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1 Introduction 

Integrated processes have been the focus of much recent research. For these processes the ideas of 

cointegration, Engle and Granger (1987), and of common trends, Stock and Watson (1988), are 

dual concepts, which are related to the rank of the autoregressive and of the moving average impact 

matrices respectively. The moving average impact matrix C = C(1) plays an important role in the 

definition of common trends in integrated systems of order one, 1(1), see e.g. Stock Watson (1988); 

in particular the row space of C, here indicated as a 1', determines the linear combinations of the 

innovations that form the random walk component of the system. 

In this paper we define maximum likelihood estimators of C and a 1 in the vector autoregressive 

case and determine their asymptotic distributions. As it is to be expected, t and a 1 are functions 

of the autoregressive parameters, so that inference can be based on the likelihood analysis of 

Johansen (1991). These estimators involve quantities that are defined to be orthogonal to some 

matrices related to the autoregressive parameters, i. e. orthogonal complements to functions of the 

autoregressive coefficients. For this kind of problem it is useful to relate inference about a basis of 

a linear space of interest with respect to inference on the basis of the linear space orthogonal to it. 

To this end we state a simple linear relation between normalized bases of orthogonal spaces; this 

relation shows explicitly how the problem of inference about two orthogonal bases is really a sing le 

problem. 

These ideas are exploited in the definition of a properly normalized estimator for a 1 and in the 

derivation of the asymptotic distributions; the distributions are gaussian and simple consistent 

estimators of the asymptotic covariance matrices are readily available by modifying standard output 

least squares covariance matrices, and lead to conventional X2 asymptotic Wald tests for general 

smooth hypotheses. 
w 

Throughout the paper ~ will denote weak convergence, the vec operator will denote the column 

stacking operator and (8) the Kronecker product, i.e. A (8) B = [aijB]. The rest of the paper is organized 

as follows: section 2 present the model; section 3 discusses an alternative equivalentparametrization; 
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section 4 states the relation between properly normalized bases of orthogonal spaces; in section 5 

the asymptotic distributions of C and a I are derived, while section 6 discusses WaId tests on a I 

and section 7 reports some remarks on the Wald tests on C; section 8 concludes. 

2 The model 

Consider the gaussian p x 1 vector autoregressive process Xt 

(2.1) A CL)Xt = ~ + 8D t + Et 

where A CL) = I - AIL - ... - A", k is a finite matrix polynomial, L is the backward shift operator, 

LXt = Xt -1' /l is a vector of constants, D t is a vector of seasonal dummies orthogonal to the constant 

and Et is i.i.d. N (0,0). Model (2.1) has been studied by several authors, e.g. Ahn and Reinsel (1990) 

and Johansen (1991), under the assumption that all the roots of I A (z) 1= 0 lie either outside the unit 

circle in the complex plane or at the point z = 1; we will also adopt the same assumption here. As 

it is well known, the roots at the point z = 1 are responsible for the non-stationarity of the system. 

The following reparametrization of the process (2.1) is of interest for the statistical analysis con

sidered in this paper 

k-1 
(2.2) M t =IJXt- 1 + L rjMt_i+/l+8Dt+Et 

i=l 

where n = -A(1) is the autoregressive impact matrix with a sign change. Parametrization (2.2) is 

equivalent to the one adopted in Johansen (1991); as already noted by several authors, the levels 

termXt _ n can be specified for any n = 1 , ... , k with the only effect of changing the definition of the 

r j matrices1• In the next section we will consider an equivalent parametrization which is also relevant. 

In the following it will be helpful to let '¥ = -A(1) - n =1- L7~Irj, where A(1) = (dA(z)/dz)z=l 

is the first derivative of the A (z) polynomial at the point z = 1, and by b I the orthogonal complement 

of a p x r, p > r, matrix b of full column rank, i.e. a p x (p - r) matrix such that b 'b I = 0 and 

(b ,bl ) span 9tP • 

1 For an application of this property to lag length determination see Marzocchi, Mulargia and 
Paruolo (1991). 
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As it is well known, see J ohansen' s (1991) Granger representation theorem2, if n has reduced rank 

r, n = aW for a, ~ full column rank p x r matrices, and if a l''P~ 1 has full rank p - r, the process 

(2.1) is non-stationary with representation 

t t 

(2.3) Xt = C L e; + C ~t + C (L)8 L D t + Xo + Yt - Yo 
;=1 ;=1 

where 

(2.4) 

and Yt is a stationary process, WXo = WYo' Representation (2.4) makes clear thatXt is non-stationary 

while the first difference process Mn A = 1 - L, is stationary, that is Xt is integrated of order one, 

as the application of the A operator once induces stationarity. The linear combinations W of the 

process are stationary, as can be verified by pre-multiplying (2.3) by W, so thatXt is co-integrated 

in the sense of Engle and Granger (1987). Moreover the differenced process has representation 

(2.5) 

where C = C(l). C is therefore the impact matrix in the moving average representation of the 

differenced process. Note also that the random walk: term L; e; in (2.3) that determines the stochastic 

non-stationarity of X t enters into the process through C. Stock and Watson (1988) call 

aI' L~=l et + al'~t the common trends in the system. 

Definition (2.4) makes clear how the moving average impact matrix is related to the autoregressive 

impact matrix n = aW through the orthogonal complements of a and ~. It will be the focus of 

section 5 and 7 to discuss inference on C; there are many related works on this topic, including Park 

(1990), Lutkepohl Reimers (1988), Warne (1990). 

