2(1-2//3)) 
L-t L 1m-2t' 'Ym -21 'Ym-2t' 1 11_t 

< 

t:;::1 1':::1 

[m/2] 

'"' R' L.t ' 
1:::1 
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where RI is some constant. This implies desired result. 

(e): By (a) and assumption (i) we have 

Proof of Lemma ;3 : Define <p(x) == X- 3( cos x - 1 + x2/2), then when p == 1 ~ exiT 

we have 

T2(1 + p2 _ 2pcos ~k) = a 2 + Cr(1- ipkT) (a.6) 

where ipkT ;::: 2(1 - exIT)<p( Ck/T)Ck/T + exiT, k == 1,2, .. " Since limr-ro <p( T) ;::: 0, 

it holds that 

'PkT;::: O(k/T) 

and hence limT---+oo sUPk::;KT lipkTI = O. Thus we have a bound for IbktL k ::; KT 

Ibktl ::; 2;j!{2Ck + lexl(l + min(l, e-O')} 
k 

(a.7) 

for sufficiently large T such that sUPk::;KT lipkTI < 1/2 and 11 + plj2 < 2, that is 

bkt == O(ljk). ( a.8) 

Convergence of UKT: Because UK ..::,. cr2UK for all fixed K and UK !:.,. J )CcJl(t)2dt by 

(25), it suffices to show that for any f> ° 

owing to Theorem 4.2 of Billingsley (1968). In the course of proving the above state~ 
K 

ment, we first fix K so that we may assume that KT ?: I<. Since I :Lk~K+l bktbks / :::;:: 

0(1/ K) by (a.8) and UKT - UK ?: 0, we have 

KT 

EIUKT ~ uKI == EE L bktht,Wt'Wtl;::: O(l/I<) 
t,t' k=K+l 
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because of (b) of Lemma A.L Hence, letting K tend to infinity, we have the desired 

assertion. 

Convergence of VKT: As in the case of UKT) we need only to show that 

!im lim sup P(IVKT - vJ(1 > f) == 0 
11 --+00 T-+oo 

for any f> O. Vie define 

T 

z~ = 2: b~lWt where 
1=1 

Now we show that 

,V2 t-1 
b'k1 ;= - cos Ck(--). 

Ck T 

(a.9) 

It is obvious from (a.6) that the second and the third term in (a.I) are 0(11 Cn = 

0(1/k2). The first term of (a.l) is 

h(1 + p)T sine Ck/2T)! {T2(1 + p2 - 2pcos Ck/T)} 

=== hCk(l + CPkT)/{c? + C;(1 + i.pkT)}, 

where CPkT = (1- a/2T)~(CkI2T) -1 and ~(r);= sinr/r. Since ~(r) is bounded 

and limr-+o rl{~(T) -I} == 0, we have 

CPkT = O( k /T). 

From this and (a. 7) we see that the difference between the first term of (a.l) and 

b'kt is bounded by 

V2{a2 + C~(Ji.pkTI + ICPkTI)}f[Cda 2 + Cf(l- 'PkT}] 

= O[{l + C;(k/T)}/C%] == 0(1/k3 + liT). 

Therefore we have shown (a.9). 

Define 
K 

vK = hI)-l)kzk = h'LBktWtJ 
k=l 1 
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where we put B'k1 == 2::=1(-1)k&kt. Then by (a.9) and(a)ofLemma(A.1) we obtain 

that Var(vK-vK) == O{(l/K +KjT)2} and Var(vKT -vKT ):::: O{(l/KT+KT/T?}. 

Hence it suffices to show that 

!im limirupP(lvK7' - VIr/ > f):=;: 0 
Ii. ---+00 T-+oo • 

( ahlO) 

for any f> O. Note that sin Ck(l- r) :::: (-ll-l cos Ck r, Put r :::: (T - t + 1 )/T and 

gI{(r) = 'Lr~=lsinCkr/Ck - L/:~lsinCk/Ck then B1(t == gJ{(r) + 'E~=lsinCk/Ck. 
Note that r.1[c;::.1 sin Ck/Ck ;;:;:: 'E~~l( -l)k-l/Ck is a convergent series and is 0(1) 

and tha.t 

I i: Cl sin et/ $1 f (-l)k-l l + J f (-1)1;-1 1 == O(l/K). 
k Cl; Cl; 

k=J{+l k=K+l k=KT+l 

We evaluate 9K( T) as 

( , . ~ . C' 'd I sm 1r n r d' j '". K JT . Tf I 

9K r) == ~ cos kT r == T 
1 k=l 1 2 sine 1r /2 )r' 

cos 11" K r' 1 (1 11" cos 11" K r' cos( 11" /2)r' d I 

== [21rKsin('1l'/2)1',L- + <IT 41rK{sin(1f/2)r'p r, 

v",here the last equality is obtained by integration by part. Let 0 < 15 < 1, then for 

15 ::::; r ::; 1 the RHS of the above equality is and thus 9K( r) is bounded by RI (K 62 ) 

for some constant R, since (2/11")r :$ sin r) for 0 ::s; T ::; 1f /2. 

