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The main result of this paper is a simple algebraic condition on a set of linear 

restrictions in a simultaneous equations model that guarantees that most linear 

structures defined by the restrictions are identified. 

The connection to the identification of cointegrating relations, common trends 

and short-run dynamics in a vector autoregressive model is pointed out. A general 

switching algorithm involving eigenvalue problems is suggested for estimation of the 

identified equations, and the asymptotic distribution is given. 

1. Introduction and basic definitions 

The problem of identification is met in econometrics in connection with the 

construction of systems of simultaneous linear equations that allow the coefficients to 

be estimated. Consider as an example the simultaneous linear equations 

(1) f3I Xt = fYt + BZt = Et 

where the p-dimensional process Xt = (Yf,zf}' is decomposed into r endogenous and k 

predetermined variables, p = r + k, and the parameters are collected into the rx (r+k) 

matrix {3' = (f,B), where the rxr matrix T is assumed to have full rank. The errors 

are assumed to be independent Gaussian variables with mean zero and variance 0, 
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such that likelihood inference is available. Furthermore Et is assumed independent of 

Zt' such that (1) determines the joint distribution of the variables Yt conditional on the 

predetermined variables Zt. 

In order to be able to recognize the individual relations we formulate linear 

restrictions R. as full rank pxr. matrices and assume that the coefficients in the i'th 
1 1 

equation, f3i , satisfy 

(2) Ri f3i = 0, i = 1, ... ,r. 

We also work with a slightly different formulation by defining H. = R. ,that is, 
1 1.1. 

we define a px(p-r.) = pxs. matrix of full rank such that H~R. = 0. In this case (2) is 
1 1 1 1 

replaced by 

/J. = H.'P' 
1 1 1 

for some si-dimensional vector 'Pi' Thus a direct parameterization is 

(3) f3 = (HI 'Pl'".,Hr'Pr)· 

We define a statistical model by the parameter space 

$= {f3pxr,OI Ri f3i = 0, i = 1,,,.,r}. 

The model $ is linear in f3 and we shall call it a linear model. A parameter point 

(f3,O) is identified if for any other value (f31'01) the corresponding probability 

measures are distinct. The classical result on identification, see Sargan (1988,p.29), is 

given in 

THEOREM 1 A necessary and sufficient condition that a parameter value (f3,O) 

is identified is that 

rank(Ri f3) = r-l, i = l,oo.,r. 

Thus when applying the restrictions of one equation to the other r-l equations we get 

a matrix of rank r-I. Hence it is not possible by taking linear combinations of for 

instance f3 2'" .,f3 r to construct a vector and hence an equation which is restricted in the 
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same way as (31 and in this sense could be confused with the equation defined by (3 r 
Hence (31 can be recognized among all linear combinations of (31' ... ,(3 r as the only one 

that is in sp(H1), the space spanned by the columns in HI' or the only one that 

satisfies the restrictions RI' In applications we often normalize the vectors (3i on one 

of the variables. This will be discussed in section 4 where asymptotic distributions are 

derived. Theorem 1 gives rise to the definition of another model, namely the set of 

identified structures 

.;1(= { (3pxr'O I Rj(3i = 0, and rank(Rj(3) = r-l, i = 1, ... ,r}. 

Clearly .At c $ and our first result states that .;I( is a large subset of $ in the sense 

that .;I( is an open dense subset of $ or in other words that $ \ ..J{ is a nowhere 

dense subset: 

THEOREM 2 If $ contains an identified parameter value, that 1,S, if ..J{ is 

non-empty, then .;I( is an open dense subset of ,:t 

The proof is given in the appendix. Note that $ is a linear model but .;I( is not linear 

since the rank condition is a non-linear restriction. The fact that ..J{ is dense in $ 

means that the likelihood function cannot be used to distinguish between the models 

and the MLE derived from the linear model $ satisfies the rank conditions and hence 

corresponds to a point in .;I(with probability l. 