The likelihood based statistical analysis of model (2.2) under the above assumptions is performed 

through reduced rank regression, see Anderson (1951), J ohansen (1991) and reference therein. Let 

2In Johansen (1991), theorem 4.1 is stated in terms of the matrix al'(-dA(z)/dz)z=l~l instead of 

al''P~l' see Johansen's eq. (4.4). Nevertheless the two conditions are equivalent, as 

al''P~l = al'(-A(l))~l - al'n~l = -al'(A(l))~l 
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Yt == IlKt' Xt ==Xt-l' Zlt = (IlKt- I', .. . ,llKt- k + I')', Z2t == (1,Dt')', Zt == (Z11" Z2t')'; equation (2.2) can now 

be rewritten as 

(2.6) 

wherer == (rl , ••• ,rk - 1) and 0 == (Jl, 8). The maximum of the likelihood function is obtained solving 

the eigenvalue problem 

(2.7) 

where M ab.c ==Mab - MacM;}Mcb,Mab = T-I 2:';=1 atb/, a, b = Y,X, Z are respectively conditional and 

unconditional sample product moments. Let (u1, ••• , up) be the orderedeigenvectors associated with 

the eigenvalues Al ;::: ... ;::: Ap of (2.7). For any fixed value of T, the maximum likelihood estimators 

are then given by 

(2.8) ~ = (ul , ... , ur ) 
A ~ Ail 1 

cr,o) = (Myz - a~'Mxz)M: 

&. =MyxJ(~'Mx<.z~rl n = Myy.z - Myx.z~(~' Mx<.z~rl~' Mxy.z 

see Iohansen (1991) eq. (3.6) through (3.12). It is useful to slightly rearrange the computation with 

respect to r. Since the estimator of r is just a regression estimator for fixed f3 = ~, it is useful to 

rewrite (2.6) substituting f3 = ~ as follows 

(~'XtJ Yt = (a,r) + OZ2t +Et 
Zlt 

= (a, r)v t + OZ2t + Et 

The estimator of (a,r) can then be obtained in two steps3: first regress Yt and Vt == (Xt-I'~,Zlt')' on 

Z2t obtaining residuals Yt.z2 and Vt .z2 respectively; next estimate (a,r) by regressing Yt.z2 on Vt.z2' In 

this final regression it is convenient to save the standard output covariance matrix produced by the 

least squares program T-IM;"\2 <8> n for further calculations, see section 5 4. 

3 This follows from the known properties of the least squares. 

4We assume that a multivariate regression least squares program provides as an output the vari
ance of vec(t) for a model of the form Yt = t Xt + 11t. 
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In order to obtain the maximum likelihood estimator of the matrix C in eq. (2.4), the maximum 

likelihood estimators of a 1 and p 1 are needed. A particular normalization of cl 1 and a 1 will be 

proposed in section 4. Once these estimators are defined, the resulting estimator for C is, by the 

invariance property of maximum likelihood estimators, given by 

(2.10) 

where 'l' =Ip - I,7~:ti =1 -tUk-1 ®Ip) and in = (1, ... , 1)' is an n X 1 vector of ones, so that the 

matrix (ik - 1 ®Ip) simply sums blocks of size p. Note also that 'l' - 'P = - (t - r) (ik - 1 ®Ip). 

3 An equivalent parametrization 

Although the parametrization of the model and the statistical calculations reviewed in the previous 

section are adequate for making inference on C and al , in this section the following equivalent 

parametrization of the model is presented, in which the matrix <I> == I - 'P can be directly estimated 

as a regression coefficient matrix: 

k-2 
(3.1) M t = IIXt - 1 + <I>Mt _ 1 + I, ~iLl2Xt_i + Il+ OD t +Et 

i=1 

Such a parametrization entails a different, although equivalent, set of calculations, which may be 

found easier to implement. One of the possible ways of deriving (3.1) is to consider the polynomial 

r(L) = r 1 + r ~ + ... + r k _ 1L k-2 in (2.2) and decompose it as r(L) = <I> + (1-L )~(L), where 

<I> == r( 1) = I,7 ~: r i . Now, since 'P == I - L7 ~: ri' it is clear how 'P and <I> are related, i.e. 'P = I - <I>. 

Note also that 'l' - 'P = - (<1> - <I» 5. 

Otherparametrizations are possible; for instance the first difference termMt _ n in theright-hand-side 

of (3.1) could be specified at n = 1, .. . ,k -1 with the only effect of changing the definition of the 

~i matrices. Moreover the other parametrization 

k-2 

Ll2X t = IIXt - 1 + (<I> - I)Mt - 1 + I, ~iLl2Xt_i + Il + ODt + Et 
i=1 

5 When considering the distributions of'l' and <1>, the above equality just states that the two dis
tributions are mirror images. 
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could be used with no effect on the statistical analysis of the model under the mantained assumptions 

n = aW, rank (at ''P~ ~ = p - r. The latter fonnulation is the one adopted by J ohansen (1992) in 

the 1(2) analysis under different assumptions. 

Parametrization (3.1) is therefore a way of focusing on the parameters of interest, as C depends on 

n == aW and <I> and does not depend on the other parameters, which can be concentrated out of the 

likelihood function in the statistical analysis. Note that (3.1) is just a rearrangement of the regressors 

in Zt in (2.6). For the purpose of the statistical calculations we define WIt == Mt-I> 

W 2t == (~2Xt_t', ... ,~2Xt_k+2" 1,Dr')" W t == (WIt', w2t ')', ~ == (~l' ""~k-2); can one thus rewrite (3.1) 

as 

(3.2) 

The statistical calculations in the reparametrized model can then be arranged in the following way: 

1. Maximize the likelihood function with respect to ~; the calculations are exactly the same as in 

(2.7), (2.8), as the projection of Yt andxt on Zt or W t are identical, for the known properties of the 

least squares; one thus obtains a and g in (2.8). 

2. Next consider the maximization of the likelihood function with respect to <1>, for fixed ~ = a. 
From eq. (3.2) one sees that one can define the vector of variables St == (Xt-l'a, WIt')' and regress 

Yt and St on W 2t, obtaining respectively residuals Yt.w2 and St.w2 = (Xt.w2 'a, W lt.w2 ')'; the maximum 

likelihood estimate of <I> is then obtained by regressing Yt.w2 on St.w2' In this final regression the 

usual output covariance matrix provided by the least squares program is T-IM;'~w2 ® n, which 

must then be stored for the further calculations, see section 5. 

3. Finally the estimates of (~, 8) can be obtained by regression substituting the estimates ofn = aW 

and <I> back in (3.2). 

