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Abstract 

RECURSIVE ESTIMATION 

IN COINTEGRATED VAR-MODELS 

by 

Henrik Hansen * & Smen Iohansen ** 

October 1992 

* Institute of Economics, University of Copenhagen 

** Institute of Mathematical Statistics, University of Copenhagen 

Some methods for the evaluation of parameter constancy in co integrated VAR-models 

are discussed. Two different representations of the VAR-model are suggested; one in 

which all parameters in the model are estimated recursively, and another in which the 

short-run parameters are considered fixed and only the long-run parameters are 

estimated recursively. We suggest a procedure to evaluate the constancy of the estimated 

cointegration rank, and give a test of the constancy of the long-run parameters in the 

model for a given co integration rank. Finally, the asymptotic distribution of the non­

zero eigenvalues is given, and the time paths of these eigenvalues are graphed with 

pointwise asymptotic confidence bounds. 
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1. Introduction. 

In the last decade there has been a growing interest in non-stationary time series; 

especially in the concepts of integrated and cointegrated time series. The basic aspects 

of cointegration are explained in the paper by Engle and Granger (1987) and the 

analysis of cointegration in the framework of vector autoregressive models have been 

treated by Reinsel and Ahn (1990), Iohansen (1988,1991) and Iohansen and Iuselius 

(1990) among many others. The specific purpose of this paper is to consider graphical 

tests for parameter constancy in the cointegrated VAR-model by means of recursive 

estimation. 

Recursive estimation is a widely used tool in the evaluation of parameter constancy. 

In general the procedure is applied in three different ways; forward recursions, 

backward recursions and windows of fixed length. The procedure used in this paper is 

the most common procedure which is forward recursions. In the forward recursion 

procedure the parameters of the model are estimated based on a subsample covering 

t = 1, ... , To and the recursive formulae are used to update the parameter values stepwise 

from To to the full sample values. The outcome of the recursive estimation is a sample 

of parameter estimates and often some summary statistics as well. The time paths of the 

estimated parameters and the summary statistics are presented graphically and used as 

diagnostic tools in the model evaluation. It is important to note that the null-hypothesis 

is parameter constancy and that we do not formulate a specific alternative. We regard 

the recursive analysis as a misspecification test where the purpose is to detect possible 

non-constancies in the parameters when there is no prior knowledge of structural breaks 

or time dependencies in the parameters. 

In connection with the analysis of the cointegrated model we have two suggestions. 

Firstly, we suggest to treat the so called short -run parameters as fixed in the recursive 

estimation and secondly, we suggest to evaluate the time paths of the non-zero 

eigenvalues instead of all parameters in the model. Both suggestions are viewed as a 

mean to overcome the problems involved in the evaluation of the large number of 

estimated parameters in VAR-models. 

Analyzing the model with fixed short-run dynamics is in contrast to the normal 

procedure when error-correction models are tested for parameter constancy. In most 

papers the long-run parameters are regarded as given, due to the superconsistency, and 
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the tests deals with the constancy of the short-run dynamics and the adjustment 

parameters 1. The main idea in this paper is to reverse this strategy and examine the 

long-run parameters, i.e. the cointegration relations under the assumption of constant 

short-run parameters. 

The proposed test statistics are exemplified by a data set for the Danish wages 

analyzed in Hansen (1991). The data includes 8 endogenous series and the estimation 

period is 1973q1 to 1988q4. In the recursive analysis the initial period is 1973q1 to 

1984q 1. The empirical analysis in the present paper is only given as an illustration of 

the techniques. 

The remainder of the paper is organized as follows. Section 2 gives a brief summary 

of the estimation technique and a discussion of the reason for fixing the short-run 

parameters. The constancy of the estimated cointegration rank is evaluated in section 

3. In section 4 we propose an approximate test for the constancy of the cointegration 

space. Section 5 reports the asymptotic variance of the estimated non-zero eigenvalues 

and we discuss the information in the recursively estimated eigenvalues. Finally, section 

6 contains some concluding remarks. 