Now let 11 = [1,T-TK- 1/ 3J, 12 :::: (T~TK-1/3,T-TKT-1/3] and Is = 
(T - T KT -1 / 3, T]. Note that we have a bound B'kt :::: O(log K) for all t J since 

bki :::: O(l/k). From the above bound for 9J((r) we have, B'kTt - Biet :::;; gKT(r)­

gK( r) + Ei~K+1( -lllCk == 0(K-1/3) in It, BkTt - B'kt :: gKr( r) - (Bkt -

Er:l(-l)k !Gk):::: O(logK) in 12 and B'KTt - Bjrt ::::; O(logKT) in Is. Therefore we 

obtain by (a) of Lemma A.1 

Var(L)BxTt - B'kt)vJt) == OU;-'4/3), 
tEh 

Var(l:(B]{r t - Bxt)Wt):::: O((logK)2/Kl/3) 
tElz 
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and 

Var([(BR~Tt - BXt)tUt):::: 0{(logKT)2jKT1/3} 
tEh 

since we assumed KT > K. These together imply (a.lO). 

Convergence of SKT: The outline of the proof is as follows BKT is a quadratic 

form 2:t,il(l:~;l bktbktl! KT )WtWtl. It is true that, roughly speaking, far off diagonal 

entries of this quadratic form vanish and nea.rly diagonal ones converge to unity as 

T --t 00. Hence ESKT is close to 2:;'tl =l EWtWt' which tends to 0'2, since the far off 

diagonal elements of the summand vanish too by the mixing assumption. Moreover 

because of the mixing condition, the law of large numbers holds for heT «c) of 

Lemma A.I) so that it converges to its limit of expectation. Implementation of this 

idea is given in the following: 

Define si< == K-1 E~=l(CkZk?j then 

K 

SK - sR~ :::: L K- 1 2: C~(bk1bktl - bk-tbkt l )iJJdh l • 

1,1' k 

Because of (a.8) and (a.9) we see that Cl(bktbkt' - b'ktb'kil) :::: 0(1/ k + kiT) and 

thus KT -1 Z~;l Cf(bktbkil - b'ktb'kil) = OOog KT/ KT + KT IT). Hence by (e) of 

Lemma A.l and the assumptions of Lemma 3, we obtain SKT - sKT .£.,. 0 as T -? 00. 

Therefore it suffices to show that s'h ~ 0'2. 

Put 

K . Tr 
r "'\"". 1 SIll 1r ii T 

')",K( T) :::: 11. -1 LJ cos Ck T = . I' 

It is obvious that 

and that 

K2sm'TiT 2 k=1 

.30 

( a.ll) 

(a.12) 



It is also clear that 

IdPr;;R{r)/drPI < IdPr;;}{(r)fdrP !T:::=O I 
}{ 

It is easy to see that 

== I( -1)p/2 K-1 L en :; (7r K)P /(p + 1) = O(KP)J 
k:::=l 

if p = 2,4, .... 

J( 1 I 1 
-* V }T-l "." e (t -) C' (t - ) - - -*(1) -*(2) 
s}{ = L.J 1. L..t L. cos k T cos Jk -r 'UJ-tWt' = S}{ + S K 

t,1' b=l 

In order to obtain that s;g) .E.:. 0-2, we show that 

and that 

( a.13) 

( a.14) 

(a.15) 

Let XM(t, t') be the indicator function for It - t'l :; AI and MT = (Tj KT ?/2. Then, 

s~~) - :z= WrVN 
t ,t' t ,1' 

Since r;;J{T(O) :::: 1 and (a.12), we see that r;;J(T(r) - 1 = r;;1(T((}r)r2 /2 for some 

0< (J < 1. Hence from (a.13) with p = 2 we obtain 

and by (b) of Lemma A.l 

E LXMT(t, t'){r;;J(T((t - t')/T) -1}wtw1' = O(KT/T). 
tf 
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'We also obta,in by (a.2) and (a.ll) that 

00 

for some constant R. Since this vanishes as NIT -+ 00, we have shown (a.14). 

As for (a.15), we see by (a.ll) and (c) of Lemma A.1 that 

T-l T/\(T-m) 

L I: Ih:KT(m/T)IElwtws - EWtwsl 
m=-T+l t=lV(l-m) 

T 

< L Ih:KT(m/T)IT-l/20(ml/2,~-2/;3 + 1) + O(T-1/ 2) 

T T 

= L O(m 1/2,;~-2/,6)/Tl/2 + T 1/ 2 j KT L O(1jm) + O(T-1/2). 