It is important to stress that the estimates obtained by the above procedure are exactly the same as 

the ones obtained in section 2. The purpose of the above reparametrization consists in obtaining 

the estimate of <I> directly as a regression coefficient; one thus can also save the estimate of the 

covariance matrix of (a, &) directly as a standard computer output. 
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Therefore in the following no distinction will be made between the estimators or the models of 

section 2 and the present section. Note, also, that a single set of calculations is needed, and it will 

be a matter of convenience which one to use in applications. Finally note that for k = 2 (2.2) and 

(3.1) coincide. 

4 Orthogonal spaces and the relation between bases 

In this section we analyze the relation between a matrix and its orthogonal complement. Consider 

in general a full column rank: p x r matrix ~, p > r and the linear space of all the vectors obtained 

as ~t for any t; denote the resulting linear space as 13 c 9\P x r. Consider now all the possible vectors 

that are orthogonal to the vectors in 13; they can be represented as ~ 1 y, where ~ 1 is a p x (p - r) 

matrix such that ~'~ 1 = 0 and that (~, ~ 1) span 9\p. The space of all vectors orthogonal to the ones 

in 13 is called the orthogonal space and will be denoted by 131, The two matrices ~ and ~1 are bases 

of the two spaces 13 and 131, 

The choice of the basis in a space is arbitrary; any other matrix ~* = ~~, for ~ square and non-singular, 

can be chosen as a basis of 13, since any vector ~'t has equivalent representation ~*~-lt = ~*'t*. Note 

that for the case of the matrix C in eq. (2.4) any choice of basis of the spaces spanned by 0,1 and 

by ~ 1 would lead to the same C, that is the function C is invariant to the choice of basis in these 

spaces. In this section we will discuss some useful normalization of the basis of a space for the 

purpose of statistical inference. 

An intuitive choice of a basis for 13, for instance, is the one that restricts the column vectors of the 

basis to have either unit or zero loadings on some selected set of r rows, that is transfonn a square 

block of the basis into the identity matrix of order r: 

(4.1) 

where A is a (p - r) x r matrix. 

Note that not every set of r rows of ~ can be transfonned into the identity matrix, as the corresponding 

minor of ~ could be zero. Nevertheless at least one such feasible set exists from the assumption that 

~ has full column rank:; in fact if there did not exist at least one non-null minor of dimension r, the 

original basis would be of rank: r - I or less. 
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Given normalization (4.1) for the basis of the space '13, a natural normalization of the basis of the 

ortho gonal space '131 is seen to be 

(4.2) (-A') ~al= I 
p-r 

In fact one has ~a' ~a 1 = A' - A' = O. Note that the same matrix A enters into the bases of the two 

spaces; therefore eq. (4.1) and (4.2) make clear that ~ and Pl are linearly related when properly 

normalized. This basic argument leads to a single estimation problem for ~ and ~ l' 

The choices (4.1) and (4.2) are special cases of a more general set of normalizations. Consider in 

fact 

(4.3) 

where c is a p x r matrix such that c'~ is non-singular. It is straightforward to verify that (4.1) can 

be obtained from (4.3) by setting c = a == (InOrx(p-r»)" In the following we will denote by b the 

matrix bb == b (b ' b r\ which is a special case of (4.3). We will also indicate as P b the projection 

matrix bb' =bb' =b(b'br1b'. 

Given the matrix c, it is possible to find its orthogonal complement. There are many ways of 

obtaining a matrix cl that .satisfies the requirements c ' cl = 0, span (c , cl) = 9tP • For instance, define 

a square p x p matrix with the block of the first r rows equal to c' and the second block of rows q , 

such that the full matrix is non singular; usually blocks of Ip can be used to specify q. Since the full 

matrix (c, q)' is non-singular, one can calculate its inverse, which we partition in two blocks of r 

and p - r columns, (c, q ),-1 = Ca, b). From the definition of the inverse 

(;},b)=Ip 

so that one has c'b = Orx(p-r), and therefore b is a possible choice of Cl' 

An alternative possible procedure to derive the orthogonal complement of c is to consider Ip - cc'. 

From the theory of orthogonal projections Ip - cc' = cl cl', so that a spectral decomposition of the 

matrix Ip - cc' supplies the matrix of eigenvectors corresponding to the non-null eigenvalues of 

Ip - cc' as a possible choice of cl' One other way to calculate the orthogonal complement is through 

a QR decomposition; in fact c has decomposition c = (Q 1'~) (K', 0)' = Q 1R where (Q 1'~) is an 
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orthogonalmatrix andR is a triangular matrix of dimension r. It is easy to see from the orthogonality 

of (Q 1'~) that ~'c = ~'Q lR = 0, i.e. that ~ is a possible choice for c.1" Note that all the above 

methods in general specify different sets of vectors for Cl' which non-the-Iess span the same space 

span (cl)' and therefore are possible alternative bases for that space. 

Often, as for the choice c = a == (In Or x(P -r»)', the orthogonal complement cl is very simple, and 

does not require any computation; it is easy to see in fact that a 1 = (O(p -r)xr,!p -r)" 

Given ~, c and cl' a possible direct normalization of ~ 1 with respect to the normalization ~c (4.3) 

of ~ is given by 

(4.4) 

It is easy to verify that ~c'~Cl= ° and that for the particular choice of c = a == (I"Orx(P-r»' and 

cl = (O(p -r)xr,!p -r)' (4.4) reduces to (4.2). 

Normalizations (4.3) and (4.4) have a number of properties, which are summarized in the following 

lemma, a proof of which is deferred to the appendix. 

Lemma! 

Given MO orthogonal spaces '13 and '131 with respective bases ~ and ~ l' and MO matrices, c and cl' 

suc h that c '~ and cl' ~ 1 are square and non-singular, the following properties hold for the matrices 

defined in (4.3) and (4.4): 

La) ~c and ~cl are bases of the spaces '13 and '131; 

Lb) ~c and ~cl are normalized to be the identity matrix in directions c and Cl respectively, 

Lc) the following recursive relations hold 

1.d) ~c and ~Cl have the symmetric representation 

(4.5) 

(4.6) 

~Cl= ~1 (cl'~lrl 

~c = (I -cl~Cl')c 

Le) consider some other pair of orthogonal spaces rJ], rJ]1 with the same dimensions of '13, '131' and 
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respective bases 0 and 'Orior which c'o and c1'Ol are square and non-singular; then 

(4.7) 

(4.8) 

f3cl'(Oc - f3J = c1'(oc - f3J 

f3/('Ocl-f3cl)=C'(OC1-f3cl) 

Lemma 1.a) makes clear that (4.3) and (4.4) are possible choices of basis of the spaces fJ3 and fJ31. 