2. The cointegration model. 

In this section the estimation method is briefly described, mainly to highlight the 

treatment of the short-run dynamics. The model considered is a p-dimensional, k'th 

order VAR-model, written in error-correction form 

k-1 

f:.Xt = exfJ1Xt - 1 + L rif:.Xt - i + 'IF Dt + f.l + Et, 

i=l 

(t = 1, ... ,1). (2.1) 

The errors are assumed to be independent and Gaussian with mean zero and covariance 

matrix D, and the initial values X_k + 1,'" ,Xo are fixed. Dt consist of n deterministic 

series and predetermined stationary, ergodic variables. The parameters are ex and fJ 

(pxr), r 1, ... ,rk_1 (pxp), 'IF (pxn), f.l (pX1) and D (pxp) for some r = l, ... ,p. 

1. For examples of this procedure, see among others the special issue of Journal of Policy Modeling Vol. 14, 
1992. 
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To ease the presentation we introduce some notation. Let ZOt=LlXt, Zlt=Xt_1, 

Z2t=(LlX:_1, ... ,LlX:_k +1,D', 1/ and stack the parameters (r 1, ... ,r k-1' 'lr) in r. Using this 

notation the model is formulated as 

t= 1, ... ,T. (2.2) 

Maximum likelihood estimation of this model consists of a reduced rank regression2 

of ZOt on Zlt corrected for Z2t. Thus, we define the residuals Rat and Rlt by regression 

of ..6.Xt and Xt-1 on Z2t 

(2.3) 

where 

T 

M .. =T-1" Z. 7: 
I] ~ l~]t 

(2.4) 

t=l 

The remaining analysis can be based on the regression equation 

t= 1, ... ,T , (2.5) 

where the product moment matrices are given by 

T 

Si} T- 1LRiR;. (2.6) 

t=l 

The eigenvalues 1 > ~1 > ... > ~p > 0 are determined as solutions to the equation 

(2.7) 

and the eigenvectors V = (v1, ... ,vp) are normalized by V'Sl1V = 1. 

The maximum likelihood estimators of (3 and cy are given by 

2. See Anderson (1951). 
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(2.8) 

where it should be emphasized that only the space spanned by the vectors in (3 IS 

estimable without further identifying restrictions in (3. 

A more detailed description of the estimation technique IS gIven In Iohansen 

(1988,1991) and Iohansen & Iuselius (1990), and the main reason for this short 

summary is to discuss the difference between the representation (2.2), which we will 

call the "Z-representation", and the representation (2.5), called the "R-representation". 

Although the formulation of the two representations is merely an analytical tool used 

to concentrate the likelihood function, the difference between the two representations 

is very useful in the recursive estimation because the estimation can be based on either 

of the two. If the recursive estimation is based on the original series, the Z-representa­

tion, all parameters are free to vary over time; if instead the residual series ROt and Rlt 

are calculated using the full sample estimates of r, and the recursive estimation is 

performed using these series, the constancy of the parameters a, (3 is analyzed given 

the assumption of constant short-run dynamics. 

In other words, it seems as if there are three "natural" approaches to the recursive 

analysis of parameter constancy in a cointegrated model. The first is to re-estimate all 

parameters as in the Z-representation, the second is to fix the short-run and re-estimate 

the long-run, the R-representation and finally the third approach is to fix the long-run 

parameters and re-estimate the short-run. The first and second approach is treated in 

this paper, while the third is done in many other papers, cf. footnote 1. 

Another motivation for fixing the short-run parameters is that the unrestricted 

maximum likelihood procedure necessitates the inclusion of all relevant series in 

differences as well as levels. This often results in models with many insignificant 

parameters in r. Fixing the short-run parameters at the full sample values is one way 

of decreasing the variance in the estimated parameters and thereby centering the scope 

of the analysis to the long-run parameters. 

3. The rank test. 

The central parameter in the cointegration analysis is the cointegration rank, r, and 

although a structural break in the number of cointegrating relations is very unlikely, it 
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is important to have an idea of the degree of sample dependence in the estimated 

cointegration rank. 

