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ABSTRACT 

The autoregressive model for cointegrated variables is analyzed 

with respect the role of the constant term. A number of models for 1(1) 

variables defined by restrictions on the constant term is discussed, 

and it is shown that statistical inference can be performed by reduced 

rank regression. The asymptotic distribution of the test statistics 

and estimators are found. A similar analysis is given of models for 

1(2) variables. 

1. INTRODUCTION 

The constant term in an autoregressive model for nonstationary 

variables gives rise to a trend. Similarly a linear term in the model 

gives rise to a polynomial trend of degree determined by the 

coefficients of the autoregressive model. It is the purpose of this 

paper to discuss in detail how the assumption of cointegration leads to 

various interpretations of the constant term and the linear term in an 

autoregressive model. 
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If we assume about the model that it defines I (1) variables, then 
the linear term implies a quadratic trend in the variables, and we 
discuss below some hypotheses expressed as nonlinear restrictions on 
the adjustment coefficients and the deterministic terms with the 
purpose of testing that there is no quadratic trend, that the linear 
trend only appears in the nonstationary components of the process, that 
the variables are trend stationary etc. It turns out that estimation of 
parameters under various hypotheses can be performed by reduced rank 
regression, but the asymptotic distribution of the test for 
cointegration depends on the assumption about the deterministic part 
of the model, that is, on the presence of trends in the variables. 
These problems have been discussed for the constant term in Johansen 
and Juselius (1990) and in Johansen (1992a), and the new results here 
are the results for the quadratic trend and the results for trend 
stationarity. The results are collected for comparison, and some new 
tables provided. 

If the model allows for I(2) variables, the constant term will 
imply a quadratic trend in the process and there are many different 
models that can be expressed as restrictions on the various adjustment 
coefficients and the constant. We give a brief survey of the 1(2) model 
and the properties of the process and discuss how the statistical 
analysis of the 1(2) model can be performed by repeated application of 
reduced rank analysis. 

2. THE I (1) MODELS AND THEIR INTERPRETATION 

We first define some models for 1(1) variables derived by 
restricting the deterministic term in the defining equations. Then we 
discuss the interpretation of these models and investigate how the 
various restrictions on the deterministic terms influence the behavior 
of the process. 
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2.1 The 1(1) models 

Ye therefore consider the vector autoregressive model for the 

p-dimensional process written as a reduced form error correction model 

k-l ( ) AXt = nXt _ 1 +}';1 f i U t - i + Ji.O + Ji.l t + Et' t = 1, ... ,T, 2.1 
with initial values X-k+1'.'. ,XO kept fixed and errors that are 

independent' Gaussian with mean zero and variance matrix n. The 

hypothesis of cointegration is formulated as the hypothesis of reduced 

rank of n, that is 

n = af3l (2.2) 

where a and 13 are pxr matrices, or in other words, that the rank of n is 

less than or equal to r. 

k-l Ye define r = I + IT -}';1 fi' and apply Granger's theorem, see 

Engle and Granger (1987), in the form given in Johansen (1989), which 

states that if a and 13 have rank r, and a' ff3 has full rank, where a and 
~ ~ ~ 

13 is a px(p-r) matrix of full rank orthogonal to a and 13 respectively, 
~ 

then Xt has the representation 

Xt = Xo + C}';iEi + t72t2 + 71t + 70 + Yt - Yo (2.3) 

where Yt is a stationary process with f3lXO = f3IYO' Here C = 

13 (a ' ff3 )-lal , and 72 = CJi.l' Note that if r = 0 then a = 13 = 0, and we can 
~ ~ ~ ~ 

take a = 13 = I. If r = p we def ine a = 13 = 0 and C = o. 
~ ~ ~ ~ 

It follows that in general Xt has a quadratic trend, t72t, and 

that the stochastic part of Xt is a nonstationary process with 

stationary differences, a so called 1(1) process. Note also that the 

reduced rank of IT implies that the stochastic part of (JIXt is 

stationary. The space sp((J) is called the cointegrating space and the 

vectors in sp((J) the cointegrating vectors. The vectors a are the 

adjustment vectors since they measure the rate of adjustment of the 

process Xt to the disequilibrium error (J'Xt _1" The coefficients 70 and 

71 are rather complicated, but can be found by inserting (2.3) into 

(2.1) and identifying coefficients to 1 and t, as functions of the 
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parameters and the initial values of the model (2.1) . 

The purpose of this paper is to discuss the role of the 

deterministic term Pt = Po + Plt under the assumption of reduced rank 

and various restrictions on Po and Pl' By the role of the deterministic 

term we mean that the behavior of the deterministic trend of the process 

Xt depends critically on the relation between Pt and the adjustment 

coefficients a. To analyze this we therefore decompose the parameters 

p. in the directions of a and a as follows: 
1 .L 

p. = af3. + a ,., 
1 1 .L 1 

Thus f3. = (a l a)-l alp . and ,. = (a'a ):-la l p .. 
1 1 1 .L .L .L 1 

nested submodels of the general model (2.1). 

HO ( r): Pt = af3 0 + a.L '0 + (af31 + a.L (1) t , 

* HO(r): Pt = af30+ a.L '0 + af31t , 

Hl (r): Pt = af30+ a.L '0' 

* Hl (r): Pt = af30 , 

H2 ( r): Pt = O. 

TABLE I 

i=O,1. 

lie then define a number of 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

The relation between the hypotheses discussed for the J(1) model. 

