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ABSTRACT. The statistical analysis of some hypothesis in models for 
d-dimensional homogeneous Gausian diffusions (HGD's) is discussed, 
and expressions for the MLE's and LR test statistics are derived. Re­
garded as distributions, the HGD's themselves are derived as weak limits 
of autoregressive processes, and the connection between the continous 
time (diffusion) and the discrete time (autoregressive) case is analysed. 
MLE's and LR test statistics in the two cases are connected by weak 
convergence. 

Key words: Statistical models of Gaussian diffusions, approximation of autoregres­
sive models, estimation, the hypothesis of r cointegrating vectors. 



1. Introduction. 

The processes constituting the main topic of the present paper are defined 
as solutions to the stochastic differential equation 

dX(t) = (A + BX(t)) dt + D dW(t), X(O) = Xo, (1.1 ) 

where W is a standard r-dimensional Brownian motion, defined on some filtered 
probability space (0" F, (Ft), P) satisfying the "usual conditions", and where 

- A is a d x 1 coloumn vector. 
- B, Dare d x d- respectively d x r- matrices, r ~ d, D =1= O. 
- Xo is the initial state of the proces, i.e. a point in Rd. 

It is well-known, that the solution to (1.1) is a timehomogeneous diffusion, 
which is Gaussian (an HGD), see e.g. Jacobsen (1991),and we shall regard (1.1) 
as a dominated statistical model, when A and B (not D, see section 3) varies. 

Putting A = DDT, with MT denoting the transpose of M, the class of 
solutions to (1.1) is injectively parametrised by A,B and A. With P~oB A the 
distribution of the corresponding solution, we thus consider the model' , 

(P~~B,A E P(CRd[O;oo)) I (A,B,A) E Rd X Matd(R) x Ht(R)), (1.2) 

with P(E) denoting the Borel probabilities on a topological space E. Here, the 
notation is 

CRd [0; (0) : The space of continuous, R d-valued paths, defined on [0; (0); 

Matd(R) : The set of d x d-matrices with real coefficients; 

HJ(R) : The set of positive semidefinite d x d-matrices with real 

coefficients. 

we are going to study the diffusions (1.1) not only in their own right, but 
also as approximations of first order autoregressive (AR (1)) processes. thus 
the model (1.2) is approximated by a sequence of autoregressive models, and 
the main purpose of the paper is the show how problems of statistical inference 
for the approximating sequence are related to inference in the diffusion model 
(1.2). 

The approximations used are established by an invariance principle for weak 
convergence of AR(l)-processes to HGD's, which is presented in section 2. 
Section 3 is devoted to the problem of estmating the parameters in the diffu­
sion model, and in section 4, having treated first the corresponding estimation 
problem for the approximating models, we then give one of our main results, 
Theorem 4.2, to the effect that the sequence of maximum likelihood estimators 
(MLE's) for the approximating AR(l)-models, converge in distribution to the 
MLE in the limiting diffusion model. (The result is formulated in terms of weak 
convergence of continuous time processes of estimators, obtained by consider­
ing MLE's when observing an approximating AR(l)-process or an HGD on an 
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interval [0; t], where t varies in the open interval (0; (0). In the one-dimensional 
case, similar results has been obtained by Cox (1991). 

In the final section 5 we study the hypothesis that the linear drift matrix 
B in (1.1) be of reduced rank, together with the corresponding hypothesis for 
the AR(l )-models. The latter is closely related to the concept of cointegration 
known from the econometrics and time series litterature. Our work here is 
much inspired by Johansen (1991), and apart from briefly discussing a cointe-
gration theory for HGD's, we show the same type of consistency results as in 
section 4: The MLE's under the cointegration hypothesis for the AR(l )-models, 
together with the likelihood ratio test statistics, converge in distribution to the 
corresponding quantities for the diffusion model. 

2. An Invariance Principle for Autoregressive Processes. 

Consider a d-dimensional, discrete-time first order autoregressive process Y, 
satisfying 

(2.1 ) 

where E = (Ek)kEN is a noise-proces, consisting of independent, identically 
distributed random variables, with the 2.nd order moment representation 

(2.2) 

It is not assumed, that the distribution of El is Gaussian. Of course, .6. is the 
difference operator 

(.6.Yh = Yk - Yk - 1 , kEN. 

With (2.2) the only assumption about the error distribution, likelihood infer­
ence is out of the question. Yet, in some situations, it is possible to do some 
approximate likelihood inference. 

The idea is to obtain the model (1.2) as the limit of models of the form (2.1), 
where under the limit the time points of observations get close to each other. 
To make this exact, we shall do the following : 

Define processes yen) and x(n\ n EN, by 

Yo(n) := ylnYo, 

.6.Y,(n) := _1 A + 1.. BY,(n) + EkE N 
k Vii n k-l k, 

X (n)(t) '- _1 v(n) kEN t > 0 ·-Vii.l[ntl' , - . (2.3) 

Then x(n) jumps at the timepoints (k/nhEN and is a right-continuous, piece­
wise constant counterpart to a discrete-time process X, satisfying 

X~n) (V v E P(Rd\ 

.6.Xin) = (A + BXi~l).6.t + E~n), kEN, 
(2.4) 
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where (c1n )hEN are i.i.d with E(cin ») = 0, V(ci n ») = l/nA, and where fit = 
l/n. 

