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Heitjan and Rubin (1991) recently proposed a concept of ignorable censoring as a 

special case of a wider concept "coarsening at random". This note suggests a possible 

interpretation in terms of the modern theory of random censoring. 

AMS 1980 subject classifications: Primary 62A10, Secondary 62F99, 62G99 

Keywords and phrases. Censored data, counting processes, likelihood, survival analysis. 



- 2 -

The modern theory of right censoring in survival analysis aims at establishing condi

tions on the censoring pattern so that "past observations do not affect the probabilities 

of future failures" (Jacobsen, 1989). Kalbfleisch and Prentice (1980) gave a pioneering 

analysis, while Aalen's (1975, 1978) discussion in the framework of counting processes 

was developed and consolidated by Gill (1980), Arjas and Haara (1984), Andersen et 

al. (1988), Arjas (1989) and Jacobsen (1989). 

Recently Heitjan and Rubin (1991) and Heitjan (1991) generalized the theory of mis

sing data of Little and Rubin (1987) to a concept called "coarsening at random" which 

includes as a special case a formalization of the above property of right censoring 

patterns. 

This note indicates a connection between these two lines of development. 

Coarsening at random. Heitjan and Rubin (1991) considered discrete random variables, 

always with density w.r.t. counting measure. Let X be the random variable of prima

ry interest with values in X according to a density f(x; B). The variable X is not 

observed directly, it is only known that XEYCX. The coarsening Y is assumed to be 

determined by a random variable G, so that Y=Y(X,G), and the conditional distri

bution of G given X is assumed to be determined by a density h(g;x,/,). The condi

tional distribution of Y given X=x and G=g is degenerate: 

r(y;x,g) = P{Y=yIX=x, G=g} = I{y=Y(x,g)}; 

let 

k(y;x, /,) = f r(y;x,g)h(g;x, /,)dg 



-3-

denote the density of the implied distribution of Y given X. 

The condition for coarsening a random was given in a Bayesian flavour by focusing on 

the 'fixed, observed value of y' for which (for each value of ,) k(y;x,,) is assumed 

to take the same value for all values of x that are consistent with the observed coarse 

data y. 

Heitjan and Rubin (1991) proved that a stochastic coarsening mechanism may be 

'ignored' for Bayesian and likelihood inferences if the data are coarsened at random 

and the parameters e and , are 'distinct' (Le. they are a priori independent for 

Bayesian inference and lie in product parameter spaces for likelihood-based inference). 

That the coarsening mechanism may be ignored means that the likelihood is propor

tional to that resulting from assuming the coarsening mechanism to be deterministic. 

From discrete to general random variables. Heitjan and Rubin restricted attention to 

discrete random variables X and G, so that all distribution may be described 

through their point probabilities. There is no need for this kind of restriction, and we 

shall now sketch the mainly technical points involved in obtaining a generally appli

cable version of Heitjan and Rubin's result on coarsening. This generalization will be 

needed for the censoring example we shall discuss below. 

Let X and G be random variables with values in (3,1) and (f,9) respectively. 

Also, let I-" be a positive reference measure on (3,1) and v a positive reference 

measure on (f,9). The product measure P=I-"®v is then used as a reference measure 

on the product space (3x f, 1(9). Finally, consider a mapping Y: 3 x f---+S, where 

S=2= is the set of all subsets of 3. Make this coarsening variable measurable by 

using the induced l1-algebra 
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s = {D C 3: y-l(D) El ® g} 

on S, and define the reference measure (7 on (S,8) by 

(7(D) = p(YED) (DES) . 

It should be noted that the measurable structure on S, is not determined from that on 

3 alone, but is defined in such a way as to respect the properties of Y. This seems 

essential to arrive at a general coarsening result. 

In the non-Bayesian case, the statistical model considered by Heitjan and Rubin, 

which specifies the possible joint distributions of X and G, is obtained using a pro

duct parameter space Gxw such that for BEG, ,EW the (B,,)-distribution of X 

depends on B only and has density 

f(x;B) 

with respect to /-t, while given X=x, the (B, ,)-conditional distribution of G 

depends on , only and has density 

h(g;x,,) 

with respect to 1/. Consequently, the (B, I)-joint distribution of (X, G) has density 

f(x, B)h(g;x, ,) 

with respect to p, and the model is obtained by considering all such densities for 

BEG, fEW. 
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Consider now the (D, '}')-conditional distribution of Y given X=x, which depends on 

'}' only. We shall assume, - and this is a genuine assumption -, that this conditional 

distribution is absolutely continuous with respect to (J with density 

k(y;x,'}') , 

at least for O-almost all x. Thus the (D, '}')-marginal density for Y becomes 

(l) J ,,(dx) f(x;O) k(y;x,'Y) 

To formulate Heitjan and Rubin's result, one all important condition on the coarsening 

Y must hold: 

(2) for all x and g, xEY(x,g) . 