The cointegration rank is determined by using a likelihood ratio test, called the trace­

test, given by 

p 

-2In(Q(rlp» -T L In(1-~i) (3.1) 

i=r+1 

and the main result regarding this test is that the statistic converge in distribution to a 

multivariate version of the Dickey-Fuller distribution, as shown in Iohansen (1988, 

1991) and Reinsel & Ahn (1990). 

In the recursive analysis another interesting result is that the p-r smallest eigenvalues 

in (2.7) converge to zero at the rate of T1, while the r largest eigenvalues in (2.7) 

converge to the solution to 

(3.2) 

in which {3'~11{3 is the asymptotic variance of {3'Rlt , ~oo is the asymptotic variance of 

ROt and {3'~1O is the asymptotic covariancematrix for {3'Rlt and ROt3 . This result 

implies that the rank test as a function of time will be upward sloping for r < r with 

a slope approximately equal to L f=f+ 1 ~i' whereas the statistics are approximately con-

stant for r ~ r. Plotting the test statistics against time is therefore an auxiliary tool in 

the evaluation of the cointegration rank. It should be emphasized that graphical 

evaluations have to be done with care, but this plot is probably a good supplement to 

the formal tests in small and moderate samples. 

In Figure 1 we show a plot of the trace-statistics against time. The left-hand side of 

the figure shows the statistics in the Z-representation, and the right-hand side shows the 

statistics based on the R-representation. All test statistics are scaled by a critical value, 

which means that values greater than unity imply rejection of the null-hypothesis, 

whereas values smaller than unity imply acceptance of the null. In the upper part of the 

figure the significance level is 5 % and in the lower part it is 10 % . 

3. See appendix B. 

6 



Figure 1 
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The figure shows a remarkable difference between the two representations of the 

model. The test statistics calculated for the Z-representation are generally downward 

sloping, and the estimated cointegration rank takes values from 6 to 4 indicating a 

substantial sample dependence. In contrast to this result the statistics calculated from 

the R-representation have time paths in reasonable accordance with the theory, and the 

cointegration rank is constantly equal to 4, both at the 5 % significance level and at the 

10 % significance level. 

A problem is how to interpret these results. Our answer being that we are actually 

asking two different questions. In the Z-representation the question is: Which rank 

would have been estimated if we only had observations from 1 to t, where t=To, ... ,T, 

while the R-representation poses the question of the constancy of the cointegration rank 

given the full sample estimates of the short-run dynamics. In our view the latter 

question is the relevant one in the recursive analysis, which is why we conclude that 

the estimated cointegration rank is constant in this model. 
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4. A test for the constancy of the cointegration space. 

Once the co integration rank is determined, the model is estimated given the co­

integration restriction, and this implies that the error-correction model can be evaluated 

applying most of the standard techniques, such as prediction tests. But tests based on 

the residuals or the recursive residuals give an evaluation of all parameters in the 

model, and even in the R-representation (2.5) we have not been able to isolate the long­

run parameters, (3, completely. Therefore, we suggest to use an approximate test for 

the constancy of the cointegration space. The approximate test is based on the likelihood 

ratio test for a known co integration vector which is developed in J ohansen & Juselius 

(1992). 

We consider the hypothesis 

H(3: sp(b) = sp((3) , (4.1) 

where b is a known p Xr matrix. In the recursive analysis we can perform a sequence 

of likelihood ratio tests of this hypothesis in which the estimate of (3 is based on 

different samples 1, ... ,t, for t=To, ... ,T. Thus, we find the roots in 

I 1-1 I pb Sl1 (t)b - b SlO(t)SOO (t)SOl (t)b I = 0, t=To,···,T, (4.2) 

and get a sequence of likelihood ratio statistics 

(4.3) 

where I\(t) are the roots of (4.2) and ~i(t) are the roots of the unrestricted problem (2.7) 

with the moment matrices based on the sample 1, ... , t. 

For each estimation period the LR-test has the same form, and in Johansen & Juselius 

(1992) it is shown that the statistic is asymptotically X2 distributed with (p-r)r degrees 

of freedom. The test given in (4.2) has a much simpler form than the test given in 

Johansen & Juselius (1992), this is due to the fact that we claim to know the whole 

co integration space instead of just a vector in the space. 