Now, if Cl ,...., Nd(O, A), c1n ) could be regarded as the increment over the time 
interval from (k - l)/n to k/n for a process of the form Al/2W, where W is 
a d-dimensional, standard Brownian motion, and A 1/2 is a square root of A. 
With an obvious notation (2.3) then translates into 

X (n) 
o rv V, (2.5) 

When n tends to infinity, fit becomes small, and it is tempting to replace 
difference with differential and write 

X(O) f'V V, 
1 

dX ( t) = (A + B X (t)) dt + A 2" dW( t), (2.6) 

suggesting that the proces x(n) converges in distribution on DRd [0,00), the 
space of Skorokhod- (cadlag-) paths, to the solution of (2.6). 

This idea works, even in the more general setting with non-Gaussian errors, 
since the following holds : 

Theorem 2.1. 
As n tends to inEnity, the sequence of processes (x(n»)nEN determined by 

(2.3), converges in distribution to the uniquely determined solution of the SDE 
(2.6), irrespectively of the distribution of Cl· 0 

Proof. 
We shall use Corollary 7.4.2 of Ethier & Kurtz (1986), which involves the 

probability transition function f-ln for the Markov Chain x(n) and its first and 
second order truncated moments. We have, that 

f-ln(X,,) = £(x + ~(A + Bx) + )nc l ). 

With 11 . 11 the Euclidean norm on R d, for each 8 > 0 it holds that 

nf-ln(x, {y: Ilx - YII ~ 8}) 
1 

= nP(II;:;(A + Bx) + )ncIII ~ 8). 

(2.7) 

Now if Z is a real-valued random variable with E(IZI) < 00, then 
nP(IZi > n) ---+ 0 as n ---+ 00. Using this and the fact that E(lIcIiJ2) < 00, 

it follows that (2.7) converges to zero, uniformly on compacts (in x). 
Putting 

an(x)=n r (y-x)(y-Xff-ln(x,dy) 
J{y:lly-x//9} 

(2.8) 

b(x) = A + Bx 

bn(x)=n r (y-x)f-ln(x,dy) 
J{y:lly- xIl9} 

(2.9) 
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we have 

uniformly on compacts: 
Take 11 . 1100 as the supremum norm on Matd(R). Then 

Ilan( x) - Alloo 
=IIE(n( ~(A + Bx) + )nCl)@21 {11~(A+Bx)+ Jn el ll 9 } - A)lloo 

::; ~ IIA + Bxl12 

+ In IIA + BxIIE(llclll) 

+ IIE(c~2111~(A+Bx)+ )netI19} - A)lloo 

::; ~IIA + Bxl12 

+ JnIIA + BxllE(IIclII) 

+ IIE(c~2111~(A+Bx)+ jne11l>1})1100 

(2.10) 

because Ec~2 = A. In (2.10), the two first terms converges to 0, uniformly on 
compacts, and the third term converges to 0, using dominated convergence. The 
convergence of bn ( x) follows similary. 

Now consider G~(R d), the space of smooth functions with compact support, 
and the differential operator 

C : G~(Rd) --+ G~(Rd) 

given by 
d d 

C f = t 2: Aijoiojf + 2: biod, 
i,j=l i=l 

where Oi = d/dxi, i = 1, ... , d, and b = (bi ) is the function 

b :Rd --+ Rd 

x f--+ A + Bx. 

The martingale problem for C is wellposed. This is a consequence of the 
fact, that a probability Q on the path-space GRd [0; 00) of continous functions 
solves the martingale problem for (C, v), iff the coordinate process (Xt)t>o 
solves the SDE (2.6) on the space (GRd [0; 00), B( GRd [0; 00 )), Q), see Rogers"& 
Williams (1987) V.19 - 22. Since (2.6) is an exact SDE, there exists exactly 
one probability defined on (GRd [0; 00), B( GRd [0,00 ))) solving the martingale 
problem for (C, v). 

Now, by Corollary 7.4.2 in Ethier & Kurtz (1986), the well-posedness and 
the three noted convergences of (2.7) - (2.9) are enough to ensure, that the 
processes (x(n»)nEN converge in distribution to the solution of the martingale 
problem for (C, v). As noted above this is exactly the unique solution of (2.6), 
and the theorem follows. 0 
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Remark. 

It is possible to generalize Theorem 2.1, assuming only that the error pro­

cesses E(n) = (L:lr::~ Ekk::::o converges in distribution to the Brownian mo­
tion A 1/2W. This is so, because the solutions to (2.3) may be written as 
x(n) = Fn(x(n)(o), E(n»), where the sequence offunctions (Fn) converge point­
wise on R d X Dad [0; (0) to the function F representing the strong solution to 
(2.6), X = F(X(O), W). 0 

Theorem 2.1 makes it possible to use the model (1.2) as an approximative 
model for the phenomenon described by the process (2.3). 

Limit theorems in sections 4 and 5 will justify, that it makes good sense to 
use the usual estimators (i.e. when the errors are Gaussian) and test statistics 
in the model for (2.3). 

3. The Full Diffusion Model: The Set-up and Estimation. 

Again, consider the space Gad [0; (0), equipped with the O"-algebra generated 
by the coordinate projections (Wt)t>o. Letting:Ft be the O"-algebra generated 
by (w s : 0 :S s :S t), we have the model 

for observing the process on [O;t] . In the sequel it is assumed, that t and the 
initial state Xo are fixed. 