With this assumption (1) reduces to 

f f-t( dx) f( x; D) k(y;x, '}') 

y 

and the following result is an immediate consequence: 

Theorem. If for all D, '}' and ( D, '}') - almost all y, k(y;x, '}') is the same for '}'

almost all xEy, the likelihood (1) for observing y is, apart from a proportionality 

factor depending on y and '}' only, the same as 

f f-t( dx) f( x; D) 
y 
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Censoring as coarsening. Specializing to right censoring, assume that X=(X1, ... ,Xn) 

where Xl'"",Xn are iid positive absolutely continuous random variables with density 

function fAx1;O). Let G=(Gl'" .. ,Gn) where Gl'" .. ,Gn are positive absolutely con

tinuous censoring times so that only the 'coarsened data' Y=(Yl'" .. ,Yn) are observed, 

where 

X.<G. 
1- 1 

X.>G. 
1 I 

Following Heitjan's (1991) formulation the G. are assumed iid, although that does not 
1 

seem to be essential. Under this assumption the joint density of X=(Xl' ... ,Xn) and 

G=(G1, ... ,Gn) may be written 

n 

f(x; O)h(g;x, I) = IT f*(x.; O)h*(g.;x., I) 
i=l 1 1 1 

and the distribution of the coarsened data Y given the original data is 

n 

k(Y;X,I) = IT k*(y.;X·,I) 
i=l 1 1 

where 

0 if x.~y. 
1 1 

00 

k*(y.;x·,I) = J h*(u;x·,I)du if y.={x.} 
1 1 X. 1 1 1 

1 

h*(inf(y.) ;X., I) if x. Ey.=(inf(y.),oo) 
I 1 1 1 1 
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Indeed, if death is observed at x., we obtain P{G.>x.IX.=x.} if the observation is 
1 III 1 

censored at g.=inf(y.), y.=(g.,oo), then we obtain P{G.Edg.IX.=x.}. 
1 III 1 III 

The coarsening mechanism may be ignored if, for i=l, ... ,n, k*(y.;X.,I) is the same for 
1 1 

all x.Ey.. For uncensored observations this is automatically fulfilled, because y. con-
I 1 1 

tains only one point (the survival time x.) while for censored observations the require-
1 

ment is that h*(inf(y.);x.,I) must not depend on x. for x.>inf(y.). Briefly put, 
1 1 1 1 I 

h*(g.;x.,I) may only depend on x. through what is observed, which is x.Ag.,I{x.<g.}. 
1 1 1 1 1 1- 1 

Embedding into the counting process framework. Jacobsen (1989) also considered a 

basic set of iid positive random variables X1, ... ,Xn . Jacobsen described the 'observa

tion' as a marked point process N, which under the (simplifying but unnecessary) 

condition of absolutely continuous censoring times is equivalent to 

with 

N.(t) = I{X. < t, X. < G.} 
1 1- 1- 1 

G N . (t) = I { G. < t, X. > G.} . 
1 1 - 1 1 

In other words, N(t) keeps track of all observed events and censorings in [O,t]. The 

basic property of the model - that past observations do not affect the probabilities of 

future failures - may now be specified in terms of the compensator A.(t) of N.(t): 
1 1 

t 

A/t) = f fl(U) I{Gi ~ u, Xi ~ u}du 

o 
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where J-t is the hazard of X. (Jacobsen, 1989, (2.9)). Under this martingale condition 
1 

the intensity of an event for a still uncensored individual is J-t(t) , exactly as in the 

uncensored situation. 

J acobsen gave three increasingly restrictive conditions on the joint distribution of 

(X,N) for the martingale condition to hold. We shall now see that coarsening at ran

dom implies the most restrictive of these, Jacobsen's condition C. (In a more specific 

example below one may actually show equivalence.) Briefly, Jacobsen's framework 

involves defining subspaces W of the space W of possible observations (i.e. sample 
x 

paths of the above marked point process) where W is the set of wEW compatible 
x 

with x=(x1, ... ,x). For all x, P is a probability of W with P (W )=1, so that 
n x x x 

P has the interpretation of a conditional probability on the observed counting process 
x 

N=(N(t)) given X=x. The compensator of N under P is denoted A, and we 
x x 

have a specification of its components in informal infinitesimal explanation, with 

~=o-{N(u), O~u~t}, by 

{
I if N. (t-)=O, N?(t-)=O, x.=t 

= P{Xi = t I ~_, X = x} = hI. I I 
o ot erWlse 

A G.(dt) = P{N?(t+dt) - N?(t) = 1 I)lt ' X = x} 
Xl I I -

{
17*(t;X.,,)dt if N. (t-)=O, N?(t-)=O, x.>t 

=P{t~G.<t+dtl~ ,X=x}= I I I I 
I - 0 otherwise 

where 17*(t;x.,,) is the intensity (hazard) function corresponding to the density h*. 
I 

Jacobsen's condition (C) now requires that 'for any t>O and WEW, A (t,w) is the 
x 

same for all x which are t-compatible with wand satisfy that xi>t if xi~t, gi~tf. 
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Because of our independence assumptions we only need to consider x.. That x. is 
1 1 

t--compatible with w means that if the counting process observed an event at time 

to <t, Le. ..6.NJto)=1, then xi=to' if there was a censoring at to <t, i.e . 