The use of this sequence of tests as a test for parameter constancy can be motivated 

by the following. If a p Xr matrix b is accepted to be in the space spanned by (3, at 

some significance level a, this means that b is in the (I-a) 100% confidence region for 
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S. If this holds for all estimated sub-samples we can not reject the hypothesis that (3 is 

constant. The remaining question is how to chose b, and we suggest to set b = SCT), 

where SCT) is the full-sample estimate of (3. This choice is based on the fact that SeT) 

is the estimate with the smallest sample variation. 

Figure 2 shows the approximate test calculated for both the Z- and the R-representa­

tion. In the figure the test statistics are scaled by the 5 % critical value. 

Figure 2 
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Once again we note a difference between the two representations. The hypothesis thatS(1) 

is in the space spanned by (3(t) is rejected in the Z-representation, but accepted for all 

subperiods in the R-representation. 

5. The time path of the eigenvalues. 

In recursive estimations the summary statistics, such as (4.3), are often accompanied 

by plots of the time paths of the estimated parameters. In the cointegrated model it is 

unclear which parameters to plot because it is only the cointegration space that is 
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estimated. If the cointegration rank is greater than one the individual elements of {3 can 

only be identified if we impose identifying restrictions, therefore, we cannot investigate 

the constancy of the elements of {3 at this stage of the analysis. One possibility is to plot 

the elements of the estimated total impact matrix IT = &~' since the elements of this 

matrix are identified. But the IT-matrix has dimension pXp giving rise to p2 plots of 

parameter estimates. In the model analyzed in the present paper we would have to 

evaluate 64 plots of estimated parameters. Instead of plotting the elements of IT we 

suggest to plot the time paths of the r largest eigenvalues. If the estimated eigenvectors 

are normalized such that ~/Sl1~ = I we have a simple relation between the eigenvalues, 

the loadings and the cointegration vectors 

(5.1) 

Thus, an evaluation of the time path Of;\i (i=I, ... ,r) can be seen as an evaluation of 

the i'th column of & or the i'th column of ~, and structural changes in ex or (3 will 

therefore be reflected in the estimated eigenvalues. 

In order to evaluate the constancy of the eigenvalues we have to know the distribution 

of the estimated eigenvalues. In the following two Theorems we find the asymptotic 

distribution of the estimator for Al under the assumption that Al is a single root of the 

equation (2.7). The results can easily be modified to hold for any of the r largest 

distinct roots. 

Theorem 1 determines the asymptotic distribution of T11z(;\I-Al)' as being Gaussian 

with mean zero and variance matrix determined by Var(SEE)' Var(Soo) and Cov(SwSoo)' 

Theorem 2 gives an expression of the asymptotic variance. 

THEOREM 1. Under the assumption that A 1 is a single root of eg. (2. 7) it holds that the 

increment ;\1 - Al has the asymptotic expansion 

(5.2) 

The proof is given in appendix C. 
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THEOREM 2. Under the assumption that A1 is a single root of eq. (2.7) the asymptotic 

distribution of T 11z (}..1 - AI) is Gaussian with mean zero and variance given by 

00 00 

4(1- Al)2( L 'Yu(m)2 - I: 'YuvCm)2 + AI) (5.3) 
m=1 m=l 

where "I u and "I uv are the autocovariance and crosscovariance function of the processes 

Ut and vt given by 

(5.4) 

and 

(5.5) 

PROOF: It follows from Theorem 1 that we have the representation 

(5.6) 

The processes Ut and \'t converge weakly to Ut and vt by the stationarity of ZOt' Z2t 

and Et, and we derive the result for the limiting processes Ut' vt. That is, we investigate 

instead of (5.6) 

(5.7) 

We define 'YuCm) = Cov(ut,U t_m), 'Yy(m) = Cov(vt,Vt_m) and 'YUy(m) = Cov(ut,Vt_m). In 

order to find the variance we note the following result which can be derived from 

Bartlett (1946) or Anderson (1971, Theorem 8.4.2., p.478) 
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(5.8) 

Since the process vt is independent, identically distributed we find that the variance is 