Subsuming the initial condition, we put pt = p~oiJ A' pt = p:...o:!~ for some 
, , A,B,A 

arbitrary parameters A, B, A, A, jj and A, and write W = (Wt) for the canonical 
process. From Liptser and Shiryayev (1977), see also Jacobsen (1991), Theorem 
7.1, we have the following 

Theorem 3.1. 

(a) Either pt f'.J pt for all t > 0 or pt ...L pt for all t. > O. 

(b) If A is nonsingular, pt f'.J pt if and only if A = A, and in that case we 
have 

(3.1) 

where Zs = A+Bws, Zs = A+Bws. 0 
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Whether A is regular or not is easily determined from a given observation: 
Subject to P, the quadratic variation on [O;t] of w is tA, hence 

[2nt] 

I)Wk2-n - W(k-l)2- n )02 --t tA 
k=l 

(3.2) 

P5t BA -a.s. ,i.e. A can be read off from the observation. Therefore, in the 
re~ainder of this section, we make the following 

Assumption. 

A is known and non-singular. 0 

Thus, we arrive at the model 

(Pl~~,A E P(CRd[O;oo),Ft ) 1 A x B E Rd X Matd(R)) (3.3) 

with log-likelihood for observing a process X on [0, tj given by 

Rt(A,B) = It(A + BX(s)fA-1 dX(s) 

- t I t
(A+BX(s)fA- 1(A+BX(s))ds 

(3.4) 

based on the density with respect to the Brownian motion Pox~,~ starting at 
Xo. (On the left side of (3.4) we have suppressed the initial st~te Xo, and we 
shall continue to do so). 

Before finding the maximum-likelihood estimators, we introduce the follow­
mg 

Notation. 
Let Et and Vi denote the operators 

Et :DRd [0; 00) --t R d 

W f-7 t it w( S ) ds 

Vi :DRd[O; 00) --t Matd(R) 

w f-71\w(s) - E t (w))0 2 ds 

Note, that Et and Vi acts like expectation- and (except for a factor 1/ t) variance 
operators on the space of sample paths. 

For any kEN and any (J E Ht(R) we shall write < ',' >u and 11 . I/u for 

the inner product (u, v) f-7 uT (J-lv, resp. the norm u f-7 < u, u >~/2 on R k. 

Also, we shall denote the matrix norm U I--t trace(UTU) , U E Matk(R), by 

11·11*· 0 

6 



Maximizing £t partially in A gives us 

and the partially maximized likelihood 

£lA(t)(B),B) =2\IIX(t) - xoll~ + it Y(sfBTA- l dX(s) 

-! it IIBY(s)ll~ ds, 

(3.5) 

where the process Y is defined as 

Y(s) = X(s) - Et(X). 

Note, that although the process Y is not adapted to the filtration for X, the 
stochastic integral in (3.5) is well defined, treating Et(X) as a constant so that 
e. g. it yi(s) dxj(s) := (Xi., xj)(t) - E;(t)(Xj(t) - x~), 
using the "big dot" -notation for (Ito-) stochastic integrals. 

Before we carry on with the estimation of B, note that the matrix vt(X) 
is positive definite a.s. : Let w = X( w) be an observed path, for which the 
convergence (3.2) holds. Then 

yTvt(w)y = 0 

means, that yT(w(s) - Et(w)) vanishes on [O;t]. Thus, y is perpendicular to 
w(sd - W(S2) SI, s2 :::; t, so (3.2) gives us yT Ay = 0, i.e. y = O. 

Next,note that £t(A(t)(B), B) is a second order polynomial in B of the form 

£t(x) = const. + < p, x >rr -!/Ix,,;, 

where p is (Y • XT)T(t)1/t(X)-l E Matd(R), intepreted as a vector, and the 
matrix 0' is A @ vt(X)-I. 

Having a 0', which is positive definite, Rt attains its maximum at the unique 
point 

B(t) = p = (y., XT)T(t)vt(X)-l. 

thus the ML-estimator for (A, B) is 

(not depending on A), and the maximized log-likelihoodfunction becomes 

~(t) ~(t) 1 2 1 T 2 
£t(A ,B ) = 2t IIX(t) - Xo /lA + "2"(Y • X )(t)"AC9Vt (X)' (3.7) 
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( depending on A). We have proved 

Theorem 3.2. 
In the model (3.1), the ML-estimator for (A, B) exists with probability 1, 

does not depend on A and is given by (3.6). The maximal value of the log­
likelihood function is given by (3.7). 0 

The model (3.3) has been studied by among others Le Breton (1977) and 
Le Breton & Musiela (1985) in the special case A = O. In both papers the 
MLE jj(t) is derived, and asymptotics for t f--+ 00 is studied. The estimator for 
B obtained by the two authors can be found by substituting X for Y in the 
formula (3.6). 
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4. Estimation in the autoregressive Processes. Consistency. 

We first derive the estimator (A~ A)(n,t) in the model for observing x(n) 

on [O;t], working conditionally on the initial state, and assuming the errors 
to be Gaussian. Then it is shown, that whether the errors are Gaussian 
or not, the process (A~ A)(n) := (A~ A)~;'~) converges in distribution to 

(A,B,A):= (A,B,A)~~o, the process of the e;timators in the diffusion model 

found in section 3. Th~ result justifies the use of the functionals (A~ A)(n,t) 

as estimators in the general model (2.3), even though we do not know the 
distribution of the errors. 

