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i.Introduction 

This paper will be on the statistical analysis of systems, on common trends and on 

cointegration but first of all a paper on the construction and analysis of models. 

A model is here meant to be a statistical model, that is, a parameterized family of 

probability measures. It is my hope to demonstrate that by building statistical models 

that can be considered a framework for the analysis of economic models, one can improve 

ones understanding of the economic phenomena. The main emphasis in econometrics has 

for a long time been on methods, where a method is here simply understood as a rule for 

the calculation of a test statistic or an estimator. 

A recent survey by Cambell and Perron (1991) gives an excellent and detailed 

account of many different techniques and their relations and potential usefulness both for 

the univariate and multivariate situation. I shall be much less detailed and emphasize the 

underlying statistical concepts and their relation to the economic concepts, rather than the 

variety of techniques. It is also apparent that the paper turned out to be a summary of the 

results that I have obtained on the analysis of the autoregressive model, but I have tried to 

relate the results to some of the other contributions in the area. 

I shall survey some contributions to the topic mentioned in the title with special 

emphasis on the analysis of the statistical model. The reason for this is that by carefully 

constructing a statistical model where the economic concepts can be defined precisely and 

the hypotheses of interest can be tested one would hope that the analysis of the model 

would lead to relevant methods that have better properties than methods that are 

suggested on more intuitive grounds. Although some authors emphasize models and others 

emphasize methods, the two concepts complement one another, in the sense that a prime 

goal of the analysis of a model is to produce a method, and the properties of a method can 
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only be discussed with some sort of model in the background. 

Once the method has been derived by an analysis of a statistical model one can of 

course use it under all sorts of different circumstances, provided one can prove that it has 

reasonable properties under these other circumstances, that is, in some other statistical 

model. Thus one can think of the statistical model as a method generating tool, but my 

conviction is that it is much more than that, and I hope to demonstrate this in the 

following. 

From my experience with economic data I find that formulating the interrelations 

between economic variables as a system seems a useful activity. It is not quite clear, 

however, what one wants to achieve, and this will be discussed in the next section. 

Certainly the ideal is to have a serious economic theory for the variables actually observed. 

Since opinions on what is a serious economic theory seem to diverge, it would be good to 

have some way of checking which of two rival economic theories is better. 

Statistics offers such a possibility using the ideas of hypothesis testing. 

Unfortunately all tests rest on precise assumptions about the underlying statistical model 

and it is therefore important to have methods that can check if such assumptions are 

satisfied. 

Thus the methodology is to build a statistical model that describes the fluctuations 

of the data, and express the economic theory in terms of the parameters of the statistical 

model. Once this has been done an analysis of the model will reveal how the interesting 

economic parameters can be estimated, and how hypotheses of economic interest can be 

tested. 

2. Building models for systems of trending variables. 

2.1. Trending variables} co integration and common trends. 

Many economic variables are trending over time, and when modeling this phenomenon one 
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can focus on two aspects of the economy, either the "stable" economic relations between 

variables that show less variability than the original variables, that is, those relations 

between non-trending variables, or the driving economic forces, which create the 

non-stationarity. The purpose of this section is to give these concepts a precise statistical 

definition in order to be able to discuss them in detail in a statistical model. 

By a trending variable we basically mean a stochastic process which is 

non-stationary, and which becomes stationary after differencing a suitable number of 

times. There are however other ways of removing the non-stationarity of a process. 

Consider for instance a stationary process Yt and define Xt = Yt - Y1, t = 1,2,.... Then 

in general Xt is non-stationary and LlXt is stationary, but we do not want to describe Xt 

as trending, since the non-stationarity can be removed by adding Y 1 to the process. This 

leads to the definition: 

DEFINITION 2.1 A p-dimensional stochastic process {Xt} t = 11 2,oo.} is called 

trending if {Xt + Z} t = 112}. oo} is non-stationary for all random variables Z. 

The trend can either be deterministic or stochastic, and we define the deterministic trend 

as J.tt = EXt , and the stochastic trend as Xt - EXt· 

We then focus on the type of non-stationarity that can be removed by differencing, 

and define 

DEFINITION 2.2 For d = O)}2} ... the trending process {Xtl t = 112} ... } is called 

an J(d) process if Ll d-l (Xt-EXJ is trending) and Ll d(Xt-EXJ is stationary. 