For a given set of restrictions either all structures in $ . d~fined by the 

restrictions are unidentified, or "almost all" are identified. The paper by 

McManus (1992) contains a number of general results about identification of 

parametric models emphasizing the generic property of the subset of identified 

structures in a given model. The emphasis is on non-linear models showing that in 

some sense all the problems are created by focusing on linear models. 
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The purpose of this note is to discuss the linear models because we need them in 

the autoregressive formulation of the dynamic models and in the discussion of 

identification of cointegrating relationso 

Theorem 2 gives rise to the definition 

DEFINITION 1 The restrictions Rroo}Rr and the linear model $ are called 

identifying (generically identifying) if there exists a parameter value !3 such that the rank 

condition is satisfied, or equivalently such that ..!It is non-empty. 

The purpose of the note is to give a simple algebraic condition (see Theorem 3) for a 

linear model to be (generically) identifying, such that before a linear model is 

estimated a condition on the restrictions is testedo 

We conclude this section by pointing out a number of situations where the 

identification problem is met in the analysis of the vector autoregressive model for 

cointegration written in the structural error correction form: 

(5) Ab. Yt = a!3'Yt _1 + ab. Yt- 1 + m + Et· 

Here the Et are independent Gaussian with mean zero and variance O. For notational 

simplicity we have left out more lags. 

The reduced form error correction model is 

(6) b.Yt = a!3'Yt _1 + rb.Yt _1 + jJ + fit, 
where a = A -la, r = A -la etc. Notice that the !3 vectors are the same in the 

reduced form as in the structural form of the model. 

The first identification problem is for the cointegrating relations !3'Yt . If it 

assumed that Yt is 1(1) it follows from (6) that !3'Yt is stationary. Thus 

(7) !3'Yt = 1/t' 

where 1/t is stationary. Clearly any linear combination of these equations will produce 

new stationary relations, and hence there is a need for identifying restrictions. 
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The representation theorem of Granger, see for instance Johansen (1991), shows 

that the solution of the equations (6) under the assumption that Xt is 1(1) is given by 

t 
(8) Yt = C(E1 fi + jtt) + Ut 

where Ut is a stationary process and 

C = fJJ. (a~ (I-r)fJ)-l a~, 
such that the common trends are given by a' Elt f·. Any set of linear transformations J. 1 

of these p-r variables can also serve as common trends, such that again restrictions are 

required to identify specific relations. 

The third identification problem occurs in the short term dynamics, after the 

long-run relations have been identified. Ifin model (5) we define Xt by stacking D.. Yt , 

fJ'Yt- 1 and L1 Yt- 1, then the equations have the form 

(9) (A,a}G)Xt = ft, 

such that the identification problem of the simultaneous effects and short-term 

dynamics involved in the matrices A) a and G can also be formulated as equation (1). 

The main result in section 2 of this note does not involve any assumptions on the 

probability properties of the process, but rely entirely on the fact that we are 

interested in the linear relations, which we want to identify in the sense that we want 

to recognize the equations on the basis of suitable linear restrictions on the individual 

equations. 

2. A necessary and sufficient condition for a set of restrictio.ns to}e gen~rically 

identifying 

We formulate the basic Theorem and show how it can be applied. The proof which is 

based on some classical results in mathematics by Hall (1935) and Rado (1942), will be 

discussed in the appendix. 
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THEOREM 3 The linear statistical model $ defined by the restrictions R1, ... ,Rr 

is identifying if and only if for k = 1, ... ,1'-1 and any set of indices 1 ~ i 1 < ... < ik ~ r 

not containing i, it holds that 

(12) rank(R'.H. j ••• ,R'.H. ) > k. 
Z 1,1 Z zk -

If (12) is satisfied for a particular value of i} then the restrictions are identifying that 

equation. 

As an example of how to apply Theorem 3 we consider the situation with r = 3, 

where 

(13) (i = (HI <P1,H2<P2,H3<P3)· 

To see if RI' R2 and R3 identify the first equation we check the conditions 

rank(RiH2) ~ 1, rank(RiH3) ~ 1, rank(Ri(H2:H3)) ~ 2. 

In terms of the matrices Mij.k = HiHj - HjHk(HkHk)-lHkHj' i,j = 1,2,3 the 

conditions become 

(14) [ M22 1 M23 1] rank(M22.1) ~ 1, rank(M33.1) ~ 1, rank . . ~ 2. 
M32.1 M33.1 . 