In preparation for this, we need a result about weak convergence. From (2.5) 
we obtain the representation 

of the autoregressive processes with i.i.d., not necessarily Gaussian, errors, and 
similarly we write (2.6) as 

X(t) = X(O) + It(A+BX(s))dS+A~W(t). (4.2) 

With the representations (4.1) and (4.2) in mind, the following statement 
seems reasonable. 

Lemma 4.1. 
With x(n) , X defined as in (4.1) , respectively (4.2), the convergence 

holds, using the Skorokhod topology on Rd X DMatd(R)[O; 00). 0 

Warning. 

The convergence fails, if instead of the piecewise constant x(n) used here, 
a continuous version with linear interpolation is used. See Kurtz & Protter 
(1991), Example 1.2. 0 

Proof of Lemma 4.1. 
We use Theorem (2.2) of Kurtz & Protter (1991). At first we assume that v 

is degenerate at Xo: x(n)(o) = Xo E R d , nE N. Decompose x(n) as 
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with M(n)(t) := 2:~:tl dn) being the martingale part of the process, and 

v(n)(t) := Xo + J~ntJ/n(A + Bx(n)(s)) ds. We shall prove, that for all t 2: 0 

sup /lE([M(n)](t))/I < 00 ( 4.3) 
n 

and 
sup E(Tt(Vj(n»)) < 00 j = 1, ... ,d, ( 4.4) 

n 

holds, with [M(n)] the quadratic variation process of M(n), T(Vj(n») the total 

variation of Vj(n) , and as usual 11 . /I the Euclidean norm. (In the notation of 
Kurtz & Protter, we have taken 5 = 00, T~ = 00 for all a.) 

(4.3) is trivial, whence we turn to (4.4). Let Tt(v(n») denote the d-vector 

with coordinates Tt(Vj(n»).We shall show that 

sup EIITt(v(n»)11 < 00. ( 4.5) 
n 

To obtain this we need to express x(n) as a function of Xo and E(n) : Solving 
the difference equation (2.4) we get, that 

[ntJ 
x(n)(t) =(l + ~B)[ntJxO + -!i I)l + -!iB)[ntJ-iA 

i=l 

[ntJ 
+ 2:)l + -!iB)[ntJ-iE~n) 

i=l 

For s = kin it follows that 

and hence 

~v(n)(s) =~x(n)(s) _ E~n) 

=-!i(A + Bx(n)( k~l)) 

IITt(v(n»)II:::; L /I~v(n)(s)11 
0<8<t 

[ntl 

:::;-!i L(/lA + B(l + -!iB)k-lxO 
k=l 

k-l 
+ ~ LB(I + ~B)k-l-iAII) 

i=l 

[ntJ k-l 
+ -!i L 11 LB(I + -!iB)k-l-iE~n)ll· 

k=l i=l 
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The non-random term (4.6) converges, and the mean of the square of the 
random term (4.7) is 

[ntJ k-l 
E(~ L" LB(I + ~B)k-i-lEln)II)2 

k=l i=l 

[ntJ k-l 

::;~ LE/I LB(I + ~B)k-i-lE}n)112 
i=l i=l 

[ntl k-l 
=~ L LEIIB(I + ~B)k-i-lE~n)112 

k=l i=l 

[nt]-l 
::;¥IIBI12e2tIlBlltrace(A);2 L (k - 1), 

k=l 

where we use the independence of the errors to obtain (4.8). 

( 4.8) 

( 4.9) 

Since (4.9) converges, the expectation of (4.7) is bounded in n, and (4.5) 
follows. Thus we have proved the lemma in the case of a degenerate initial 
distribution. 

For general v, take f E Cb(DRd xMatd(R)[O; (0)) (f is continous and bound­
ed). Then 

E(f (x(n), xin) It x(n)T)) 

= J E(f(x(n),Xin) eX(n)T) I x(n)(o) = x)dv(x) 

-+ J E(f (X,X e XT) I X(O) = x) dv(x) 

=E(f (X, x. XT)) 

by the above and dominated convergence. The lemma follows. 0 

We return to the estimation problem in the n'th autoregressive model (2.3). 
Assuming Gaussian errors, the likelihood function is 

L(n)(A B A) = 
t " 

[nt] 

det( ~A)-¥ exp( -} L /lx(n)( *) - (~A + (I + ~B))x(n)( i~l )II~A)' 
i=l 

with a log-likelihood that is easily seen to have the form 
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[ntl 

f~n)(A, B, A) = - ¥log det( ~A) - ~ L IIx(n)( *) - x(n)( i~l )lli A 
i=l n 

~ 

+ 1 n (A+Bx(n)(s-)dx(n)(s) 

~ -~ 1 n II(A + Bx(n)(s)lIi ds, 

an expression which, as a function af A and B, has the same structure as 
the log-likelihood (3.4) for the diffusion model. It follows that the maximum 
likelihood estimator for (A, B) exists ( provided [ntJ 2:: d so that V[ntl/n(x(n») 
is non-singular), does not depend on A and is given by an expression similar 
to (3.6). Standard methods from multivariate analysis then gives the MLE for 
A. Defining the processes 

(A, E, A)(n)(t) :=(A(n,t), B(n,t), A(n,t»), 

(A, B, A)(t) :=(A(t) , B(t), A), 

we end up with the following 

Theorem 4.2. 