Property 1.b) illustrates the spirit of the above normalizations; note that it also states that (4.4) 

specifies the basis of the orthogonal complement so that it is already normalized along cl; therefore 

in the following no distinction is made between the two ways of obtaining f3c l' that is either by (4.4) 

or by normalizing 131 along cl' Property 1.d) shows, moreover, that definitions (4.3) and (4.4) are 

symmetric; in other words, given c and cl and either 13 or 131, (4.3) and (4.4) lead to the same 

normalized bases. Finally property 1.c) guarantees that the chosen normalizations can be obtained 

applying (4.3) and (4.4) either to f3 (or (31) or to any other already normalized basis. The usefulness 

of 1.e) will become clear in the following. 

As the above discussion suggests, in the context of statistical inference there is really only one 

estimation problem for the bases of both a space and its orthogonal complement. Itis easy to observe, 

in fact, that once an estimator is obtained for a space, say ~, an estimator of the basis of the orthogonal 

space is also already specified, e.g. as through (4.4). Therefore consider, for any estimator ~ of 13, 

the normalization ~c and the corresponding normalization of the orthogonal complement ~c l' Some 

special choice of c is of some interest; consider for instance c = 13, and let ~ == ~ = ~(f3'~rl (f3'f3). 
It is easy to see that the projection of ~ onto the space 13 is equal to 13 itself. Therefore when one 

decomposes ~ onto its projection on 13 and 131, one finds ~ = (P ~ + p ~ 1)~ = 13 + 131 d or ~ - f3 = 131 d, 

which shows that the sampling variation of ~ - 13, contained in d, all lies in the space ofthe orthogonal 

complement 131, The present case c = 13, although highly interesting in view of the above property, 

does not seem to be a viable final choice of normalization of a, as it assumes knowledge of the true 

13. Nevertheless such a choice can be valuable in an intermediate stage, as from lemma 1.c) any 

other normalization can be obtained from it. 
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Note that for the choice c = a (the special case of (4.1) and (4.2» the difference Pa - Pa turns out 

to be 

thus reflecting the fact that A summarizes the sampling variation of the estimator Pa. The termA - A 

can be isolated by pre-multiplying the difference Pa - Pa by Pal' = (-A,I(p-r» that is 

Pal'(Pa - Pa) =A - A. On the other hand the difference (Pal-Pal)' isjust (Pal-Pal)' = (-(A -A), 0). 

Note that in this case A -A can be isolated post-multiplying by Pa = (In A ,)" that is 

(Pal-Pal),Pa = - (A -A). For the special case (4.1), (4.2) one therefore has 

(4.8) Pal'CPa - Pa) = -(Pal-Pal)Pa 

The following lemma shows that (4.8) in fact holds for any choice of c and not just for c = a. 

Lemma 2 

Given any estimator P of P and the hypotheses of lemma 1 with respect to both 'l3 and 13, then the 

following equality is true 

(4.9) 

Let ~ == ~ and ~l == (Pl)~l' which correspond to c = 13 and Cl == 131 in (4.3) (4.4); for this choice 

(4.10) 

PROOF From the definition (4.4) 

PCI-PCl = (Ip -cPc')cl-(Ip -cPc')cl=-c(Pc -PJ'cl 

Pre-multiplying by Pc' and remembering from lemma 1.b) that Pc' c = In one obtains 

Pc'(PCI-PCl) = -(Pc - PC>'cl 

We need only to show that (Pc - PJ'cl = (Pc - PJ'Pcl; this follows directly from lemma 1.e), thus 

proving (4.9); in order to obtain (4.10) just consider the choice c = 13, Cl == 131 in (4.9). 

Q.E.D. 
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It may be helpful to illustrate the above result by a graphical example. Let us consider 

p = 2, r = 1, p - r = 1. For simplicity normalize the ~ space along the second unit coordinate vector, 

C = (0, Cl)' so that Cl = (C2' 0)' lies on the fIrst coordinate axis. With respect to the Cc, Cl) coordinate 

system, the pairs (~~ ~ 1) and Ca, a 1) represent perpendicular vectors centered in the origin (see fig. 

1). 

c 

Fig. 1 

The normalizations ~c and ac for ~ and a set the lengths of the two vectors so that their projections 

on the C axis coincide; analogously normalization (4.4) for ~l and al makes the projections of ~Cl 

and ac 1 on the cl axis equal. The difference vector ac - ~c therefore lies only in the cl subspace and 

the difference aCl-~cllies in the c subspace. If c and Cl are chosen to have the same norm (Cl = cz), 

the lengths of ac - ~c and ac l-~c 1 become equal, as fig. 1 suggests. 
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It also turns out that in the p = 2 case the product of the lengths of ~c and ~c l-~C 1 is equal to the 

product of lengths of ~c - ~c and ~c l' that is 11 ~c 11 . 11 ~c l-~C 111 = 11 ~c 111 . 11 ~c - ~c 11 = lIk see 

appendix; we can then interpret the left-hand-side of (4.9) as kcos8 and the right-hand-side as 

k cos~. In other words (4.9) expresses the fact that the angles e and ~ are equal, which is clear from 

the similarity of the rectangular triangles ABE and BDC. Finally one can illustrate equation (4.10) 

again using fig. 1, only rotating the axes so to make c = ~ and cl = ~ l' 

5 The asymptotic distributions of the estimators of C and a 1 

In this section we return to the problem of inference in model (2.2) or (3.1). It is useful to adopt the 

following notation: 

Lw .z2 = Var(vt I Z2t) (variance of Vt calculated from its seasonal mean), 

where Vt == (Xt_l'~,Mt_t', ... ,Mt-k+1,)" Z2t == (I,D/)" see section 2; 

Lss .w2 = Var(St I w2J where St == (Xt_l'~,Mt-l')' and W 2t == (~2Xt_l" ... ,~2Xt_k+2" I,D/), 

see section 3; 

WLn:.z~ == Var(WXt_11 Zt) where Zt = (Mt - 1', ... ,Mt-k+l', I,Dt,),· 

The following lemma reports some asymptotic distributions which are connected to the estimator 

(2.10) of C. 