Since the matrices M .. are positive semi definite an easy way of checking this is to 
IJ 

calculate the eigenvalues of the matrices in (14). 

The system is not identified if for instance sp(H2) ( sp(H1), since then RiH2 = 0 

and condition (12) is violated by the choice k = 1 and i1 = 2. 

Now suppose that we have an identifying statistical model $' as above. It is 

apparent that if we restrict the spaces Hi further, that is, formulate overidentifying 

restrictions, we may decrease the rank in condition (12) thus allowing the possibility 

that a linear submodel of the identifying model is not identifying. 

An example of this is the hypothesis 

(15) (i = (HI <P1,(H2nH1)<P2,H3<P3)' 

where H2nH1 is a matrix such that sp(H2nH1) 
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formulation of the hypothesis that the second vector is not only insp(H2) but also in 

the sp(H1) which indicates that the first equation is not characterized by the 

restrictions R1, since evidently also 132 satisfies the same restrictions. 

Thus if we know where to look for the lack of identification we can formulate this 

as an overidentifying restriction on the model. The methods are illustrated and 

exemplified in Johansen and Juselius (1992) on money demand in Australia. 

As a simple illustration consider the model defined by the linear structures 

13 = [-: 8], (a,b,c,d) E R4. 
b-c 
o d 

In this case we find 

such that 

R1 = [i ~], H1 = [-i ~], R2 = [~ ~], H2 = [ ~~], o 0 . 0 1 1 0 -1 0 
01 00 00 01 . 

rank(Ri H2) = rank(f~ ~J) = 2 ~ 1, 

rank(R2H1) = rank( -i ~J) = 2 ~ 1. 

Thus the conditions for generic identification (12) are satisfied. A given structure 13 in 

$ is identified if 

and 

rank(R2f31) = rank(a+b,~a) = 1. 

This is, the structure 13 is identified if (c,d) f (0,0) and (a,b) f (0.,0) .. ~~us the linear 

model $in this case contains the unidentified structures given by either (a,b) = (0,0) 

or (c,d) = (0,0), and this set is a small set of parameter values. 

3. An algorithm for estimating simultaneous equations under identifying linear 

restrictions and an expressionJor the asymptotic variance of the estimator 
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We consider the situation described in (1). The likelihood function is given by 

T 
logL(,8,n) = - t Tlog I n I + t Tlog I rr' I - t E Xf,80-1,8' Xt 

t=l 

=-tT1ogIOI + tTlog/rr'l-ttr{n-l,8'S (3}, xx 
T 

where S = T-l E XtXt', see Sargan (1988). Maximizing over n gives 
xx t=l 

(16) L-2/ T(,8) = 1,8' Sxx,81 = 1,8'Sxx,8/ 

max Irr'l 1,8'M,81 ' 

where 

M = [~~l. 
We want to minimize (16) under the restrictions 

,8 = (HI 'Pl'".,Hr'Pr), 

where we assume that the restrictions R. = H. ,i = 1, ... ,r are identifying, that is, that 
1 1.L 

they satisfy conditions (12). 

We can rewrite (16) such that the dependence on 'PI is more apparent and then 

apply a switching algorithm by cyclically minimizing with respect to one variable and 

fixing the others. In order to describe the successive steps we define matrices 

r = (,82, ... ,,8r)' 

S = S - S r(r'S r)-l r ,S 
xx. r xx xx xx xx' 

M.r = M -Mr(r'Mr)-l r 'M, 

and decompose 

1,8'S ,81 = Ir'S rll,8'S f/ 1= Ir'S rll'P'H'S H <p)1 xx xx 1 xx. T 1 xx 1 1 xx. r 1 1 

and 

1,8'M,81 = Ir'Mrll'PiHiM.rHl<Pll, 

and insert into (16). This shows that the likelihood function depends on <PI in such a 

way that the maximization can be performed by solving the eigenvalue problem 

I AHl' S HI - HI' M Hll = 0 xx.r .r 

for eigenvalues Al > ... > A and eigenvectors vl""'v We get the maximum 
SI SI 
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likelihood estimator for SOl' for fixed values of the other parameters T, as the 

eigenvector corresponding to the largest eigenvalue AI' and hence, {J1 = H1v1. Next 

we fix {JIJJ3, ... ,{Jr and maximize over S02 using a similar eigenvalue procedure. We 

then continue until convergence. 