HO(O) c. .. C HO(r) C ••• C HO(p) 

U U U 

* * * HO(O) c. . . C HO(r) C ' •• C HO(p) 

11 u u 
H1(0) c. .. C Hl (r) C ••• C Hl(P) 

U U U 

* * * H1(0) c ... C H1(r) ( ••• C Hl(P) 

11 U u 
H2(0) ( ••• C H2 (r) c ... ( H2 (p) 
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The next section discusses the properties of the process Xt under the 
various models defined by (2.4) - (2.8). 

2.2 The interpretation of the J{1) models 

All the models above have the property that the process is 1(1) 
and that the stochastic part of P'Xt is stationary. We focus here on 
the interpretation of the models for different restrictions of the 
constant and linear terms. The general model HO(r) with unrestricted 
deterministic term allows for a quadratic trend in the process It 
determined by the slope coefficients 

72 = Cll1 = P (a'rp )-la'lll = p (a'rp )-la'a 11' 
~ ~ ~ ~ ~ ~ ~ ~ ~ 

Note, however, that the linear combinations P'Xt have no quadratic 
trend, since P'72 = O. Thus the quadratic trend is eliminated by the 
linear combinations p, but the process P'It still has a linear trend. 

* The model HO (r) is characterized by the absence of the quadratic 
trend since a~lll = 0 or 11 = 0 and hence 72 = 0, but the model allows for 
the possibility of a linear trend in all components of the process, a 
trend which can not be eliminated by the cointegrating relations P, 
Thus a linear trend is allowed even in the cointegrating relations, 
each of which therefore represents a stationary process plus a linear 
trend or a trend stationary process, In particular if a unit vector is 
cointegrating then the corresponding component of It is trend 
stationary. The expression for the linear trend 71 when III = aP1 is 
given by 

71 -1 71 -1 7.l 
71 = / a P 10 + / a P r a pP 1 - pp 1 . 

~ ~ ~ ~ ~ 

Here we have used the notation 71 = P(p'p)-l, and r R = a'r71. This a p ~ ~ 
~ ~ 

expression shows how the contributions from III and IlO enter into the 
slope of the linear trend. Note that the cointegrating relations P'Xt 
have a trend given by P' 71 t = - P1 t. 
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For the present purpose we define a trend stationary process as a 

process that can be decomposed into a stationary process and a linear 

trend. A problem that often faces the econometrician is to make a 

choice between describing a given time series as a trend stationary 

process or an I (1) process. Since the sample paths of such two 

processes observed over a short interval can easily be mistaken, one 

will expect that the real decision to choose between the two 

descriptions should be based on economic insight. In some cases, 

however, it is of interest to conduct a statistical test to see if one 

can make the distinction on the basis of the data. 

* Model HO(r) allows for r trend stationary variables, and p-r 

variables that are composed of I (1) variables and a linear trend. Thus 

if one wants to test that a given variable, Xlt , say, is trend 

stationary one has to check that the unit vector (1,0, ... ,0) is 

contained in the ~ space. If the hypothesis is rejected a better 

description of the variable is as an 1(1) variable plus a trend. A 

different way of describing the same model is by the equations 

A(L)(Xt -mO -m1t) = Et· (2.9) 
If the model is written in the form (2.1) with condition (2.2) we find that 

ItO = a~/mO + (a~' + nm1, 

Itl = a~/ml . 

* Thus model (2.9) has Itl restricted by a~ltl = ° and is in fact model HO(r) 
in a different parameterization. The parameterization given by (2.9) 

is sometimes preferred, but one should note that the parameter mO is not 

identified, since only the r combinations ~/mO enter the model, whereas 

m1 is identified. 

In model H1(r) where Itl = 0 we find 72 = ° and in this case the 

process Xt still has a linear trend, determined by 71 = CltO = 
~ (a'r~ )-la'a 10' This trend is eliminated by the cointegrating 

.J. .J..J. .J. .J. 

relations ~, and the process contains no trend stationary components. 
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* In model H1 (r) there are no trends, since a~Ji.O = 0, but a constant term 

is allowed in the cointegrating relations. Finally in model H2(r) all 

stationary components have mean zero. 

The conclusion of this discussion is that the role of the 

deterministic term of (2.1) is seen to depend on the relation between a 

and the coefficients Ji.O and Ji.1' This changing role of the deterministic 

term for the interpretation of the process defined by the equations has 

implications for the statistical analysis. 

3. THE STATISTICAL ANALYSIS AND 

THE LIKELIHOOD RATIO TESTS 

This section contains a brief description of reduced rank 

regression and demonstrates how this procedure is applied to derive 

estimators and test statistics for models with various restrictions on 

the deterministic terms. 

9.1 lleduced rank regression 
The statistical analysis of all the models is given by the same 

procedure which is called a reduced rank regression, and which was 

introduced by Anderson (1951) in the context of independent variables, 

and has been applied by Ahn and Reinsel (1988) for stationary 

processes, and Johansen (1988) for nonstationary processes, that is, 

the model H2(r), See Johansen and Juselius (1990) and Johansen (1992a) 

* for a discussion of the models H1 (r) and H1 (r). 

DEFINITION By a reduced rank regression of Ut on Vt corrected 

for Zt we understand the following statistical calculations: llegress 

Ut and Vt on Zt to form residuals llut, and llvt, and solve the reduced 
rank regression 

II ut = afJ I II v t + f. t' 
by defining product moment matrices 
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-1 T S . . = T E111· tll'·t, 2,J = u, v, 2J '/, J 
and solving the eigenvalue problem 

I,\Svv - SvuS~~Suvl = 0, (9.1) 
for eigenvalues 1 > ,\ 1) ... > '\p ) 0, and eigenvectors w = (w1"'" wp)' 

That is, the vectors w· satisfy 
, 2 

-1 '\.S w.=S S Sw., i=l, ... ,p, '/, vv 2 vu UU uv '/, 
-1 

and are norma l ized such that w' S vvw = I, so tha t w' S vuS uuS uvw = 

The reduced rank estimators are given by fJ = 
" 

(w1' ... , wr) and a = SuvfJ . 