The first term converges to zero, since by the summability of 1;2/;3 we have 

T 

2)m/T)1,i2
'

;n- 2 /;3 -+ o. 
m=l 

The second term is clearly O(Tl/21ogT / KT). Thus the RHS of above equality tends 

to zero as T -+ 00 by the assumption of the Lemma for KT. 

We turn to showing that s~~) ~ o. VVe note that cos Ck(2 - r) = - cos Ckr and 

hence h:K(2- r) = -h:K(r). Since (aA) implies Lt+s=m IEwtWsl = O(T- 1 ), we have 

by (a.ll) 

T 

IEs1~)I::; 2 L Ih:KT(mjT)IO(T- 1 ) = O(logTjKT) 
m=O 

so that limT-+oo Es1~) = o. We also have by (d) of Lemma A.1 and (a.ll) that 

EI -*(2) _ E-*(2) I 
sKT sKT 

2T-2 
< L Ih:KT(m/T)1 E(I L (WttU s - EWtWs)l) 

T-l 
< 2 L Ih:KT(mjT)IO(T- 1/ 2) = O(T1/ 21ogT/KT). 

m=O 
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Thus we have shown that ;~~) - Es~;) .4 O. This completes the proof of Lemma 

3.0 

Proof of Lemma 4 : 

Let w; ::: (1 - p£t1Wt = i:!,-::lo l Wt-1', where £ is the lag operator. Since 

Ipl < 1 is fixed, (1) is equivalently expressed as 

We show w; satisfies some condtitions similar to assumptions (i)-(iii). 

By Minkowski' inequality and assumption (i), we have 

It is easily seen that 

and 

00 

Proof is given in the end of Appendix. 

(a.16) 

(a.17) 

(a.18) 

(a.19) 

N ate that the proof of Lemma A.l was given essentially based on the summability 

of moments given by (a.4) and (a.5). Thus it is easily confirmed that the statesments 

of Lemma A.1 with Wt and 1;'-1/2(3 in (c) replaced by w; and bm ) respectively, hold 

by virtue of (a.18) and (a.19). We prove the Lemma by evaluation of moments 
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somewhat similar to those in the proof of Lemma 3. Hereafter we write simply 

Wt ::::; tu; and Wt ::::; wt IT1/2 in order to make the similarity clear. 

Now we have 
T 

T - t,:;'v' Ck( 1)_ 
Zk == V 2 L.t sm T t - 2" w,. 

1=:1 

It is easy to see that 2:~~1( _l)k sin CkT ::::; sin 1r K(l- T)/ {2 sin Ck(l-1" )/2}. Hence 

T 

TV]{T :;::: hI: V]{TtWT-t+lJ 

1=1 

where VKT1 ::::; {sin 1rKT(t '- 1/2)/T}/{2sin 1r(t -1/2)J(2T)}. Note that 

(a.20) 

UT d' 'd 'h .. "",T ,,[T/KT] ""T B ( ) 
VlIe IVl et e summatlOn mto two parts as .L'=:l = 4-.ti=:l + wt=:[T/KT]+l' y a, 

of Lemma A.I, 

[T/KT) 

B( :L 'VJ(TtWT_t+1YJ::::; O(KT). 
1=:1 

The second part is evaluated using (a.18) and (a.20) as 

T 

Var( L VETtWT-Hd 

t::::[T/KT J+1 

< :E~==[T / KT J+l ZiMI:;::U 1Z.'KT1 !!vKTt I IlCov(tUT-t+1, WT-tl +1)1 

:5 :Z~c[T/ET1+l(Tlu)20(IIT) == O(KT), 

where the second inequality comes from (a.18). Thus we have proved that Eii1-T ::;::; 

O(KT). 

Proof of convergence T'2UKT / KT is quite similar to that of SIT in Lemma 3 except 

that limT--too T- 1 EL:, jl tUtWtl ::::: (1 - pt2(J2 instead of (a. 14), because 
I 

]{ 

T 2uKT I KT == 2)' KT -1 ~ sin C\t - ~) sin Ck (t' - ~ )WtWtl 
.t.-J Lt T 2 T 2 
1,t' k=l 

::::; L {KKT((t - t')fT) - hKt((t + t f - l)/T}wt iiJtI. 

t ,t' 
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Proof of convergence T 2sKT / KT2 is given similarly. We note that 

where we put S;;(l) = I:t;tl( _K~2)""'k{(t-t')/T}WtWtl) s;;(2) = 2:t,t'( _K~2)""'k{(t+ 

t' - 1 )/T}WtWtl. Therefore similar argument to that in the proof of convergence of 

SKT in Lemma 3 could be traced with ,,"K(T) replaced by -"''k(T)/K2 • By direct 

calculation we have 

""'k( T) = { 2}r2 (/ 2 (7rCOS7rT/2)2} () 
- If 1. - 7r 2) - (. 1)2 ""K T 2 2smlfT 2 

-{ 1f2 cos( 7rT /2) cos( If KT)} /(2 sin 1fT /2)2. 