Lemma 3 

In the model (2.2) (3.1) 

(5.1) 

(5.2a) 
w 

#vec([a,t]- [a,rn -+ N(O,L:.z2 ® Q) 

(5.2b) 
w 

#vec([a,4>] - [a,<I>]) -+ N(O,L;;.w2 ® Q) 

(5.2c) 
w 

#vec[(a- a)'] -+ N(O,Q ® (WLn:.z~rl) 
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where y is a p x (p - r -1) matrix such that (y, C~) = ~ I' G12 = G1 - (I G1G2du)(I G2G2du r 1G2, 

G1 = y'C(W - Iw du), G2 = u -1/2, Vu == (a'.Q-lar1a'.Q-lW, W is a Brownian motion on [0,1] with 

covariance n and Vu and G == (G1', G2)' are independent6. 

If~ = a~o the previous results are still valid substituting G1for G1.2 in (5.1). 

Results (5.1) (5.2a, c) are given in Iohansen (1991); specifically (5.1) corresponds to Iohansen's 

eq. (5.1) in theorems 5.1 and 5.2 and (5.2a) to Iohansen's theorem C.1; (5.2c) is just a rewriting of 

the same result and (5.2b) is derived analogously. 

The above results are sufficient to derive the asymptotic distribution of the estimator (2.10) of C 

when (4.4) has been applied to &, and ~ to obtain estimators of their orthogonal complements, 

respectively normalized along bl and cl; note that al is therefore normalized so that bl'abl=Ip-r' 

The following result holds: 

Theorem 4 

The asymptotic distribution of the estimator (2.10) of C is gaussian 

(5.3a) 
w 

Wvec(C - C) -+ N(O, ~) 

where the asymptotic covariance matrix has the equivalent representations 

(5.3b) ~ = Q1:-1 Q' 0 cnc' w.z2 

(5.3c) ~ = Q*1:-1 Q*' 0 cnc' ss.w2 

where Q == (Ql,Q2)' Ql == (C''!'' -Ip)a = (C' -C'<!>' -Ip)a, Q2 = C'(ik-t' 0Ip), and Q* = (Ql,C'). 

The covariance matrix ~ can be consistently estimated either by 

that is by pre-multiplying the covariance matrix obtained in the regression ofYt.z2 on Vt .z2 (see section 

2) by (Q 0 C) and post-multiplying it by its transpose, or by 

Q"*M-1 Q"*' 0CQC' ss.w2 

6 See Iohansen (1991) theorem 5.1. 
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that is pre-multiplying the covariance matrix obtained in the regression of Yt.w2 on St.w2 (see section 

3) by (Q * ® C) and post-multiplying it by its transpose. 

Moreover the limit distribution of ab 1 is also normal 7 

(504) 
w 

-YTvec[ab'(abl-abl)] = -YTvec[b'(abl-abl)] -7 N(O,S) 

where 8 = (ab1'Qab1) ® (b 'IIT,=.zll'b r 1 

This asymptotic covariance matrix can be consistently estimated by 

PROOF We will first prove (504). Consider the distribution of a normalized version of a, 

ab = a(b 'arl . A first order expansion of ab around a gives 

(5.5) 

and pre-multiplying by ab l' one obtains 

ab1'(ab - ab) = ab1'(a- a)(b 'arl + O/T-I ) 

From lemma 2 the left-hand-side is equal to - ab'(abl-abl)' that is 

(5.6) ab'(abl-abl) = - (a'b rl (a- a),ab1 +Op(T-1) 

Applying the column stacking operator and multiplying by -YT one obtains 

-YTvec (ab'(abl-abl» = - (ab1' ® (a'b rIWvec[(a- a)'] + Op(T-1I2) 

Thus from the previous expression and (5 .2c) the asymptotic distribution (5 A) of ab 1 follows directly 

by Cramer's theorem. 

Next consider C = ~ia'l '¥~lrIal' which is seen to be invariant with respect ofnormalizations of 

7 A similar derivation can also be employed to show that the limit distribution of T~c' (~c l-~C 1) is 
mixed gaussian, although there is the additional complication that in one direction (the one of the 
linear trend) the distribution converges at the stronger rate T-3/2• 
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(4.4) of~c 1 and ab 1 in C makes clear that C is a function of (~c' ab' 'P), C = g (~c> ab, 'P). A first 

order expansion of C gives 

CC -C) = g" Cac - ~C>+ ga (ab -ab)+ g'l'r¥ - 'P)+ 
Pc b 

fi 2 A 2 A 2 
+ 0 /max {II Pc - ~c 11 , 11 ab - ab 11 , 11 'P - 'P 11 }) 

From (5.1) ac - ~c = Op(T-1), while ab - ab = Op(T-1I2) and 'P - 'P = Op(T-1I2) from (5.5) and (5.2) 

respectively. By the above superconsistency of ac one can then consider ~c as fixed in C; in fact, 

since ab is function of a, one can write 

(5.7) 

and again applying Cramer's theorem one obtains that WCC - C) is asymptotically gaussian with 

mean zero. In order to obtain the asymptotic covariance matrix, the first order derivatives in (5.7) 

are needed. A first order expansion of C as a function of ab gives 

gab (ab - ab) = -~l (abl''P~lrlbl(ab - ab)b '(I - 'PC) + O/T-1) = 

= - C(ab - ab)b '(I - 'PC) + Op(T-1) 

where the second equality follows from (4.7). Substituting (5.5) it follows 

ga(a - a) = C (a - a) (b 'ar1b '('PC - I) + ° p(T-1) 

Note that al'('PC-I)=al'P~l(al'P~lrlal'-al'=O from which one has 

'PC -I = (P a + P a) ('PC -I) = P a('PC - I) and therefore 

(5.8) gaCWCa-a» = CW(a-a) (b'ar1b'aa'('PC -I) + O/T-1I2) = 

= C ewea -a»a'('PC - I) + 0/1) 