The algorithm is probably slower than Newton-Raphson iteration, but has the 

advantage that it is explicit in each step. Once the eigenvalue problem has been 

programmed each step is easy to perform, the likelihood function is increasing in each 

step, and finally the algorithm works for general linear restrictions on the 'Individual 

equations, not just zero restrictions. 

It is interesting to note that a good set of initial values is found by first solving 

(16) without restrictions on {J, that is, by solving 

/AS -M/ = 0 xx 
~ 

for eigenvalues Al > ... > Ap and eigenvectors w1,· .. ,wp giving {J = (w 1' ... ,w~. Next 

we find a linear combination of the {JI s which is closest to the space H., that is, we 
1 

solve the problem 
~ 2 

(W' ,BIHi SO) 
max x x , 

w,SO wl,Bl,BwSO'H~H·so 
1 1 

or equivalently the eigenvalue problem 

/APIP-pIH.(H~H.)-IH~PI/ = o. 
III 1 

Let u1 be the eigenvector corresponding to the largest eigenvalue, then ,Bi = ,Bu1 is the 

starting value for (3. in the iteration. 
1 

This choice of initial value also has the advantage that if HI' ... ,Hr is a just 

identifying set of restrictions, then no iteration is needed. 

In order to discuss the asymptotic distribution and the expression for the 

variance it is necessary to normalize the vectors, so that the length of the eigenvectors 

is determined. This is often done by normalizing on one of the coefficients, and a 

general formulation is 
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(3. = h. + Hi'l)1., 
't 1 1 

for some si-1 dimensional vector 'I)1i' Thus the vectors in hi and HI span the same 

space as the vectors in Hi' and hi is linearly independent of the vectors in Hi. By 

differentiating the concentrated likelihood function (16) we derive the expressions for 

the derivative of 10gL with respect to 'I)1j 

lJ1ogLj8'1)1. = e((3's (3)-l(3'S Hi -e~((3'M(3)-l(3'MHi 
1 1 xx xx 1 

= e~S-lS-l(3'Hi 
1 E E EZ J. ' 

where (3' = (- B'r,-l,I), and e. is the i'th unit vector. The second derivative is 
J. 1 

given by 

r?logLj8'1)1.8'1)1. = e~S-le.Hi'(3 S (3'Hj + Op(l). 
1 J 1 E E J J. ZZ J. 

Now S ~ D, and assuming that S ~ E > 0, we find by an expansion of the 
EE zz 

likelihood function that 

Ttvec( ~ - '1)1) ~ N(O,{ e~ n-1e.Hi , (3 E(3'Hj}-1). 
1 J J. J. 

and since (Ji = hi + Hi~i ' so that vec({J' - (3') = {Hi}vec( ~i - '1)1), we find that 

(17) Ttvec({J - (3) ~ N (0,{HiHe~D-1e.Hi, A'EA'Hj}-1{Hj,}). 
pxr 1 J J. J. 

We have here applied the notation {Mij} for a block matrix with blocks Mij, and apply 

the notation {Mi} for the block diagonal matrix with blocks Mi along the diagonal. A 

consistent estimator of the asymptotic variance is given by replacing E, nand (3 by 

their estimators. Note that (3 involves the estimated reduced form coefficients. We 
J. 

conclude this section by summarizing the results 

THEOREM 4 The asymptotic distribution of the maximum likelihood estimators 

of the simultaneous equations (1) under the identifying restrictions R jJ' .. ,Rr and the 

normalization (3. = h. + F'I)1. is given by 
't 't 't 

(18) rtvec{{J -(3} '!!J N (O,{HiHe'.n- 1eHi'(3 E(3'H~-1{Hj,}). 
px r 't J J. J. 
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Note that under the identification condition the asymptotic covariance :rp.atrix must 

have full rank at the true value of fl since if 

o = E e n-1e .7/J~ Hi, fl Efl' Hj7/J. = tr{ en-1e.}{ 7/J~ Hi I fl Efl' Hj7/J.} 
.. 1 Jl .L.L J 1 J 1 .1.1 J' 
1 ,J 

then 
. . 