We show in the next section that the models (2.4) - {2.8) can all be 

estimated by reduced rank regression. 

9.2 Derivation of test statistics for cointegration rank 

The problem treated in this section is to test for cointegration 

rank under various assumptions on the deterministic part of the 

process. The main result is that the statistical calculations are all 

performed by reduced rank regression, but as shown in the next section, 

the asymptotic distribution of the test statistics differs for the 

various models. 

We first consider the test of HO(r) in HO(p) that is the test for 

cointegration rank, or IT = afJ', when there is an unrestricted linear 

term in model (2.1). The Gaussian errors in equation (2.1) give rise to 

a likelihood analysis which leads to a regression, and for the analysis 

of HO(r), where IT = afJ', this is seen to be a reduced rank regression of 

AXt on Xt - 1 corrected for lagged differences, constant and linear term. 
" 

The estimator of the error variance is given by n = Suu - aa', and the 

maximized likelihood is given, apart from a constant, by 

L -2 /T (r) = I S I ~ (1-,\.). 
max uu . 1 1 

1= 
(3.2) 
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By dividing two expressions like (3.2) for rand r = p, we find that the 

likelihood ratio test Q{HO(r)IHo(p)} of the model HO(r) versus the 

unrestricted autoregressive model, HO(p), is given by 

-2InQ{HO(r) 1Ho(p)} = -T};i+1Iog(1-A). (3.3) 

The same analysis holds for H1(r) in H1(p), only the reduced rank 

regression is ofAXt on Xt - 1 corrected for lagged differences and 

constant term, and in the analysis of H2(r) we only correct for the 

lagged differences. Thus in all three cases we get the test statistic 

(3.3) only with differently calculated eigenvalues. 

* Next consider HO(r), where ~1 is restricted by a~~1 = 0, or 11 = 
* O. In order to show that the analysis of HO(r) is also given by reduced 

rank regression we use the restriction 11 = 0 to write 

* * a(3/ Xt + a(31 t = a((3/ Xt + (31t ) = a((31 ,(31)(Xi,t) I = a(3 'Xt, 

* * where (3 = ((3' ,(31)' and Xt = (Xi,t)/. Vith this notation the model is 

* * k-1 AXt = a(3 'Xt _1 +};1 r i AXt _ i + ~O + Et, 
such that the statistical analysis consists of a reduced rank 

* regression ofAXt on Xt - 1 corrected for lagged differences and the 

* * constant. Hence the test statistic for the hypothesis HO(r) in HO(p) is 

* again of the form (3.3). Finally in model H1 (r), where ~O = a(30' we write 

the equation as 

** ** a(3/ Xt + a(30 = a(3 'Xt , 

** ** where (3 = ((3',(30)' and Xt = (Xi,1)/. Vith this notation it is seen 

** that the model is analyzed by a reduced rank regression ofAXt on Xt - 1 
corrected for the lagged differences, and again we get a test statistic 

of the form (3.3). 

3.3 Test for reduction in the degree of the trend 

In this section we want to compare the model with quadratic trend 
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* HO(r) with the model without a quadratic trend, HO(r), by testing a~lt1 = 

O. The likelihood ratio test statistic is given by 

* * * * * Lmax(r) Lmax(r)/1max(p) 1max(p) 
Q{HO(r) /HO(r)} = = 

1max(r) 1max(r)/1max(p) Lmax(p) 
The last factor is 1, since for any set of values n = a/3' and It! with a~lt1 

= 0, we can find a (n'~1) close to (n, lt1) such that the two conditions 

are not satisfied. Thus the maximization gives the same whether 1t1 is 

* restricted or not. Hence the test of the hypothesis HO (r) in HO (r), or 

the test that a~lt1 = 0, gives a test statistic equal to 

* * -2lnQ{HO(r) 1Ho(r)} = T}]i+1ln{(1-Ai)/(1-A)}. (3.4) 

* Since also H1 (p) and H1 (p) give the same maximum, we find similarly that 

* the test of H1(r) in H1(r), or that a~ltO = 0, is given by (3.4) with 

eigenvalues calculated differently. 

3.4 Test of the absence of the trend in the trend stationary 

components 

Model HO(r) allows for a linear trend in the cointegrating 

relations and we want to test that this linear trend vanishes, this is a 

* comparison of model H1 (r) with HO(r) or a test of the hypothesis that /31 
= 0, see (2.5) and (2.6). Ve find the likelihood ratio test 

11 () 11 ()/11 (0) 11 (0) 
Q {H (r) / H * (r)} = m:x r = m:x r m:x m:x . 

1 0 10 ( r) 10 ( r ) /10 ( 0) 10 ( 0 ) max max max max 
The last factor is 1 since if r = 0 then a = 0, and Itt = ItO for both 

models, see (2.5) and (2.6). Thus we find the test statistic 

* r 1 0* -2lnQ{H1 (r) 1Ho(r)} = T}]1ln{(1-A)/(1-Ai )}. 