Let us now consider the first order derivatives with respect to 'P; recall that the first order differential 

of a square invertible matrix A is dA -1 = -A -ldAA -1 so that 

g'l'r¥ - 'P) = - ~l(al''P~lrlal'r¥ - 'P)~l (al''P~lrlal' + O/T-1) = 

=-Cr¥-'P)C +Op(T-1) 
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Remembering now that '¥ - '£I = - CI,7::iti - rJ = - et - r) (ik - 1 ®Ip) = - (cl> -<!», substituting and 

multiplying by -fi one obtains 

(5.9a) 

(5.9b) 

g,P(-fi('¥ - '£I» = C(-fi(t - r» (ik-l ®Ip)C +0/1) 

= C(-fi(cl> - <!»)C +0/1) 

Combining (5.8) and (5.9a) the following expression results 

(5.1Oa) -fi(C - C) = C C-fiCa - a»Ql' + C (-fi(t - r»Q2' + ope!) = 

= c-fi([a,f] - [a,r])Q' + op(l) 

where Ql = (C''!'' -l)a, Q2 = C'(ik _ 1' ®Ip). Applying the column stacking operator one has 

C5.11a) -fivec(C - C) = (Q ® C)-fivec([a,f] - [a,r])+o/l) 

from which (5.3b) follows. Analogously from (5.8) and (5.9b) one derives 

(5.1Ob) -fiec -C) = C(-fi(a- a»Ql' + cc-fi(cl> -<!»)C +0/1) = 

= C-fi([a, cl>] - [a, <!>])Q *, + 0/1) 

where Ql = CC ''£I' -l)u = (C' + C'<!>' -I)a; finally applying the column stacking operator 

(5.11b) -fivec(C - C) = (Q* ® C)-fivec([a, cl>] - [a, <!>]) + op(l) 

from which (5.3c) follows. 

Q.E.D. 

Note that theorem 4 is still valid under hypotheses on Il of the form Il = apo, since these affect only 

the limit distribution of ~c - Pc, which does not contribute to the asymptotic covarlance matrix (5.3) 

due to the superconsistency of ~. The modifications of the statistical calculations under Il = aPo, 

that is the augmentation of X t by 1 and the corresponding cancelling of 1 from the regressors in Zt 

or W t , see Johansen (1991), do not affect the results either. 

6 Wald tests on the common trends 

The results of the previous section indicate the possibility to construct straightforward Wald type 

tests on C and on the normalized version of al' It is the purpose of this section to discuss how to 
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formulate appropriate tests with respect to a r Linear restrictions will be considered first for sim

plicity. Consider therefore hypothesis of the form 

(6.1) 

where R is m x (p 2 - pr) and q is m x 1. Since a 1 has been normalized along the direction b l' it is 

not sensible to test restrictions in the direction b1. Note that in fact a b1= (Pb + Pb1)ab1= bb'ab1+b 1 

so that the left-hand-side of (6.1) can be rewritten as 

Rvec(ab1) =R(Ip _ r ® b )bab1+Rvec(b1) =R*(b'ab1) + Rvec(b1); hypothesis (6.1) becomes then 

equivalent to 

(6.2) 

where R* ==R(Ip _ r ®b) is m x (pr _r2) and q* == q -Rvec(b1) a m xp -r. Note thatR* will be 

of full row rank m if the hypothesis (6.1) is well specified, that is if it does not pertain the already 

normalized coefficients. The reformulation (6.2) can then be used to check that the specified 

hypothesis concerns the normalization-unconstrained coefficients through a check on the rank of 

R*. 

As an illustration consider the choice of normalization b = (In 0)" b1 = (O,Ip-r)" The normalized 

version of a 1 is therefore 

(6.3) 

and b ' = b' selects a l from ab l' i.e. b ' ab 1 = aI- Reformulation (6.2) is pointing out in this example 

that questions relating the lower block of ab 1 (the identity matrixIp -r) are not statistical hypothesis. 

Note also that (6.2) provides the link between the hypothesis of interest and the result of the previous 

section. In fact the distribution of ab 1 in (5.4) has been expressed as .yr vec [ab' (ab 1-ab 1)]' From 

lemma 1.e) one has that ab'(ab1-ab1) = b'(ab1-ab1), and thus it follows directly that under (6.2) 

(6.4) 
w 

T (R *vec(b' ab 1) - q *)' [R *8R * TI (R *vec(fj ' ab 1) - q *) ~ x2(m) 

A similar Wald type test can be constructed for a general smooth hypothesis of the form 

p(vec(b' ab 1» = q * simply substituting dp(vec(b' ab 1) )/dvec(b 'ab 1) for R * in (6.4). 
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One interesting special case of hypotheses of the fonn (6.1) (6.2) are exclusion type restrictions. A 

different way to express these type of restrictions is the following 

(6.5) 

where RI is p x mI and R2 is (p - r) X m2. As in (6.2) we have to make sure that hypothesis (6.5) 

refers only to unnormalized coefficients, i.e. to a I in example (6.3). In order to do so RI has to lie 

in the span of b. In fact it is easy to see that were RI in the span of b1, RI = b1d, then 

R1'ab1R2 = d'b1'ab1R2 = d'R2 which would be a known quantity. If RI had a non-null component 

in the span of b l' that is RI = b 1 d + bR l *, (6.5) would not express exclusion restrictions, as 

R l 'ab1R2 = d'b1'ab1R2 + R l *'b'ab1R2 = d'R2 +R l *'b'ab1R2 so that (6.5) would be equivalent to 

R l *'b'abjl2=q, whereq =-d'R2. 

Therefore we assume that RI E span(b), or RI =bR1*; note thatRl* =b'Rl • Hypothesis (6.5) has 

thus equivalent representation 

(6.6) 

If ml or m2 are greater than one, (6.6) is a joint hypothesis on the parameters in ab 1; it is then easy 

to transfonn (6.6) by applying the column stacking operator to obtain (R2' ®R1*')vec(b 'ab1) = 0, 

which is a special case of (6.2) with R* = (R2' ®R1*') and q* = O. Result (6.4) can therefore be 

applied with m = ml m2• 

If ml = m2 = 1, (6.6) expresses a zero restriction on a scalar linear function of ab1, and a simpler 

procedure in this case would be to derive (-ratio type statistics. RI * andR2 will often be just selection 

column vectors eh with all zero elements and a unit element in the h-th row, RI * == ej and R2 == ej. 