(a) In the model (2.3) with i.i.d. Gaussian errors, the MLE (A, B, A)(n,t) 
exist with probability 1, provided [nt] 2:: d, and coincides with the func­
tional (A(n,t) , B(n,t), A(n,t») given by 

A(n,t) = --1:L(x(n)(~) _ x(n») _ jj(n,t) E (x(n») 
[ntJ n 0 ¥ 

B(n,t) = (y_(n). x(n)Tf(t)v~(x(n»)-l 
n 

[ntl 

A(n,t) = [:tl 2:)x(n)( *) - x(n)( i~l ))@2 
i=l 

__ 1 (x(n)(t) _ x )@2 
[ntl 0 

__ l_jj(n,t)y(n) • x(n)T(t) 
[ntl - , 

where 
- yen) is the process x(n) - E~ (x(n»); 

n 

- ~(n) is the process rn( s) = y(n)( s-). 
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(b) The sequence (A, B, A)( n) is consistent in the sense that 

.-.....-...-() V --(A, B, A) n ----+ (A, B, A), (4.10) 

in the Skorokhod topology on DRd xMatd(R)xHt(R)(O; 00), irrespectively 
of the distribution of Cl· 0 

Remark. 

In part (b) itis essential to consider the open time interval (0; 00). With a con­
tinuous limit process, to show convergence on the Skorokhod space DE(O; 00), 
where E is any Polish space, amounts to showing convergence on Dels; t] for 
the processes restricted to [Si t] for any 0 < s < t < 00. 0 

Proof. 
The convergence of (A(n),B(n») follows directly from Lemma 4.1, SInce 

(A(n), B(n») is a function of (¥, x(n), X~n) ., x(n)T), which is a.s. continous 

in the limit (( X, X • XT). 
The essential part of A (n) is 

[nt) 

I)x(n)( *) _ x(n)( i~l ))02 

i=l 

which by Lemma 4.1 tends to the process 

in distribution, so that A (n) converges in distribution to the process t I--t A 
on DHtCR)(O; 00) with the Skorokhod topology. Since this is a continuous, 

non-stochastic process, the simultaneous convergence (4.10) follows. 0 

Theorem 4.2 generalizes Theorem 3.2 in Cox (1991). Cox deals with weak 
convergence in dimension 1 of variables similar to ours, but for t kept fixed. 

5. The Hypothesis of Reduced Rank of B. 
Consistency and relations to cointegration theory. 

Again, we consider the model 

X(O) = Xo, dX(t) = (A + BX(t))dt + At dW(t), 

still assuming A to be nonsingular. 
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5.1. Intepretation. 

We are interested in the hypothesis 

Hr : rank(B) ~ r, 

where r ~ d , or, in parametric terms: 

Hr : B = af3T, a, f3 E Matdxr(R). 

What makes Hr interesting is the following fact : 

Proposition 5.1. 

(5.2) 

(5.3) 

Suppose that A is regular, and that X is given by (5.1). Then the following 
are equivalent : 

(i) rank(B) ~ r. 
(ii) There exists VI, ... , Vd-r E Rd linearly independent, so that VT(X -xo) 

is a (d - r )-dimensional Brownian motion with a constant drift, where 
V denotes the matrix V = (VI : ... : Vd-r) with columns VI, ... , Vd-r' 

o 
Proof. 

(i) =} (ii) : There exists VI, ... ,Vd-r E R d lineary independent so that 

vTB=O, i=l, ... ,d-r. 

We claim that VT(X - xo) is a Brownian motion with constant drift 
V T A: According to Jacobsen (1991), Theorem 2.7, we must show, that 
the process U, where 

U(t) = VTX(t) - tVT A 

is a local martingale. But, since V T B = 0, 

dUet) = VT At dW(t), 

this is evident. 
(ii) =} (i) : Let e E Rd-r be the constant drift vector for VT(X - xo). Then the 

process 

U(t) := VT(X(t) - xo) - te 
is a martingale. Since 

dU = (VT A - e + VTBX)dt + VTAtdvV, 

it follows that 

VT A - e + VTBX(t) = 0 a.s., 

but since Vt(X) is a.s. positive definite for all t > 0, X must leave 
the affine subspace (VTB)-l(VT A - e), if this differs from Rd. Conse­
quently, V T B = 0 and hence rank( B) ~ r. 0 
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Theorem 5.1 shows, that rank(B) ::;; r ifi' there exists a (d - r)-dimensional 
component of the process, which acts like a "driving force" in the sense of a 
Brownian motion with a constant drift. Another interesting consequence of the 
hypothesis HT' relies on the notion of cointegration: 

5.2. Ouverture to Cointegration theory. 

Consider once again the autoregressive process (cf. (2.4)) 

x(n) = .lA + (1 + .lB)X _ + c:(n) 
k n n kl k' (5.4) 

with i.i.d. errors,possibly non-Gaussian, use the parametrisation (5.3) and 
define al., (31.. to be injective d x (d -7' )-matrices, with colUlllils perpendicular 
to the columns of a, resp. (3. 

Take <Pn(A) := 1 -A(1 + IlnB) for any complex number A, and make the fol­
lowing three assumptions, which are referred to as the hypothesis of the exist­
ence of r cointegration vectors : 

(al) rank( B) = r, so that a and (3 are injective ; 
(a2) det(<pn(A)) = 0 implies A = 1 or IAI > 1, so that the only allowed root 

not outside the closed unit disc is 1; 
(a3) aI(3l. is of full rank d - r. 