* A similar analysis of H2(r) in H1(r) or /30 = 0, will test that the 

stationary components have no intercept. 
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3.5 Test of trend stationarity 

In all the models above it is possible to test hypotheses on /3 and 
a, in analogy with the treatment given in Johansen and Juselius (1992). 
The idea there is to investigate the class of hypotheses which give rise 
to models that can be solved by reduced rank regressions. That is, the 
point of view is not to solve all possible hypotheses, but to find the 
hypotheses that can be solved by the same procedure. Surprisingly 
often in applications the interesting hypotheses are of such a form. 
Thus for instance the hypothesis /3 = HW, for some known H is seen 
immediately to lead to a reduced rank regression ofAXt on H'Xt _1 
corrected for lagged differences and a linear trend. lie here treat one 
such hypothesis in detail, namely the hypothesis of trend 
stationarity. 

The hypothesis of trend stationarity of a given set of r1 
variables b'Xt can be tested as a restriction on the cointegrating 

* vectors in the model HO(r) where Pt = Po + a/31t, which allows for a 
linear trend in all components but no quadratic trend. In this case the 
hypothesis that sp( b) ( sp(/3), or that 

/3 = (b,Wl) (3.5) 
where b is (pxr1) and Wl is (pxr2) (r1+r2 = r), can be formulated in 

* terms of /3 = (/3' ,/31)' as the hypothesis 

* /3 = (H~,W) (3.6) 
where ~ is (rl+l)xrl' W is (p+l)xr2 and H is a (p+l)x(rl+l) matrix 
defined by 

H = [~ ~l. 
To see this let a = (a1 ,a2) and ~' = (~i'~2)' w' = (Wi,W2) such 

that (3.6) is equivalent to 

* * * * a/3 'Xt = a1 ~'H'Xt + a2w'Xt 

= a1 ~i b 'Xt + a1 ~2t + a2WiXt + a2W2t 

= £ll b'Xt + a2WiXt + arlt. 
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Here the square matrix ~1 has been absorbed into a1 = a1~1' and 
a11 = a1 ~2 + a2(02' Thus the restriction (3.6) is seen to be a 
restriction on some ,B-vectors, that is of the form (3.5). As shown in 
Johansen and Juselius (1992) the parameters under this hypothesis can 
be estimated by a simple switching algorithm, since the equation (3.5) 
is a regression involving two reduced rank matrices a1 f and a2(O'. The 
algorithm consists of fixing either ~ of (0 and solve for the other, and 
then iterate. 

4. ASYMPTOTIC ANALYSIS OF 1(1) MODELS 

This section contains the asymptotic analysis of the various 
test statistics and estimators considered in section 3. The proofs are 
sketchy, since they mimic already existing proofs, and only a few 
intermediate results are given which show how the various statistics 
should be normalized when trends are present, see Johansen 
(1988,1992a), and Ahn and Reinsel (1990) and Reinsel and Ahn (1990). 
The main conclusion is that the asymptotic distribution of the test 
statistics depends on which assumptions we make on the deterministic 
components of the process, and a few tables are provided. Most of the 
tests and tables are described in Johansen and Juselius (1990) so we 
focus on the model HO' but give the other results for completeness. 

4.1 The asymptotic results for estimators and test statistics 

The results involve a standard Brownian motion B(t) in p-r 

dimensions, and we introduce the notation Ri = 16Bi(t)dt, and Ai = 

16(t-t)Bi(t)dt/16(t-t)2dt, such that the Brownian motion corrected 
for trend is 

B. (t) -Jr. - A. (t-t) . 
1 1 1 

The function t2 corrected for trend is given by 
t2-t _1/6, 
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THEOREM 1 On the assumption that the cointegrating rank is r, the 

asymptotic distribution of the likelihood ratio test statistic for 

cointegration rank is given by 

tr{J~( dB )F' [J~FF' du ]-1 f~F( dB)'}. (4.1) 
Here B is a standard p-r dimensional Brownian motion on the unit 

interval and" F depends on B and on which of the hypotheses is being 

tested. 

If J1.t = J1.o + J1.1 t , a~J1.1 * 0 and if IT = a{J' is tested in the general 
VAIl model, that is, HO(r) in HO(p) then 

F,; (t) = B . (t) - 7J. - A . (t -t) J i = 1, ... ,p - r-1, (4.2) 
~ 'l, 'l, Z 

Fp_r(t) = t2 - t - 1/6, (4.9) 
The distribution of the test statistic is tabulated by simulation zn 

TABLE IV. 

If J1.t = J1.o + a{J1 t , and if IT = a{J' is tested in H~(p) then 

Fi(t) = Bi(t) -7Ji , i = 1, . .. ,p-r, (4·4) 
Fp _r+1 (t) = t - t· (4.5) 

The distribution of the test statistic is tabulated by simulation in 

TABLE V. 

If J1.t = J1.0' a~J1.0 * 0, and if IT = a{J' is tested in H1 (p) then 

F,; (t) = B . (t) - 7J . , i = 1, ... ,p - r-1 , 
~ z z 

Fp_r(t) = t - t. 

If J1.t = a{JO' and if IT = a{J' is tested in H;(p) then 
F.(t) =B.(t), i=1, ... ,p-r, 

Z 'l, 

F 1(t) =1. p-r+ 
Finally if J1.t = 0, and IT = a{J' is tested, that 'l,S, if H2(r) is 

tested in H2(p) then 

F.(t) =B.(t), i = 1, ... ,p-r. 
Z Z 

It is seen that the asymptotic distribution reflects the statistical 
calculations, and the model that is being tested. Thus in the 
unrestricted model It has a quadratic trend, but is corrected for a 
constant and a linear trend in the calculations, such that F in this 
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case is given by a Brownian motion with one direction replaced by a 

quadratic trend, and the whole process corrected for a constant and a 

linear trend. 