Denoting with (a)ij the ij-th element of a matrix a, hypothesis (6.6) represent in this case exclusion 

restrictions of the type (b 'ab ,) .. = 0, or (al )·· = 0 in example (6.3). From (5.4) the corresponding 
-I) I) 

asymptotic variance is (ab l'Qab 1) jj . (b '.ITI:n.JI' b ):1 which can be consistently estimated by 

(ab l'Qab l)jj . (b ':fiMn.zfi'b ):1. The corresponding (-ratio statistic is asymptotically standard normal 

distributed 

(6.7) 
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IfRl* andR2 are not selection vectors, from (5.4) the asymptotic variance ofthe right-hand-side of 

(6.6) is seen to be d =R2'abl'nablR2 . R1*'(b'ITI:=.zll'br1R1* or 

R2'ubl'QublR2' R1'b(b 'ITI:=.zll'b rIb 'Ri which IS consistently estimated by 

d=R2'abl'o.ablR2·Rl'b(b'llM=.zTI'brlb'Rl' The corresponding t-ratio statistic 

fi R1'bb'ab IR2 / d has also a standard normal asymptotic distribution, 
- w 

fi R1'bb'ab1R2 / d ~ N(O, 1) 

7 Some remarks on Wald tests on the moving average impact matrix C 

General linear hypotheses about C can be formulated as follows 

(7.1) Rvec(C) = q 

where R is m X p 2 and q is m x 1. The matrix C has rank: p - r and is therefore singular, i.e. some 

linear combinations of its elements will be exactly zero; this is reflected in the singularity if the 

asymptotic covariance matrix ~. Nevertheless if the asymptotic covariance matrix of the R linear 

combinationsR '(QL:.z2Q' ® CnC')R is non-singular, under (7.1) 

(7.2) 
w 

T(R vec(C)-q)'(R NRT\R vec(C)-q) ~ x2(m) 

that is the Wald test statistic is asymptotically x2(m ) distributed, with number of degrees of freedom 

m equal to the number of restrictions imposed by (7.1). As before one could consider general smooth 

hypotheses about C of the form p(vec(C» = q; result (7.2) would be still valid when substituting 

ap(vec(C»)/avec (C) for R. 

Exclusion type restrictions are a special case of (7.1); they can be expressed as 

(7.3) 

whereRj are p xmj vectors, i = 1,2. We will consider two special cases of (7.3), 

1. m1 = m2 = 1, (p - r > 1)8, Hypothesis (7.3) expresses exclusion restrictions on a scalar linear 

function of C; R j will typically be selection vectors, RI = ej, R2 = ej' so that (7.3) corresponds to 

Cij = O. If no restrictions have been imposed on u and ~ in the estimation of the system, the 

8Por the case p - r = 1 hypothesis (7.3) is just the union of hypothesis of the form (7.6), (7.7) 
see the following. 

21 



asymptotic covariance matrix of (7.3) will be positive and will have the form 

(Q-r,~.Z2Q ')jj' (CnC')ii or (Q*-r,;;.W2Q*')jj· (CnC');i which can be consistently estimated by 

(QM::V\2Q ')jj' (CnC');;. The corresponding t-ratio type statistic 

(7.4) 
{'fC.. w 

-V A -1 A, I) A A A, -t N(O, 1) 
(QMvv.z2Q )jj' (CnC );; 

is asymptotically standard normal distributed. 

2. RI = U, R2 = U1. This type of hypothesis nests neutrality restrictions, see Mosconi and Giannini 

(1992) and reference therein. Let us partition C as follows 

Such a restriction states that innovations in the lower block of ml equations do not contribute to 

the stochastic trends of the first block of p - ml variables9• It is easy to see that (7.5) can be 

translated in terms of (7.1) by applying the column stacking operator 

(U1' ® U')vec(C) = 0 

For this special case of (7.1) R = (U1' ® U') and q = O. The corresponding asymptotic covariance 

matrix will be nonsingular if a and ~ are estimated unrestrictedly, and result (7.2) applies. 

Several remarks have to be made concerning Wald type tests on C. 

As the structure C = ~ 1 (a l''P~ 1rI a l' makes clear, the C matrix contains both information on a l' 

which spans the row space of C, and information about ~1' which spans its column space; it also 

contains additional information on the remaining autoregressive parameters through 'P. When the 

hypothesis of interest really pertains either a l' or ~ 1 or the other parameters in 'P, it seems a bad 

9 Note that innovations do not have a diagonal covariance matrix. Note also that, in general, the 
rank of C is not affected by the hypothesis. See Mosconi and Giannini (1992) for cases in which 
(7.5) corresponds to an analogous structure of the IT matrix. 
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idea to translate it in terms of C, which contains combined infonnation about a l' ~ 1 and 'P. It seems 

sensible, instead, to fonnulate hypothesis only with respect to the parameters of interest, and this 

in most cases leads to simpler inferences. 

Note also that hypothesis about the spaces spanned by a 1 and ~ 1 can be translated in tenns of the 

space spanned by a and~. Take for instance the hypothesis R1'C = 0, where RI is a p x 1 vector, 

as e.g. RI = (1,0, ... ,0),. The hypothesis R1'C = ° is concerned with the column space of C, that is 

with the space spanned by ~l; more specifically it is stating that the vector RI = (1,0, ... ,0), is 

orthogonal to the span of ~ l' or equivalently that RI is in the span of~. Note that restricting the first 

row of C to zero really means that no 1(1) component I.~ = I ej enters in the determination of the first 

variable in the system, which is just as saying that the first variable is stationary by itself, or that 

RI = (1,0, ... ,0), is a cointegration vector. 

From the above discussion it is easy to see that hypotheses of the fonn 

(7.6) 

should indeed be reformulated as 

(7.7) or RI E span(~) 

R 2'al = ° or R2 E span (a) 

Likelihood ratio tests and Wald type tests of hypotheses of the fonn (7.7) can be readily derived in 

the autoregressive representation of the process, and it seems much more sensible to address these 

issues in that context. Procedures to maximize the likelihood under such constraints are contained 

in Iohansen (1991) and Iohansen and Iuselius (1990). 