Then the so-called Granger representation (Engle & Granger (1987)) implies, 
that there exists two set of" directions" , the span of the columns of respectively 
al. and (3, so that in the first direction, the process aI x(n) is a random 
walk with a constant drift, and in the second direction, the process (3T x(n) 

is stationary (that is, admits a stationary initial distribution). 
The r columns of (3 are called the cointegrating vectors for B, and they are 

of course not uniquely determined. But the span of them is uniquely defined, 
and is called the cointegration space. 

The assumptions (al) - (a3) ensures, that the process (5.4) is integrated of 
order 1 (denoted 1(1)), that is, the difi'erenced process 6x(n) is stationary, and 
X( n) is non-stationary. We shall not go into details with these concepts apart 
from noting, that by substituting (a3) with other assumptions, one obtains 
1( k )-processes for k > 1. 

Note, that (al) implies 

span( B) =span( a ) , 

span( BT) =span((3) , 

and that (a2) is equivalent to 

(a2') spec(B) C {O}UK(-n,n), 

15 
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where spec( M) is the spectrum in the complex plane, defined as 

spec(M) = {A E C : Mz = Azfor somez E Cd \ {On, 

and where K( -n, n) = {z E C I Iz + nl < n}, Also, note that (a3) IS 

equivalent to 

(a3') (a...L, (3) form a base for Rd 

or 

(a3") (a,(3...L) form a base for R d , 

so that the" driving force" -part and the stationary part of the autoregressive 
describes it completely: To see this, note that (a3) is equivalent to (3I a...L being 
injective, so that a E Rd-r, a =I- 0 implies that (3I a...La =I- 0, i.e, that, writing 
< ',' > for the usual inner product on Rd, 

d-r d-r 

L ai < a...L,i, (3...L,j > = < L aia...L,i , (3...L,j > =I- 0 (5.6) 
i=l i=l 

for some j E {I, ... ,r}. Therefore 

span(a...L) n span((3...L)...L = span(a...L) n span((3) = 0, (5.7) 

so that the columns in a...L and (3 are linearly independent. Since both a...L and 
(3 are injective, (a3') follows. 

Conversely, (a3') implies (5.7), so that (5.6) holds for every a E Rd-r \ {O} 
and every choice of (3, which implies (a3). The equivalence of (a3') and (a3 1' ) 

is immediate. 

Theorem 5.2. 
There exists a,(3 E Matdxr(R), so that B = a(3T and the assumptions 

(al) - (a3) holds for some n EN, (and then automatically for all larger n), 
if and only if there exists a base (a, S) for R d, so that with a,S the matrices 
corresponding to the first d - r, respectively last r vectors of the base, the 
following two conditions hold: 

(bl) aTX is a (d - r)-dimensional Brownian motion with a constant drift; 
(b2) y := ST X is a homogeneous Gaussian diffusion, that admits an initial 

distribution that makes it stationary. 

If this is the case, (a, S) may be taken as (a...L, (3). The space span(S) equals 
the cointegration space for B. 0 
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In Theorem 5.2 and the preceding we have identified matrices with the bases 
consisting of the columns of the corresponding matrices. 

Proof. 
Suppose that (a1) - (a3) holds for some (fixed) n. Then, as in the proof of 

Theorem 5.1, the process aI X is Brownian with a constant drift. Next, note 
that the process Y := f3T X satisfies 

1 
dY(t) = ((3T A + f3T aY(t))dt + f3T Ai dW(t). 

Thus Y is itself a homogeneous Gaussian diffusion, and it is well known, that 
Y may be given an initial distribution that makes it stationary iff 

spec((3T a) C {A E e : reA < O}, (5.8) 

see e.g. Theorem 6.2. in Jacobsen (1991). We shall verify (5.8). 
Suppose that A E spec(f3T a), with a corresponding eigenvector z E er \ {O}. 

Then B(az) = a(f3Taz) = Aaz, so that A E {O} U K(-n,n). And A = 
o is impossible: If so, az E ker(B), the kernel space for B, which by (5.5) 
equals span(f3.L). But also az E span(a) holds, and since az -1= 0 by (a1), a 
contradiction to (a3") is reached. Taking (&, /J) as (a1-, (3) completes the first 
part of the proof. 

Conversely, suppose that (b1)-(b2) holds. Then (b1) and Theorem 5.2 forces 
rank(B)::; r. And rank(;?)< r ca~not occur: ~ 

Consider the process Y. Since 13 is of full rank r, Y is Markov with Gaussian 
transition P!obabilities of full rank r ( since those of X are of full rank d ). 
Therefore, Y must solve an SDE of the form 

~ ~ ~~ ~l ~ 

dY(t) = (A + BY(t))dt + Ai dW(t) 

(where W is standard r-di~~s~:mal BrowEian motion) with respect to a suit­
able filtration, for some A, B, A, where B according to (b2) is nonsingular. 
Furthermore, Corollary 2.11 & Proposition 5.15 in Jacobsen (1991) together 
implies, that 

(5.9) 

so that rank(B) 2: rank(B~) = r by the injectivity of~. (a1) follows, and there 
exists a,f3 E Matdxr(R) injective, so that B = af3T. Inserting this in (5.9) 
gIves us 

~T = T(3T, 

where T = B-1 ~a E Matr(R) must have full rank. Thus span(f3) = span(~), 
and since aT is Brownian, we have aTB = 0 (cf. the proof of Theorem 5.1). 
We may therefore take a1- := &, so that (a3') and hence (a3) follows. 