A 

THEOREM 2 The asymptotic distribution of P from gi(r) i = 0,1,2 and 

jl' from g; (r j, i = 0,1 is mixed Gauss ian. If [I P = ° for [ (pxm) it ho lds 
that 

A 

gere A = diag(A 1J ... ,A r), and Sll can be replaced by vv ' , where the 
A A 

eigenvectors of (3.1) are decomposed as w = (P,v). A similar result 

holds for P*. 

This result can be directly applied to test hypotheses of the 

form K'P = 0, using the Gaussian distribution. One can show that ~/n-1~ 
A_1 1 

= A - I. Note that the factor T2 comes from the normalization of 811 , 

so that a different way of stating the result is as 

T 1 A A 1 1 

(K' E XtXt/K)-2(KIP)(A- -1p!!; Nmxr(O,1), 
t=1 

which shows that by normalizing the estimated contrasts K'P using the 

square root of the observed information, which can be calculated as 

( T )-1 -1 E Xt Xt ® a I {l a, 
t=1 

one can act as if the asymptotic distribution of P were Gaussian. We 

end this secion with some results for the test statistics: 

THEOREM 3 The asymptotic distribution of the likelihood ratio tests 

for the hypotheses 'i = 0, that is, g;(r) versus gi(r) is X2 with p-r 
degrees of freedom, i = 0,1,2. The asymptotic distribution of the 
likelihood ratio tests for the hypotheses Pi = 0, that is, gi(r) versus 

g;_l(r) is X2 with r degrees of freedom, i = 1,2. 
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THEOREI4 The asymptotic distribution of the test for trend 

stationarity of the vectors b (pxr j ) in model H~(r) is X2 with (p-r)r j 
degrees of freedom. 

4.2. Proofs 'of the asymptotic results 

We start with the proof of Theorem 1. The proof will be outlined 

* for the model HO(r) and HO(r), since the models Hi (r), Hi (r) and H2(r) 
are treated in detail in Johansen (1989, i992a). The proof follows 
closely the proof given there. Let Ut = dlt , Vt = I t - i , and Zi = 
(dXi_1, ... ,dli_k+i,1,t). Consider first the test statistic (3.3) as 
given by the eigenvalues "i' derived from the equation 

I "S -S S-1S 1 = O. (4.11) vv vu uu uv 
The process Rvt ' which is I t - i corrected for lagged differences, 
constant and linear term, and which enters the matrices Sij' has a 
quadratic trend in the direction r = r2 = CP,2' see (2.3), but orthogonal 
to this there is no quadratic trend left. There is also no linear trend 
in the residuals, since they are corrected for a linear trend. We 

define the directions 7(px(p-r-i)) such that (p,7,r) span all of RP. 
Then r'Rvt has a quadratic trend, whereas 7'Rvt has no deterministic 
trend but a random trend, and P'Rvt is stationary. This is spelled out 
in Lemma 1, where the results areexpressed in terms of the Brownian motion 
Wt defined by the cis, i.e. 

T-h [Tt] w T.T 
Lli ci-l"t' 

LEMMA 1 The residuals Bvt satisfy 

w 
r 2-:;:'Bv[Ttj-lt(t 2-t -1/6) =fJ2(t), 

say, and 

1 W 
rr;Y'Bv[Ttj-l1'C(JI- V-Aw(i-t)) = fJj(i), 

say, where V and Aware deiermined by regressing JI on j and t. 
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Finally /31 Bvt behaves asymptot-ically as a stationary process. 

Hence for Cl = (Cl' C2), and C'f = (7, r 3j 27) it holds that 

w w 
r 1cJsvv C'f-l f~CCldu and CJ(Svu - Sv v 0./3 I ) -I f~C(dV)I. 

By expanding the likelihood function and using the result that we can 

make inference about (3 for fixed values of the other parameters, we find 

that 

'11 1 (P-(3) ~ [J~Cl.2Cl.2duJ-l f~Cl.2(dVo.)' 
l/2r l (P-(3) ~ [J~C 2.1 C2.1 du J- 1 f~C 2.1 (dVo.) I , 

( -1 )-1 -1 where Vo. = alfl a o./fi TI is independent of C. Tie use the notation 

that C1. 2 is Cl corrected for C 2' and C 2.1 is C 2 correct.ed for Cr 

Using these results it is not difficult to show that the p-r 

smallest roots, normalized by T, of the equation (4.11) will converge 

to the roots of the equation 

Ipf01GG/du - f01G(d\l) la (alna )-10. 1 f01(d\l)GI 1= 0 
.L .L.L .L 

_1 

Now define B = (alno. ) 20. 1 \1, which has variance matrix I, then it 
.L.L .L 

follows that the limit distribution of the test statistic (3.3), which 

is asymptotically equivalent to the sum of the p-r smallest eigenvalues 

normalized by T, converges as stated in the theorem with F defined by 

(4.2) and (4.3). Note that if in fact the parameter 11 is zero, then of 

course the process has no quadratic trend, and the above argument has to 

be modified, by leaving out the last component, such that the limit 

distribution of the test statistic is given by 

tr{f6 (dB) (B-a-bt) I [J6(B-a-bt) (B-a-bt) IJ-1 f6 (B-a-bt )d(B) I} (4.12) 

where a and b are determined by correcting B for a linear trend and 

* constant term. If instead we consider the hypothesis HO(r) and want to 

* * test it in HO(p) , we define the residuals R1t as the residuals from a 

* regression of Xt = (Xt' t) I on the lagged differences and the constant. 