Thus instead of (a.11) the following bound is available: 

(a.21 ) 

where R is some constant. 

To see that 

we note that 

that by (a.1.3) with p = 4 we have 

and that 

t ,t ' 
00 

< O( L 7m) -+ 0) 
m=[MT 1 
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since KT -2K.'kT ((t - t')/T) is bounded. Then similar argument to that in the proof 

of (a.14) gives desired equality. 

To show 

we need to evaluate ~~=l KT- 2K.}(T(m/T)O(m 1/ 2bm + 1). It is easily shown that 

Z~=o{l A (T/(mKT))} = O(T logT/ KT)' For P > 1 we have 

T 

E{lA(T/(mKT))p}=( 2: 1) + (T/KT)P 2:= l/mP=O(T/KT ). 

This implies 

T 

~ KT -2K.'kT (m,/T)O(1/Tl/2) = O(Tl/21ogT / KT). ( a.22) 
m=O 

Finally we have 

T 00 

:E /KT-2K.'kT(m/T)/O(ml/2bm)/Tl/2:::; R ~(m/T?/2bro, -+ o. 
m=O 

Hence by virtue of (c) of Lemma A.l we have that 

The evaluation of ES;;~2) and E/s;;P) - ES;;~2)/ is quite similar to that in the proof 

of Lemma 3 using (a.22). This completes the proof of Lemma 4. 0 

Proof of Lemma 5 : Since p > 1 the third term is clearly dominant in (a.l), we 

see that for k = I, ... ,KT 

Because the coefficient of each Zk converges to a common limit uniformly, the claims 

of the Lemma are obtained by simple calculation using the definition of VKT ) UKT 
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Proof of Lemma A.2 : 

1-1 5-1 

1&1,1+ml = 12.: L l+s' EW1-1,W1+m-s,1 
1'=05'=0 

< '" I It 1 +s' '" L.t P rlm+(1'-s')1 S; L.t I Ilvl Ilm+vl P 
v=-oo 

Thus (a.18) is proved as 

00 00 

Lilml < (1 - Ipl)-l L Ilkl L Ipllv l 
m=O k=-oo v<k 

00 

< (1 - Iplt2(1 + Ipl) L rlkl < 00. 

k=-oo 

where and in the sequel we put Uj = tj - tj, 1 S; j S; 4, for simplicity of notation. 

Let I = {(t~, t;, t;, t~); 0 S; tj < T, 1 S; j S; 4}, 10 = {(t~, t;, t;, t~) E I; max(ul, U2) ~ 

min( U3, U4)} and Ik = {(t~, t;, t~, t~) E I; max( Ul, U2) + k = min( U3, U4)}, k 

1, ... ,T - L Obviously, I = 10 U 11 U ... U iT-I. We denote {(t~, t;, t~, t~) E 

Ij Ul ~ U3)} simply by {Ul ~ U3} and so on. Note that 

We have a bound for the summation over {U1 ~ U4} 

< R(1 - Ipl)-3 L Iplm+2t'l = R(1 -lpl)-3(1 -lpl2t1 lplm 
1~ 
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where R is a constant such that sup ICov( WU1 WU2 , WU3 wu,JI :::; R. It is obvious that 

we have the same bounds for 2:U12U3 ptl +i~+tj+l~ Cov( WU1 WU2 J WU3 w1l4 ) and others. 

Hence 

I L pti+tS+1Ht~Cov( WU1 W1l2 , WU3 wu4 )1 :::; 4R(1 - 1,01)-3(1 - Ip!2t1/plm 
10 

Next let k > 0, then 

Note by (a.3) there is a constant R' such that sUPlk ICOV(WU1WU2)tlJu3WU'lJI < 
1 2 ';3 R'11e - I . Thus we have a bound 

and so on. Hence 

ILp1i+ti+1~+1~COV(WU1W1l2,WU3WU4)1::; 4R'li-2./,8(1-lpl)-3(1-lpI2tllPlm. 
Ik 

Finally we obtain 

00 

JCov( Wtl Wt2' W13W14)1 :::; 4(1-lpl)-:3(1-lpj2t 1 (R + R' L li-2IfJ )lplm. 
k=l 

This immediately implies (a,19).0 
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