7/J~Hl, fl Efl' HI1/!. = O. 
1 .L.L 1 

This implies that fl'Hi 1/!. = 0, such that the vector Hi1/!. , which is clearly in H., is a 
.L 1 1 1 

linear combination of the vectors in fl. Since the parameter is identified there is only 

one such combination which is in the space spanned by H., and that is /3. = h. + Hi7/J~, 
1 1 1 1 

say, hence Hi1/!.= c(h. + Hi7/J~) or Hi( 1/!. - 7/J~c) = ch., which is clearly impossible 
1 1 1 1 1 1 

unless 1/!. = a, and c = a, since h. is linearly independent of Hi. 
1 1 

4. Estimation of co integration parameters and common trends under identifying 

restrictions 

We give here a discussion of the estimation problem for identified cointegrating 

relations in a vector autoregressive model. It turns out that the same estimation 

procedure as discussed in section 3 can be applied. Let Yt be generated by the reduced 

form equations (6) 

(19) ~ Yt = afl'Yt_1 + r Ll Yt - 1 + f.t + Et, 

let a and fl be pxr and assume that the cointegrating relations are restricted by 

For ease of notation we have .left out more lags. The cointegrating relations are 

estimated without restrictions by reduced rank regression of Ll Yt on Yt- 1 corrected for 

~ Yt- 1, and 1, see Johansen (1988). This procedure gives residuals ROt and Rlt and 

product moment matrices 

-1 T S .. = T E1R. tR· t'· IJ 1 J 
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The estimation problem is solved by the eigenvalue problem 

(21) 1 ASll - S10S06S011 = 0 

for eigenvalues 1 > Al > ... > Ap > 0 and eigenvectors vl' ... ,vp' and the estimator of /3 

is given by (v1, ... ,vr). When the restrictions (20) are imposed the estimation 

procedure is no longer explicit, and the switching algorithm described in section 3 can 

be applied: 

For fixed values of !P2, .. ·,!Pr or equivalently /32,···,/3r' we define T = (/32,···,/3r) and 

decompose a into (al'a2) where a1 is pd. Then 

~Yt = a1!Pi HiYt-1 + a2T'Yt _ 1 + r~Yt-1 + f.L + ft· 

The solution for fixed T is given by reduced rank regression of ~ Yt on HiYt-1 

corrected for ~ Yt- 1, T'Yt - 1 and 1. Hence we solve the eigenvalue problem 

1 AHi Sl1. THl - Hi S1O. TS06. TS01. TH11 = 0 

for eigenvalues \ and eigenvectors !Pi and choose /31 = HI !PI' Here 

SILT = Sll-SllT(T'SllT)-lT'Sll 

with similar definitions of S1O. T and SOO. T' 

The algorithm then continues by fixing /31'/33, .. ·,/3r and solve for /32 by reduced 

rank regression. The process is repeated until convergence by cyclically maximizing 

over one of the parameters !p. keeping all others fixed. 
1 

If further submodels are formulated in the form (15) then the likelihood ratio test 

is asymptotically X2 distributed. This follows from the general result that for error 

correction models, hypotheses on /3 can be tested by the likelihood ratio procedure by 

the X2 distribution. 

Without identifying restrictions the coefficients of the common trends can be 

estimated by the eigenvalue problem 

1 ASOO - SOl Sl~S10 1 = 0, 

which is solved for eigenvalues 1 > Al > ... > Ap > 0 and eigen~ectors w1, ... ,wp ' The 

unrestricted maximum likelihood estimator of a is given by a = (w +l""'w), 
~ ~ p~ p 
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and under identifying restrictions the switching algorithm described above can be 

applied. 

We formulate in the next section the asymptotic distribution of the maximum 

likelihood estimator of {J when it is estimated under the identifying restrictions. 

4· The asymptotic distribution o/the estimated identified co integrating relations 

The general result about the limit distribution is given in Johansen (1991), see also 

Phillips (1991) and Ahn and Reinsel (1990). It is proved that the limit distribution is 

mixed Gaussian and that inference concerning the cointegrating vectors can be 

performed by the X2 distribution if likelihood ratio tests are applied. 