In this case the residuals contain a linear trend, but they are still 
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* corrected for their mean. Since the last component of It is a linear 

trend it is convenient to transform the residuals before describing the 

limit distributions. WedefinethenormingmatrixC;= [ PJ. 0_1], 
-r' P T 1 J. 

LED! 2 The residuals ll~t satisfy 

1 w 
r2(p~J-p~rl)ll~t -IP~C(fft - f) = e;(t), 

such that 

w w 
r 1c*'s C* J1e*e*ld dC*'(S* -S* P*I) Jl e*(dfl)I T vv T -IOU an T vu vva -I 0 

where the last component of e* is t -to Furthermore 

C;' (p* _pt) ~ [J~e*e*'duJ-l f~e* (dVa) I • 

Vith these fragments of a proof one can reproduce the proof in 

Johansen (1992a), and prove that the limit distribution is given by 

(4.1) with F given by (4.4) and (4.5). This completes the proof of 

Theorem 1. 

The results of Theorem 2 follow from Lemma 1 and 2. Theorem 3 is 

proved as follows: In order to find the distribution of the test for 

* the hypothesis HO(r) versus HO(r), one can compare the hypotheses with 

* HO(p) and HO(p) respectively, as is done in the derivation of the test 

(3.4). The test statistic has to be evaluated under the assumption that 

a~jt1 = 0, so that no quadratic trend is present. 

From the relation 

[Bt - a] I [/1 [Bt - a] [Bt - a] 'dt]-1 [Bs - a] = 12 (t-t )(s-t) (4.13) 
t -t Ot-t t-t s-t 

+ (Bt -a-bt) I [/6(Bt -a-bt) (Bt -a-bt) Idt]-1(Bs -a-bs) 

* the test of Ho (r) within HO (r) is equal to 

* * -2lnQ{HO(r) IHO(p)}-(-21nQ{HO(r)IHO(p)}, 

which by (4.12) and (4.13) converges towards 
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tr{12J6(dB) (t-t)J6(s-t) (dB) '} = x2(p-r). 

The remaining part of Theorem 3 as well as Theorem 4 concern hypotheses on 

/3, and the results follow since the limit distribution of the estimator of /3 is 

mixed Gaussian, such that usual X2 inference can be conducted. 

5. THE I (2) MODELS, THEIR INTERPRETATION 

AND STATISTICAL ANALYSIS 

This section contains a very brief description of some 

autoregressive models for 1(2) variables. The basic theory is 

presented in Johansen (1991c,d). The theory is quite involved, but has 

been illustrated in an analysis of the purchasing power parity between 

Australia and USA, Johansen (1992b). The basic reason for introducing 

these models is that in analyzing price series, it turned out that the 

inflation rate was best described by nonstationary processes such that 

the prices series were nonstationary but their differences were also 

nonstationary. In analyzing such processes we also need to take 

account of the deterministic trend, and we therefore in the next 

section use a representation theorem for 1(2) processes to discuss the 

influence on the process of the deterministic terms in the model. From 

the application point of view, we certainly want to have the 

possibility to model a linear trend in the variables, but a quadratic 

trend in the variables means a linear trend in the differences, which at 

least for price series seems unreasonable. This application will 

determine the models we want to consider. 

5.1. The defini t ion and bas ic propert ies of 1(2) mode ls 

In order to describe the 1(2) models we consider model (2.1) 

written as a reduced form error correction model 

2 k~ 2 
Il Xt = rllXt _1 + IIXt _2 +};1 !ill Xt - i + /to + Et' t = 1,2, ... ,T. (5.1) 

Ve define! = I - };~-2!i' For the model (5.1) to allow 1(2) variables we 

need two reduced rank conditions, and it can be shown, see Johansen 



(1992c), that if 

and 

IT = a(3' has rank r, 

a/r(3 = '{J'fJ' has rank s, 
J. J. 
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(5.2) 

(5.3) 

and if finally '{J'a'(t + rpar)(3 'fJ has full rank (p-r-s), then the 
J. J. J. J. 

process has the representation 

t j t 
Xt = C2 . ~ . ~ (E i + J1.) + Cl. ~ (E i + J1.) + C2 (L)( Et + J1.) + A + Bt, 

J=h=l 1=1 
for sui table matrices Cl and C2. The coefficients A and Bare 

determined by the initial conditions. The reduced rank conditions 

(5.2) and (5.3) allow us to define vectors (a,a1 ,a2) and ((3,(31,(32) as 

follows 

(31 = 7J 'fJ, (32 = (3 'fJ , a1 = a '{J and a2 = a '{J • 
J. J. J. J. J. J. 

Then (a, a1 , a2) are mutually orthogonal and span RP, and the same is true 

for ((3,(31,(32)' The matrix C2 is expressed as 

C2 = (32(a2(t + rpar)(32)-1 a2 , 

t j 
such that the quadratic trend is given by r 2 = C2 . ~ . ~ J1. = tC2 t (t+ 1) . 