(Al(l-Al»-laiL;~fn;;~al = 1, see (A.6) and (A.8) in appendix A, and this implies 

that 

'YvCm) = {
1' m = 0 

0, m ~ 0 

Moreover 'YuvCm) = 0 if m < 0, and 

'YuvC0) = Var(ut,V t) 

= A~\l - AI) -'lzaiL;~E{ EiLlXt - E(LlXt I Z2t»}/L;~al 
-1 -11z I -1 -1 

= Al (1 - AI) alLOO OLOO a l 

= (1- Al)'1z 

In terms of these variables the asymptotic variance of T'Iz(~I-Al) is given by 

00 

2(1- Al)2 L ['Yu(mi + 'YvCmi - 2'YuvCmi] = 
m=-oo 

o 

In order to apply the results one has to estimate the asymptotic variance given by (5.3). 

The exact formula for the case of an autoregressive process looks forbidding, so the 

maximum likelihood estimator of the variance is difficult to calculate. Another 

possibility is to use a non-parametric estimator based upon the empirical autocovariance 

function of the process ROt> and it seems a good idea to use a kernel estimator of the 

asymptotic variance. 
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Figure 3 
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An example is the Bartlett kernel which suggests to use 

M 

4(1-~1)2(~1 + L (1-hlM)2(ru(h)2-r llvCh)2» 
h=l 

where 

T 

r u(h) T-1 L UtUt-h 
t=h 
T 

ruvCh) = T-1 L UtVt-h 
t=h 

for 

and 
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~ (-\ (1 -\)) -11z A Is -lA (-\ (1 -\)) -11z A Is-1(R ~ (3A IR ) 
Vt = 1\1 -1\1 a1 OOEt = 1\1 -1\1 a1 00 Ot- a It 

(5.12) 

Figure 3 shows the time paths of the eigenvalues with 95 % -confidence bounds. In the 

example we have used the Bartlett kernel where the bandwidth, M, has been set equal 

to 4, and the eigenvalues are estimated based on the R-representation. All the 

eigenvalues are constant, in particular there is no sign of any break-points or significant 

drift. The plot of the eigenvalues support the conclusion reached in section 4 where we 

accepted the hypothesis of a constant cointegration space. 

6. Concluding remarks. 

This paper addresses the issue of testing for the constancy of the long-run parameters 

in a cointegrated VAR-model. It is shown that the maximum likelihood estimation of 

cointegrated V AR-models with Gaussian errors leads to two "natural" representations 

of the model which can be used in the recursive analysis. In the first representation all 

parameters in the model are re-estimated in each period whereas only the long-run 

parameters are re-estimated in the second representation. The two representations shows 

substantially different results in the example used in the paper, and therefore the 

empirical purpose of the VAR-model becomes important. The requirement must be that 

all parameters are constant if the main purpose of the model is prediction of all 

variables in the system. On the other hand it seems a good idea to fix some of the 

parameters in order to narrow the scope to the central parameters if the VAR-model is 

the first step in a structural analysis and the model as such is over-parametrizied. 

The main issue in the paper is to present tests for the constancy of the cointegration 

space and we suggest two ways of testing. The two tests do not require an identification 

of the individual cointegration vectors and they are therefore applicable at an early stage 

of the empirical analysis. 

Appendix A. Some technical results. 

This appendix reports some technical results for easy reference. The results can be 

found in Johansen (1991 appendix A) and they are stated here without proofs. In 

Lemma A.I. we give some moment relations, which simplify the calculations when the 
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Lemma A.2 and A.3 summarize the properties of the process Xt . 

LEMMA A.I. The product moment matrices satisfy the relations 

where 

T 
S T -1"(",, - _I 

EE = L Elt, 
t=l 

T T 
T - 1"(",, - T/ = T-1"(",, T/ 

L Et"lt L Et"lt . 
t=l t=l 

When {3 is chosen such that {3/~11{3 = I and {3/~1O~~~~01{3 = A then 
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(A. 1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 



LEMMA A,2, Define '[ = Cf.k and let "!(p x (p-r-l)) be chosen orthogonal to T and {3, 

such that ((3,,,!,'[) span all of RP, Then itfollowsfrom the moving average representation 

of the process Xt that 

T- 11z Ix, ~w 
"! [Tu] "!ICW(U), for T ~ 00 and uE[O,l] 

T - 1 Ix, ~p -rl-ru 
'[ [Tu] I I , for T ~ 00 and uE [0,1] 

[Tu] 

T- 11z L Ei ~w W(u) , 
i=O 

LEMMA A.3, Define BT = (Y,T- 11z-:;.), and G' = (Gj,G2) where 

I I W J1 I BT(SlO - Sl1{3a) ~ 0 G(dW) 

T - 1B 1S B ~W' J01GGldU T 11 T 

and 

Appendix B. The asymptotic properties of the equation (2.7). 