Finally, (a2): Since span(~) = span((3), we may take ~ as 13. The stationarity 
of Y forces (3T a to be regular, whence spec(f3T a) lies in the circle K(-n, n) 
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for some n E N (and hence for all larger n), and we may assume, that -n ~ 
spec(,BT 0:). Then the roots of det( <Pn (A)) are all either 1 or outside the the unit 
disc, so that (a2) is fullfilled. 

The last assertions are proved in the above. 0 

The idea with the autoregressive model (5.4) is that it describes the data 
for some large n. The preceding Theorem shows, that the hypothesis of r 

cointegration vectors is equivalent to the existence of a decomposition of the 
process into a stationary part and a "driving force" -part, acting like a Brownian 
motion with a constant drift.The discrete-time study of the hypothesis of r 
cointegration vectors is carried out in details in Johansen (1991), and relies on 
the notion of 1(1 )-processes. Even though it is difficult to find a notion similar 
to that of 1(1) in continous time, there is no trouble in detecting the stationary 
component of the process, and hence we can define cointegrating vectors in 
continuous time by copying the discrete-time definition. 

5.3. Estimation, tests and consistency. 

We shall now turn to the problem of estimating A and B subject to Hr. The 
result here is the following 

Theorem 5.3. 

If A(d) ~ ... ~ A(1) are the ordered eigenvalues of the matrix 

(5.10) 

the ML-estimator (A,B)(t) in the model (5.1) under the hypothesis Hr exists 
a.s. iff A(d-r+l) i= A(d-r). If this is the case, the estimator is given by 

(5.11) 

(5.12) 

where Pr is the matrix representing the usual orthogonal projection on the 
eigenspace corresponding to the eigenvalues A(d-r+l),"" A(d). The value of 
the maximized log-likelihood is 

~(t) ~(t) 1 2 1 
£t(A ,E )=2tIIX(t)-xollA+2 (5.13) 

i=d-r+l 
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Corollary 5.4. 

The likelihood ratio test statistic for testing Hr against Hr+k is given by 

Remarks. 

( t) 
-21ogQr+k,r = 

d-r 

L 
i=d-r-k+l 

It seems reasonable, that the condition A(d-r+l) -=I=- A(d-r) should hold almost 
surely, but we don't have a proof at present. 

The condition does not affect the existence of the maximum of the likelihood 
function, so the expression for the test statistics remains valid in all cases. 

Besides this, one should note the interesting fact, that if 0 < r < d, the 
estimator (A,B)(t) now depends on A, c.f. Theorem (3.2). 

Also, note that the expressions (5.11) - (5.13) for r = d coincides with the 
corresponding expressions (3.6) - (3.7) found under the full model, and finally, 
that under Hr, rank ( B) = r. 0 

Proof of theorem 5.3. 
The theorem holds trivially for r = O. Therefore, we assume r ~ O. From 

section 3 it follows, that for a given t > 0 

A(B) = t(X(t) - xo) - BEt(X), (5.15) 

and the partially maximized likelihood is, cf. (3.4), 

£t(.A(B) , B) =;t IIX(t) - Xo Ilx 

+ 1t Y(s f BT A-I dX(s) - ~ it IIBY(s )llx ds, 
(5.16) 

with, as before, 
Y(s) := X(s) - Et(X). 

We are going to maximize (5.16) subject to the condition (5.2). However,since 
B does not vary in a linear space, if r < d, we cannot use standard methods. 
Instead we do the following: 

The rank of B is at most r iff the rows of B lie in some r-dimensional subspace 
N of R d, or equivalently, B E R d 0 N. Letting B vary under Hr is therefore 
exactly the same as letting B vary in Rd®N with N fixed, and then afterwards 
letting N vary in the set of r-dimensional subspaces. 

Therefore, let N ~ R d be any r-dimensional subspace, and choose a base 
(131, ... ,f3r) for N, orthonormal w.r.t. <',' >Vt(X)-l. Take f3N E Matdxr(R) 
as the matrix (131 : ... : f3r), and observe that B E R d 0 N iff there exists 
a E MatdXr(R), such that 

B = af3~. (5.17) 
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Thus we have parametrised Rd Q9 N by Matdxr(R), and we can maximize Rt 

subject to B E Rd Q9 N by using the parametrisation (5.17), letting lY vary 
freely in MatdXr(R). Regarded as a function of ly, Rt given by (5.16) is, by this 
choice of (3 N, a second order polynomial of the form 

where the vector PN E Matdxr(R) is given by 

and with I the matrix 

Consequently, Rt attains its maximum on R d Q9 N at the unique point 

and the maximal value is 

Rt(A(BN),BN) ={tIIX(t) - xolll + tllpNII; 
={tllX(t) - xolll 

+ ttrace(fi~(Y. XT)(t)A -l(y. X T)T(t)(3N)' 

(5,18) 

That the columns of (3N are orthonormal w.r.t, <',' >Vt(X)-l is the same 
as saying that the coloumns of r = vt(X)1/2 fiN are orthonormal in the usual 
sense. Hence, we must maximize the expression 

r f--7 ttrace(rT Mr), (5.19) 

subject to the condition, that the columns of rare orthonormal vectors. 
But clearly, the maximal value of (5.19) is exactly t 2:t=d-r+l A(i)' where 

A(1) :::; ... :::; A(d) are the ordered eigenvalues for M, and the maximal value 

of Rt is attained at a unique point 13 iff the corresponding eigenspace sran(I') 
is well-defined, i.e. iff ACd-r+l) =1= ACd-r)' In that case the columns of r must 
form an orthonormal base for the eigenspace determined by A(d-r+l),'""' ACd). 