J=ll=l 

Ignoring the deterministic terms in the model for a while, the 

main conclusion of this analysis is that under suitable restrictions, 

see (5.2) and (5.3), on the parameters of the autoregressive model we 

can generate an 1(2) process by equation (5.1). The process has 

different properties in the directions given by ((3,(31,(32)' This can be 

expressed by saying that (32Xt is an 1(2) process that does not 

cointegrate. The process ((3,(31)/Xt is an 1(1) process, thus the order 

of the process is reduced from 2 to 1 by the linear combination in 

((3,(31)' The linear combinations (3iXt do not cointegrate, but (3IXt 

cointegrate with the differences in such a way that (3IXt + a/r7J2(32AXt is 

stationary. Thus we do not in general get linear combinations that are 

stationary, but if we can find a vector e such that e 'a' r7J2 = 0, then of 

course e I (3IXt is stationary. 
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5.2. The statistical analysis of 1(2) models 

Before we discuss the restrictions on the constant term and the 

role it plays for the process Xt , we give a brief account of the 

statistical analysis as described in Johansen (1992d). The analysis is 

based on the likelihood function, but instead of maximizing the 

likelihood function directly, which is difficult due to the two reduced 

rank problems we suggest a two stage procedure, whereby the analysis 

can be performed by a repeated application of the analysis of the 1(1) 

model, that is, by reduced rank regression. To see this, consider again 

the equation (5.1) but now multiplied by a': 
.1. 

, A 2X ' r AX };k-2 '! A 2X ' , aJ. t=aJ. t-l+ 1 aJ.i t-i+aJ.ltO+aJ.E t , (5.4) 

These equations constitute p-r equations involving the differences of 

the process. Now decompose the first term on the right hand side as 

a'rAX = a'r((37J' + (3 7J')AX = (a'r(3)7J'AX + wTlf7J'AX 
.1. t-l .1. .1. .1. t-l .1. t-l r't t-l 

such that 

a~ A 2Xt = (a/(3)7J' AXt _ 1 + tp'f/'7J~ AXt _ 1 

+ };kl -2a ,!.A2Xt . + a'ltO + a'Et , (5.5) 
.1. 1 -1 .1. .1. 

From (5.5) it is seen, that if only r, a and (3, and hence a and 
.1. 

(3.1.' were known, it would be easy to analyze equation (5.5) by reduced 

rank regression of a~A2Xt on 7J~AXt_l corrected for 7J'AXt _ 1 as well as 

lagged second differences and the constant. It turns out that one can 

determine estimates of r, a and (3 from an initial 1(1) analysis and then 

apply the estimated values in the analysis at the second step. Thus in 

summary the proposed 1(2) analysis is the following: 

A. Perform a reduced rank regression ofAXt on AX t _1 corrected for 

AX t _1, .. · ,AX t _k+1, and 1. This determines r, a, and (3. 

~ 2 A 

B. Perform a reduced rank regression of a~A Xt on (3~AXt_1 corrected 
~, 2 2 

for (3 AX t _1, A Xt -1'··· ,A Xt -k+2' and 1. This determines s, tp and 'f/. 
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The analysis has the obvious advantage that the statistical 

calculations for the analysis of the 1(2) model are the same as those 

for the 1(1) analysis. 

The second step of the analysis is very natural, since if the 

process is I (2) it seems reasonable to take differences and then 

analyze the differences by an 1(1) model. This analysis would appear as 

a result of a likelihood analysis if we impose n = 0 in (5.1), so that we 

can see that the preliminary 1(1) analysis allows us to exploit the 

information in the levels of the process, as expressed in the reduced 

rank of n. Having found the r relations {JIXt we then focus on the p-r 

relation a~Xt' which are the combinations of the variables that evolve 

without taking into account the disequilibrium error {JIXt' that is, the 

equation (5.4) and (5.5) only involves differences. The relations {JIXt 
have the property that ~(JIXt is stationary, and hence the analysis in 

the second step is a reduced rank regression where one corrects for the 

stationary relations ~7J'Xt as well as the other stationary terms 

consisting of the second differences. 

5.3 Statistical properties of the 1(2) analysis 

Ve now discuss briefly the properties of the proposed method for 

the analysis of the 1(2) model. Let Qr denote the test statistic 

-2lnQ{H1(r)IH1(p)} calculated from (3.3) for testing H1(r) in H1(p) 

from the I (1) analysis given by (5.1). Let Q denote the r,s 
corresponding test statistic for testing H defined by (5.2) and r,s 
(5.3) in Hr determined by an 1(1) analysis of equation (5.5) for fixed 

r, a and {J. It follows from the limit theory of section 4 that the 

asymptotic distribution of Q s is given by (4.1) with p-r-s degrees of r, 
freedom, and with F given by (4.6) and (4.7) since the constant is 

included in the analysis and the differences have a linear trend. The 

correction for the stationary term {J/~Xt_1 does not change the limit 

theory which is dominated by the nonstationary contributions. 
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According to Theorem 7 in Johansen (1992d) it holds that the limit 

distribution of Q s is the same if we replace r, a and P by their r, 
estimates from the initial 1(1) analysis. It is of course the 

superconsistency of the estimates that allows this phenomenon to take 

place. 

The test statistics are arranged in a convenient way in Table 2, 

where the formal analysis is performed as follows: First r is 

determined by comparing QO with its quantile cO' then Q1 with its 

quantile cl etc. stopping the first time the test statistic is less than 
A 

its quantile. Thus for instance r = 2 on the set 
A 

{r = 2} = {QO > cO' Q1 > cl' Q2 < c2}· 

The quantile cr is determined from the distribution (4.1) with F 

given by (4.6) and (4.7) and p - r degrees of freedom. Having 

determined r = 2 the value of s is determined by reading the row with r = 

2 from left to right and comparing the test statistics Q2 ,s = 0,1 ,s 
A 

with its quant ile given in the second last row. Thus s = 1 on the set 

{Q2 0> c2,Q2 1 < cl}· , , 

r 
0 QO 0 , 
1 

2 

3 

TABLE II 

'test statistics for the 1(2) analysis, p = 4 
with the constant unrestricted 

quantile 
QO 1 , QO 2 , QO,3 QO Co 
Ql,O Q1 1 , Q1 2 , Q1 cl 

Q2 0 , Q2 1 , Q2 c2 

Q3 0 , Q3 c3 

p-r 
4 

3 

2 

1 

quantile Co cl c2 c3 
p-r-s 4 3 2 1 

Note that the quantiles are the same as in the determination of r, 

since the second step of the analysis also allows a constant in the 



23 

model, and hence a linear trend in the process a~AXt. If we find that 

also the last statistic Q2 1 is rejected, then s = p-r = 4-2 = 2, and , 
there are no 1(2) components in the system. 