The estimation is most conveniently performed with the individual vectors 

unnormalized, but for the asymptotic distribution we normalize them, usually on one 

of the variables. A general formulation is of the form 

i 
{j. = h. + H 'IjI. 

1 1 1 

for some (si-1)-dimensional vector 'l/Ji. The asymptotic distribution is most 

conveniently derived from the likelihood function concentrated with respect to J1. We 

also use the general result that inference on {J can be conducted as if the other 

parameters were known. 

Under the identifying restrictions and the normalization the derivatives with 

respect to 'l/Ji are given by 

8logLj 8'I/Ji 

rrlogL/ 8'I/Ji 8'I/Jj 

- d)-1"T (Y Y )/Hi~T 1f)-1S Hi -aiu ~1Et t-1--1 - friH EY' 

= aj n-1ajHj, ~f(Yt-1-Y -1) (Yt- 1-Y _1)/Hi 

= Ta~n-1a.Hj/S Hi. 
1 J yy 

An expansion of the likelihood function gives the expression 

vec(~- 'I/J):::i {a~n-1a.Hj,S Hi}-1{HiS n-1a.} 
1· J yy yE 1 

The representation of Yt under the assumption that the process is 1(1), is given 
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by (8). It follows that 

. . t . 
H1'Yt = HI'CE E· + T.t + HI,Ut , 

. 1 1 1 
1= 

for T· = H1,Cj.t. Thus the process is asymptotically linear in the direction T· and 
1 1 

orthogonally to this direction behaves like a random walk. Let Wt be the Brownian 

motion defined on the unit interval as the limit of the normalized sums of the E'S, that 

is, 

T-t" [Tt] w W 
LJ1 Ei -! t' 

and let W = f~Wtdt. Let 'i = Th , then it follows from the representation (8) that 

(22) T-1TjHi'(Y[Tt]-Y) ~ TiTi(t-t) = TiTiGl(t), 

(23) T-t'iHi/(Y[Tt]-Y) ~ 'iHi,C(Wt-W) = ,jHi 'G2(t), 

say, and we define G'= (Gi,G2), and 

G2.1 (t) = G2(t) - [J~G2Gl dt][J~Gl G1 dt]-lG1 (t), 

that is, the Brownian motion corrected for a trend. For BT = (T-t'i'T-1T) we find 

(24) BT' Hi,S HjBT ~ (Hi1·,T~T')' fOlGG'dt(Hi1.,T~T')' yy III III 

(25) S BT ~ fo\dW)G'(Hi1.,T~T.) 
Ey 1 1 1 

Applying the results (22), ... ,(25) we find that 

Tvec( ~ - 'IjJ) ~ {1'}{ ,~Hi, fOlG2 IG2' IdtHj,.a~ O-la.}-l {,~Hj, fOlG2 l( dW)' 0-1a } 
11 .. Jl J J . J 

Thus the asymptotic distribution is asymptotically mixed Gaussian with an asymptotic 

quadratic variation process given by 

{1·}{,~Hi, fOlG21G2' IdtHj,.a~O-la.}-l{,~}, 
11 .. Jl J J 

which is consistently estimated by 

T{;.O-l;.Hj,S Hi}-l = T2{;.O-1;.Hj'ET1R tR'tHi}-1. 
1 J yy 1 J yy 

Thus in practice, ignoring finite sample problems, we can act as if the asymptotic 
A 

distribution of f3 - f3 is asymptotically Gaussian with a variance matrix given by (26): 
A A -1 A j T i -1 

(26) {a.O a.H 'E1R tR'tH} . 
1 J Y Y 

The square root of the diagonal elements of (26) provide the "standard 
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deviations" which are used for constructing Wald tests for specific values of individual 

coefficients, if the likelihood ratio test is not worked out. 

Note that the distribution of /3 is mixed Gaussian such that the distribution has 

heavy tails. Since the "asymptotic variance" or the observed Fisher information is 

random even in the limit it may happen that we get a vary small value of the 

information and hence a large value of the variance. In this case it may happen that 

value of the likelihood estimator appears far away from the true value, but in reality 

we only have a situation, where the data has little information on the true parameter. 