8 Conclusions 

In this paper we have shown that inference about two orthogonal bases is indeed a single problem. 

Using this duality we have derived the asymptotic distribution of the moving average impact matrix 

C in autoregressive systems integrated of order one; in the derivation a natural by-product is the 

distribution of the linear combinations al of the process which are responsible for the common 

trends behavior of the system. 
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These asymptotic results lend themselves to the derivation of Wald type tests of general smooth 

hypothesis about C and a 1; a word of caution is mandatory in this respect, as some relevant 

hypotheses can be better formulated with respect to single component spaces. A final remark seems 

in order to exploit the duality of hypothesis with respect to ~ and ~ 1 and to a and a 1; often in fact 

either likelihood ratio tests or Wald tests are known or can be easily derived for either one of the 

bases, e.g. in this case for a and~. 
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Appendix 

Proof of lemma 1 

Statements la) lb) are obvious from the definition of the spaces and (4.3) and (4.4). Property l.e) 

can be directly verified by substitution. In order to verify (4.5) one can simply use property l.a) 

and l.b); in order to obtain (4.6) consider 

f3c = (pc + pcJf3c = c + c lcl 'f3c = c - Cl (Cl' (1 - f3cc '»c = (1 - cl f3cl')c 

Finally consider property 1.e); substituting (4.4) in the left-hand-side of eq. (4.7) one obtains 

f3cl'(Dc - f3J = Cl' (I - f3cc') (Dc - f3J = Cl' (Dc - f3J - cl 'f3c(c 'Dc - c 'f3J = Cl' (Dc - f3J 

from property l.b). Eq. (4.8) follows from (4.7) and l.d). 

An alternative proof of lemma 2 

A different route of proof is to show that (4.10) is true, and then derive (4.9) from (4.10). Take in 

fact ~, f3, ~ l' f31, which satisfy ~'~ 1 = 0, f3' f31 = 0, and consider the projection of ~ on the spaces 

rJ3 and rJ31, ~=P~~+P~l~=f3h+f3J!. Post-multiplying by h-l one obtains ~=f3+f3J!h-lor, 

~ - f3 = f31d . In order to solve for d, pre-multiply by f3* l' == (~l)~l'; one thus has -f3* l'f3 = f3* l'f31d 

or d = -(f3* l'f31r lf3* l'f3 and substituting back one finds 

~ - f3 = -f31 (f3* l'f31r lf3* l'f3 

Note that every pair of normalizations of ~ 1 and f31 would satisfy the above relation as f31 (~l' f31rl~ l' 

is invariant to normalization of both these spaces. Nevertheless for the specific choice ( 4.4) cl = f31 

one also has f3* 1'f31 =Ip_r> so that one can rewrite the above relation as ~ - f3 = -f3if3* 1 - 131),f3 or 

(4.10) 

In order to obtain (4.9) from (4.10) post-multiply the latter equation by (c '~rl = (13'~) (c '~rl and 

pre-multiply it by (131' c Ifl; from lemma 1.c) one has 

(A.I) 
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From defInition (4A) ~* I' == 131 'Cl - a(j3'ar1p') so that when post-multiplied by 

P(c '~rl = ~(j3'a) Cc 'arl one obtains 

P* l'p(j3'a)(c 'ar! = 0 - j31'ac = 131'(1 - acc ')~c = P1'(Pc + pcJ([ - acc ')~e 

= (j31'C1)C1'Cl - aec ')Pe = (j31'c1)ae1'~e 

Reinserting the product back in equation (A.!) one has ~e1'ac = -ac1'PC or 

(4.9) ~c1'(ae - ~J = -(ac1-~c1)'Pc 

Proof that for p = 2 (cfr. fIg. 1) 

11 ~c 11·11 ae1-~c11I=1I ~e11l'1I ac-~c 11 

From (4A) one has 

(A.2) 

where the second equality follows from the fact that p = 2, r = 1. Analogously 

(A.3) 11 aC1-~clIl2=c1'(ac-~J(c'c)(ac-~C>'c1 = 

= (Cl 'clrl (c'c)(ae - ~C>'Pc (ac - ~c> 
- - 1 

where again the last equality follows from the fact that p = 2, r = 1. Consider now 

(AA) 11 ac - ~c 112 = (ac - ~c)'Cac - ~J = (ac - ~c>,(pc + PC1)(ac - ~J = 

= (ac - ~C>' PC1 Cac - ~c) 

and analogously 

(A.5) 

One can then verify that the product of (A.2) and (AA) is equal to the product of (A.3) and (A.5). 

27 



PREPRINTS 1991 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF 

MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, DK-2l00 COPENHAGEN ~, DENMARK, 

TELEPHONE + 45 31 35 31 33. 

No. 1 

No. 2 

No. 3 

No. 4 

No. 5 

No. 6 

No. 7 

Johansen, S~ren: Determination of Co integration Rank In the Presence 
of a Linear Trend. 

Johansen, S~ren: A Statistical Analysis of Cointegration for 1(2) 
Variables. 

Jacobsen, Martin: Homogeneous Gaussian Diffusions in Finite Dimensions. 

Johansen, S~ren; Testing Weak Exogeneity and the Order of Cointegration 
in UK Money Demand Data. 

Johansen, S~ren: An 1(2) Cointegration Analysis of the Purchasing 
Power Parity between Australia and USA. 

Johansen, S~ren: Estimating Systems of Trending Variables. 

Jacobsen, Martin and Keiding, Niels: Random Censoring and Coarsening 
at Random. 



PREPRINTS 1992 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE 

OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, DK-2100 COPENHAGEN 0, 

DENMARK. TELEPHONE + 45 31 35 31 33. 

No. 1 

No. 2 

Johansen, S0ren: The Role of the Constant Term in Cointe
gration Analysis of Nonstationary Variables. 

Paruolo, Paolo: Asymptotic Inference on the Moving Average 
Impact Matrix in Cointegrated 1(1) VAR Systems. 