(A,lO) 

(A,11) 

CA,12) 

CA,13) 

(A,14) 

(A,15) 

(A, 16) 

The results given in this appendix have previously been stated in Johansen (1988, 

1991), 
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We want to apply the asymptotic properties for the process Xt to discuss the 

asymptotic behavior of the equation 

(B.I) 

and hence the roots. 

We multiply (B.1) by the matrix AT = (iJ,y-'hBT) and its transposed to get 

= 0 (B.2) 

For T ~ 00 we apply Lemma A.3 and Lemma A.1 to get the limit 

[ 
iJ/"'£lO]_l [iJ /"'£1O] , _ r AI - A 

o "'£00 0 I - I 0 

This equation has p-r zero roots, and the remaining roots are the roots of (3.2). 

This shows that the p-r smallest eigenvalues of (B. 1) tend to zero and the r largest tend 

to the solution of (3.2). 

Appendix C. Proof of the results in section 5. 

In this appendix we first give a Lemma that contains an expansion of a determinant 

when the first term is zero. This Lemma is used in the proof of Theorem 1. 

LEMMA C.l. Let U and V be symmetric positive semidefinite matrices. If U has 

eigenvaZues P 1 > ... > Pp = 0, and eigenvectors v l' v2, .. . , vp then 

p-l 

f(t) = I U + tVI = t(.n Pi)V; VVp + 0(t2) 
l=l 

17 



(PI +tvll) tvI2 ... tvlp 

tV21 (P2 + tv22) ... tV2p 
f(t) = I = pcPp-ltvpp + O(t2) 0 

tvpJ tVp2 ... tvpp 

Proof of Theorem 1. 

In order to ease the notation in the proof we introduce the following: 

Denote (B.2) and (B.3) by 

IM-BI = 0 (C. 1) 

IM-BI = 0 (C.2) 

Introduce the function 

h(A) = IM-BI (C.3) 

and define the increments 

aAl = ~. - A· aA = 1 -A aB = B -B. ''i p , 
(C.4) 

The eigenvalue Al is a solution of h(:\) = 0, and the proof consists of expanding this 

equation around the point Al. Let us write (B.I) in the form 

o = h(:\I) = 1:\11 -B I 
I (AI +aAI)(A +aA) -(B + aB) I 

= I (AlA - B) + (aA1A + Al aA - aB + aAI aA) I 

The matrix (AlA-B) is singular with one eigenvalue equal to 0 and the corresponding 

eigenvector is the p-dimensional unit vector el' since 

where eI is the r-dimensional unit vector. 

We now apply Lemma C.I and (B.3) to find the expansion of h(:\I) in a neighbor­

hood of AI: 
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Thus the first order expansion Of;\1 - Al is given by 

aAl = -Ala({3iI:ll{31) + a({3iI:1OI:~~I:0l{31) + Op(T-I ) 

= -AI({3iSl1{31 -1) + ({31SlOS~~SOl{3I -AI) + Op(T- I ) 

(C.5) 

Next we derive an expression for ;\1 - Al which only involves the differential of nand 

I:QQ • We apply the results of Lemma A.I, and find from (A.l), (A.2), CA.3) and (A.4) 

that 

(C.6) 

(C.7) 

From (C.7) we find that 

(C.8) 

and 

Applying (C.6) to the latter expression, this becomes 

such that from (C.5) we get 

(C.9) 

Now eliminating I:ll and SEl from (C.8) and (C.9) we find that 

(C. IQ) 

which completes the proof of Theorem 1. o 
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