It is thus of more interest to simulate the distribution of the t-ratios, that is the 

estimated coefficient minus the coefficient divided by its standard deviation, since it is 

this ratio that is being used in the testing, rather that the distribution of /3 itself. The 

limit distribution of the t-ratio is asymptotically Gaussian such that one would expect 

much smaller tails in finite samples than is found in the simulations of the distribution 

of /3. 

Appendix 

Proof of Theorem 2 

We can formulate the rank condition by defining the matrix Ak( rp) with entries 

Ak(rp)·· = rp~H~RkRk/H.rp., i,j * k. IJ 1 1 J J 
Then 

rank(Rk/3) = rank(Ak( rp)), 

such that the rank condition is equivalent to 

I Ak(rp) I *0. 

Now the function rp --I I Ak( rp) I is a polynomial, and it is well known that a polynomial 

which is zero on an open set is constant (= 0) and hence if there exists a vector rp such 

that I Ak( I(J) I * 0, then the set of zeros {rpll Ak( rp) I = O} contains no open set. Under 

the assumptions of Theorem 2 $ contains an identified parameter value rp such that 
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I Ak( 1,0) I f 0 for all k. In this case the set of unidentified structures is equal to the 

closed set 

which does not contain any interior points. Thus the complement .At is an open dense 

set. 

Proof of Theorem 3 

1. Necessity of condition (12) 

It is easily seen that if the set of restrictions identify the l'st equation, say, then 

one can take vectors (3j E sp(H), j f 1, such that they satisfy the rank condition (4) 

and hence such that they are linearly independent. This means that the matrix 

(RI' H. , ... ,RI' H. ) 
11 lk 

contains at least k linearly independent columns. Thus condition (12) is necessary, but 

the sufficiency is not so simple. 

2. Sufficiency of condition (12) for zero restrictions 

The result follows for zero restrictions from Hall's Theorem, a classical result 

from combinatorics, see Hall (1935). 

THEOREM 5 (Hall (1935)) Let Mi, i = 1, ... , n be finite sets, then a 

necessary and sufficient condition that we can take distinct elements mi E Mi is that for 

all k = 1j ••• ,n and all sets of indices 1 S i1 < ... < ik S n 

(A. 1) card(M. U ... U M. ) ) k 
'/,1 '/,k -

What is characteristic for zero restrictions is that the vector spaces spanned by 

Hj are defined by the subset of the unit vectors that they contain. Hence the vector 

spaces sp(R1' H.), j = 2, ... ,r, are characterized by subsets M. of {1, ... ,p}, and condition 
J J 
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(12) translates into the condition (A.l). 

Under this· condition Hall's Theorem states that there exists distinct 

representative elements mj E Mjl j = 2,.",r. The unit vectors corresponding to these 

are linearly independent, and hence guarantee that the rank condition is satisfied for 

this choice of parameter values. 

3. Sufficiency in the .general case 

The proof follows from a generalization of Hall's theorem due to Rada (1942). 

THEOREM 6 (Rado (1942)) Let MiJ i = l,,,.}n be finite sets of vectors 

from a given vector space, then a necessary and sufficient condition that one can take 

linearly independent vectors ViE Mi, i = 1,,,., n is that for all k = 1,,,.) n and all sets of 

indices 1 ~ i 1 < ... < ik ~ n 

(A. 2) dim{ sp(M. U ". UM. )} ~ k. 
%1 2k 

With this result the proof of Theorem 1 goes as follows: We define M. as the columns 
1 

of RiHi+l1 i = 1, ... ,r-l and let n = r-I. Then (12) implies by Rada's theorem that 

we can choose vectors v· E M. linearly independent. These have the form v· = 
1 1 1 

Ri Hi+l IPi+l for some unit vector IPi+l' The vectors Pi = HiIPi' i = 2, ... ,r satisfy the 

rank condition and hence the first equation is identified by RI' 

The reason for proving the result of Theorem 3 first for zero restrictions and then 

in the general case is to point out the connection with the two important results from 

operations research. A systematic exposition of the theory of matroids derived from 

Rado's theorem is given by Welsh (1976), and the applications of Hall's theorem in 

the theory of flows in networks is given by Ford and Fulkerson (1962). 
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