5.4 The role of the constant term in 1(2) models 

Now let us return to the discussion of the constant term in model 

(5.1). It is seen that a constant term in the model implies a quadratic 

trend in the process. The slope is given by 72 = tC2J.L, which vanishes if 

a§.J.L = o. Let us therefore decompose J.L in the direction (a, ai' a2) : 

J.L = afJO + a170 + a280 
The quadratic trend is determined by 80, such that 72 = 0 if 80 = O. If 

this condition holds, there is a linear trend in the process determined 

by 70. If 70 = 0 then there is only a constant level left in the process. 

The model that we shall discuss here is defined by 80 = 0, such that no 

quadratic trend is in the process. The reason for this is that 

I (2)-ness is needed for processes whose differences are nonstationary, 

but we have yet to find an example where the differences also have a 

linear trend. If such an example appears it is of course possible to 

extend the analysis given below. 

The two step procedure outlined In section 5.3 can be briefly 

summarized by saying that first we analyze the data without the 

restriction on the matrix r and calculate estimates of r, a and fJ, and 

then we transform the equations by a and impose all the restrictions on 
.L 

r but now for known values of r, a and fJ. This last analysis is then the 

* analysis of model Hi (s), see (3.4). This formulation immediately 

suggests how the analysis should be made in the model where r as well as 

J.L are restricted. 

A. Perform a reduced rank regression ofAXt on AX t _1 corrected for 

AX t _1,··· ,AX t _k+1, and 1. This determines r, a, and fJ. 
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B. Perform a reduced rank regression with 1 
~ I 

appended, corrected for f3 I1It _1 and This 

determines s, f{J and ",. 

The consequences of this is that in TABLE 11 the quantiles used in 
determining the rank r are the ones we get from (4,1) with F defined by 
(4.6) and (4.7), that is, cr' The quantiles we need to determine s are 
given by the distribution (4.1) but now with F defined by (4.8) and 

* (4,9). They will be called cr ' Thus for an 1(2) analysis which allows a 
linear trend, but no quadratic trend, the rank determination is 
performed as in TABLE Ill. 

TABLE III 

Test statistics for the 1(2) analysis, p = 4 
with the constant restricted in the second step 

r quantile p-r 
0 QO 0 QO 1 QO 2 QO 3 QO Co 4 , , , , 
1 Q1 0 Q1 1 Q1 2 Q1 cl 3 , , , 
2 Q2 0 Q2 1 Q2 c2 2 , , 
3 Q3 0 Q3 c3 1 , 

* * * * quantile Co cl c2 c3 
p-r-s 4 3 2 1 
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TABLE IV 

The quantiles of the asymptotic distribution of the test statistic 

(4.1) with F equal to B , but last component replaced by t 2, and 
corrected for trend, see (4.2) and (4.9). Number of terms in the series 
is T = 400, and the number of simulations is 6000. 

Lambda--il\ax 
dim 507. 80% 90% 957. 97.57. 997. mean Var 

1 .44 1.67 2.70 3.84 5.25 6.98 1.01 2.12 
2 8.73 12.37 14.64 16.69 18.84 20.88 9.38 15.37 
3 14.82 18.92 21.44 23.75 25.68 28.31 15.33 21.05 
420.35 24.87 27.39 29.93 32.22 35.57 20.86 25.89 
5 25.73 30.47 33.45 36.46 39.00 41.87 26.23 30.68 

Trace 

1 .44 1.67 2.70 3.84 5.25 6.98 1.01 2.12 
2 9.61 13.43 15.74 18.08 20.26 22.40 10.21 17.38 
3 22.73 28.31 31.67 34.27 36.98 40.10 23.38 37.37 
439.65 46.66 50.62 54.02 57.01 61.03 40.27 61.03 
5 60.33 68.80 73.73 77.61 81.29 85.56 60.95 91.55 

TABLE V 

The quantiZes of the asymptotic distribution of the test statistic 
(4.1) with F equal to B extended by t, and corrected for the mean, see 
(4.4) and (4.5). Number of terms in the series is T = 400, and the 
number of simulations is 6000. 

Lambda max 

1 5.73 8.64 10.59 12.49 14.06 16.42 6.33 10.52 
2 11. 01 14.65 16.93 19.16 20.87 23.66 11.58 16.56 
3 16.35 20.52 23.11 25.44 27.67 30.38 16.79 22.04 
4 21. 51 26.13 29.04 31.53 34.24 37.15 22.14 27.10 
5 26.73 31. 71 34.82 37.75 40.05 42.78 27.35 ·31. 70 

Trace 

1 5.73 8.64 10.59 12.49 14.06 16.42 6.33 10.52 
2 15.75 20.33 22.95 25.43 27.82 30.55 16.33 25.47 
3 29.57 35.69 39.01 42.35 45.23 48.99 30.24 45.91 
447.33 54.51 58.98 62.71 66.36 70.63 47.85 71.22 
5 68.62 77.40 82.29 86.71 90.70 95.19 69.26 100.37 
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