The theorem now follows by inserting in (5.15) and (5.18), since rrT = Pr. 0 

Finally, we shall deal with the autoregressive processes xCn) given by (2.3). 
Here, the inference depends crucially on the following unproven fact : 

Assumption 5.5. 
With M given by (5.10), the (d - r + l)'st largest eigenvalue A(d-r+l) and 

the (d - r rth differs, simultaneously for all t, with probability 1. 0 
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Assumption 5.5. is necessary to ensure the consistency of the estimators in 
the model (2.3) under Hr, which we are about to define. 

As in section 4, take 

yen) = x(n) _ E0:1] (x(n»), 
n 

and define M n as the matrix 

Mn = Vent] (x(n»)-t(y_(n) • x(n)T)(t) (5.20) 
n 

[ntl 
X (I:') 8(x(n)W - x(n)e';;' ))'" 

_ l~tJ (x(n)(t) - Xo )'92 ) -1 

X (r(n) • x(n)T f( t)V0:1] (x(n»)-t. 
n 

Define in the model (2.3), under HT) the estimator 

by 

i(n,t) = [:tl (x(n)(t) - xo) - B(n,t) EJ.!!,p (x(n»), (5.21) 

B(n,t) = (y_(n) • x(n) Tf(t)V0:1] (x(n»)-t p~n)V0:1] (x(n»)-t 
n n 

(5.22) 
[ntl 

A(n,t) = [:tl I)x(n)( *) -x(n)( i~l ))02 (5.23) 
i=l 

__ 1 (x(n)(t) _ x )02 
[ntl 0 

_ ~B(n,t)(r(n) • x(n)T)(t), 

where p$n) is the matrix representing the (usual orthogonal-) projection on the 
eigenspace corresponding to the r largest eigenvalues for Mn (if r = 0, we take 
B = 0, of course). 

Under Assumption 5.5 we see, using Lemma 4.1, that Mn ~ M, so that 
(5.21) - (5.23) are well defined with a probability tending to l. 

If the errors in the model (2.3) are Gaussian, it follows from the analysis 
in Johansen (1991), that the estimators given by (5.21) - (5.23) are the ML­
estimators for A, B and A under Hr. But (A~ A)(n) is defined for arbitrary 
errors with the second-order moment representation (2.2). 

The reason for using these estimators in general is, apart from the coincidence 
with the Gaussian error-estimators, the following 
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Theorem 5.6. 
Under Hn if Assumption 5.5 is valid, the convergence 

--- () 1) ---(A,B,A) n ---+ (A,B,A) (5.24) 

holds in the Skorokhod topology on DRdxMatd(R)xHt(R)(O; (0), where (A)l) = 
((A(t), B(t»))t>o given by (5.11) - (5.12) is the diffusion estimate process for 
(A, B) under fIn and A is regarded as the constant process t f---t A. 0 

Proof. 
If C E Matd(R) is some positive semidefinite matrix, with the r'th largest 

eigenvalue different from the (1' + l)'st, and Cn is positive semidefinite, n E N, 
such that Cn --l- C, then the eigenvalues of Cn converge to those of C, and if 
p$n), Pr E Matd(R) are matrices representing the projections on the eigenspace 

corresponding to the l' largest eigenvalues of Cn, resp. C, then p;n) --l- Pr. 
From this argument it follows, that the process (A,B)(n) is a function of 

(¥, (y-(n) eX(n)T), x(n»), that is a.s. continuous in the limit (t, (Y eXT), X). 
Since (A, B) is the same function of (t, (Y ... XT ), X), the convergence 

(A,B)(n) ~ (A, B) 

follows, because 

((r(n). x(n)T),x(n») ~ ((Y. XT),X). 

Hence (5.24) follows, since 

[ntJ 

[:tJ 2:)x(n) ( *) - x(n)( i~l ))C92 
i=l 

is earlier shown to converge to A in probability, uniformly on compacts. 0 

Remark. 
We use Assumption 5.5 to deduce that the above mentioned function is 

a.s. continuous in ((Y. X T ), X) with respect to the Skorokhod topology on 
DMatd(R)XRd(O;oo). 0 

The convergence result from Theorem 5.6 makes it natural to propose the 
following test statistics for testing Hr against Hr+k in the model (2.3) : 

D fi Q(n,t) b 
e ne r+k,r y 

-2 log Q(n,t) '= 
r+k,r' 

d-r 

L 
i=d-r-k+l 

dn) 
A( i) , 

where A~~l ::S ... ::S Ai;? are the (ordered) eigenvalues of the matrix Mn given 

by (5.20). With Gaussian errors, Q~~~r coincides with the likelihood ratio test 
statistic for testing Hr against Hr+k (see Johansen (1991)), and with Theorem 
5.6 in mind the following is evident: 
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Theorem 5.1. 
If assumption 5.5 is valid, then under Hr the convergence of the processes 

Q(n) 1) Q 
r+k,r ---+ r+k,r 

holds, simultaneously with the convergence (5.24). 0 
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