..6.N<?(to)=1, then x.>to' and if neither had happened before t, i.e. N.(t-)= 
1 1 I 

N~(t-)=O, then xi~t. 

Now ..6.A .(t)=O for all x. for which either x.>t or g.<t, so here the condition is 
Xl 1 1 1 

immediately fulfilled. As regards A G. (dt), the condition of coarsening at random tells 
Xl 

us that h*(g.;x.,1) takes the same value for all x consistent with the observed data, 
1 1 

which means that h*(g.;x.,1) depends on x only through x.Ag., I{x.<g.}. The same 
1 1 1 1 1- 1 

property is thus true for 

t 

77*(t;x·,1) = h*(t;X.,1)/[1-f h*(u;X.,1)dU] 
1 1 1 

o 

whenever x.>t, and we have seen that Jacobsen's property (C) holds. 
1 

Jacobsen's (1989) paper contained a detailed study of the interdependence of Condition 

(C) with other conditions (one involving conditional independence) and also discussed 

conditions on the statistical model (here parameterized by () and 1) for ignoring the 

censoring in likelihood inference. 

Example. We shall discuss a model for observation of censored failure times, which 

allows for a general stochastic dependence between the failure times and the censoring 

times. 

Let X=(X!'" .. ,Xn ) be a vector of positive LLd. random variables (failure times) with 

common density f(x,()) (with respect to Lebesgue measure). Also, let G=(G1, ... ,Gn ) 
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be a vector of positive random variables (censoring times) with a joint conditional 

density (with respect to n-dimensional Lebesgue measure) given X=x=(x1, ... ,xn) 

h(g; x,!') , 

Suppose observations are made on the time interval [O,t]. The population {l, ... ,n} 

splits into three sets, the set D(t) of failed items, the set C(t) of censored items and 

the set R( t) of items still at risk, where 

D(t)={i:Xi~GiJ\t} , 

(*) C(t) = {i: Gi < Xi' Gi ~ t} , 

R( t) = {i: X. J\ G. > t} . 
1 1 

For iED(t), X. is itself observed while for iEC(t), G. is observed and it is known 
1 1 

that X.>G. and for iER(t) it is known that X.>t, G.>t. Thus, for x=(x1, ... ,x ), 
1 1 1 1 n 

g=(gF .. ,gn) and sets d(t), c(t), r(t) defined from x and g in analogy with (*), the 

partly unobserved vector x of failure times is known to belong to the set 

Y(X,g) = {Xl: x~ = x. for i E d( t) , 
1 1 

X~ > g. for i E c( t) , 
1 1 

X~ > t for i E r(t)} 
1 

Note that, with probability 1, d(t), c(t) and r(t) are functions of the observed value 

y of Y: a misclassification can occur only if some g.=t. 
1 



-11-

Using the notation from above, the reference measure p is 2n-dimensional Lebesgue 

measure, while the reference measure on the space of Y -values may informally be 

described as 

where we write x1=(x)iEI' gJ=(g)jEJ" The conditional density for Y given X=x 

then becomes 

k(y;x,,) = J 
g~>x., iEd(t) 

1 1 

g~>t, iEr(t) 
1 

with d(t), c(t), r(t) the failure set, censoring set and risk set determined by y and 

gc(t) the vector of observed censoring times given by y. 

In this case the general version of Heitjan and Rubin's coarsening condition given 

above, stipulates that for an arbitrary" k(y;x', ,) must be the same for all x' Ey, i.e. 

x' such that 

x~ = x. for iEd(t), x~>g. for iEC(t), x~>t for iEr(t) . 
1 1 1 1 1 

We shall now argue that this condition holds simultaneously for all t, if and only if 

Jacobsen's condition (C) holds. It is a consequence of this condition that 'the intensi

ties for failures are as they would be without censoring' (see the discussion above for 

the case of independence pairs (X.,G.)), and with the product parameterization used 
1 1 
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here (with one parameter for the failure time distributions and another for the condi

tional distribution of the censoring times given the failure times), Heitjan and Rubin's 

Theorem (as specified above) is then implied by Theorem 4.2 of Jacobsen (1989). 

Returning to the discussion of condition (C), since in the model described here no two 

censoring times can agree, (C) specifies that for all t, given x and the observations 

on [O,t], the conditional intensity for any io to be censored in [t,t+dt) depends on 

x only through the observed coarsening y. But if d(t), c(t), r(t) are the observed 

failure, censoring and risk sets, with xd(t) the observed failure times and gc(t) the 

observed censoring times, it is quickly seen that if ioEr( t ) (the only interesting case) 

the conditional intensity for censoring of io just after t is 

k(y;x,1)dt 

k(y;X,1) 

where y is the observed value of Y and y is the Y -value obtained from y by 

replacing c(t) with c(t)Uio' r(t) with r(t)\io' and letting t be the censoring time 

for io' i.e. 

k(y;x,1) = f 
g~>x., i Ed(t) 

1 1 

gl>t, iEr(t)\io 

It is now clear that Heitjan and Rubin's condition implies (C), and it is also fairly 

straightforward to argue the converse. 
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