Here b.. -l(Xt - EXt ) = Ei(Xi - EXi ). The purpose of the definition is of course first of all 

to describe a random walk as a trending process that is 1(1). If we had phrased Definition 

2.2 in terms of non-stationarity we would not have excluded the process Xt = Yt - Y l' In 
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Engle and Granger (1987) the definition of 1(1) excludes processes with a completely 

deterministic part. The present attempt is another way of solving this problem. We also 

want to describe the two dimensional process consisting of a random walk and a stationary 

sequence as an 1(1) process thus allowing the component processes to be integrated of 

different order. The present definition has the property that it is invariant to non singular 

linear transformations of the process. An 1(0) process Yt is thus a stationary process with 

the property that its sums are trending, thus if for instance Yt = LlUt for some stationary 

process Ut then Yt is not 1(0), since the sum Eiy i = Ut - U1 is not trending. 

Thus a trending variable is composed of an 1( d) variable with mean zero and a 

possible deterministic trend. Consider the following simple example that illustrates the 

various possibilities for d = 2: 

t j t 2 
Xt = C2 E E E· + Cl E E· + TO + T 1 t + t T 2 t + Y t' t = 1,2,,,. 

j=li=l 1 i=l 1 

(2.1) 

00 * 
We assume that Et are i.i.d, and we let Yt be some stationary process Yt =. E C. Et_·. 

J=O J J 

Clearly Xt is trending, since differencing it twice makes it stationary. Note, however, that 

if C2 = 0, then we still need to difference it twice to make it stationary. We prefer to call 

such a process an 1(1) process, since the stochastic trend needs only one differencing. 

The moving average representation (2.1) is a useful way of modeling the economy 

through the matrices Cl and C2 as the results of the influence of its unobserved common 

trends or driving forces. It is furthermore very convenient for describing the properties of 

the process since the mean and covariance functions are easily calculated and the 

cointegration properties are easily illustrated, as will now be discussed. Furthermore the 

asymptotic properties are simple consequences of (2.1). 

Granger (1981) used this representation to note that if we take linear combinations 

(3, such that (3' C2 = 0, and (3' Cl * 0, then the order of integration of the process is reduced 

from 2 to 1. He coined the phrase cointegration and denoted it C(2,1) in this case. The 

idea is to describe the "stable" relations in the economy by linear relations that are more 
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stationary than the original variables. 

DEFINITION 2.3 The J(d) process Xt is called cointegrated C(d}b) with 

co integrating vector A if A'Xt is J(d-b), b = 1, ... }d} d = 1}2} .... 

If we can find {3 such that {3IC 1 = {3IC 2 = 0, see (2.1), then clearly {3IXt is stationary 

apart from its quadratic trend. Thus the stochastic variation has been reduced to 

stationarity. We call {3IXt trend stationary (with a quadratic trend). If we find two 

vectors {30 and {3p such that {36 C2 = 0, and such that {36Cl + {3iC2 = 0, then, assuming 

that J1t = 0, 

t j t 
/36Xt + {3i llXt = {36 C2.E .E ci + ({36 C1+{3i C2).E c· + {36Yt + {3iC1Ct + {3i llYt, 

J=1l=1 J=1 J 

which is stationary by the choice of {30 and (31' Thus the levels Xt are reduced to 1(1) by 

the coefficients {30' and these linear combinations cointegrate with the differences through 

the linear combinations (3i llXt which also form an 1(1) process. This phenomenon is called 

multi-cointegration or polynomial cointegration, see Engle and Yoo (1989) and Gregoire 

and Laroque (1990). 

The representation (2.1) models the variables by common trends, and the reduced 

rank of the coefficient matrices ensures that the variables cointegrate, since by suitable 

linear combinations the common trends can be eliminated, thereby creating "stable" 

economic relations. Another way of modeling cointegrating variables is through the so 

called error correction models. 

As an example consider the model 

(2.2) 

with initial value XO' where a and {3 are pxr matrices. The motivation for this model is to 

consider the relation {3' X = ° as defining the underlying economic relations, and assume 

that the agents react to the disequilibrium error {3' Xt- 1 through the adjustment coefficient 
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a, to. bring back the variables on the right track, that is, such that they satisfy the 

economic relations. If a and (3 have rank r we define a and (3 as px(p-r) matrices of full 
.L .L 

rank such that a' a = (3' (3 = O. If further a' (3 has full rank then one can solve (2.2) for 
.L.L .L .L 

Xt as a function of the initial values and tl' ... ,tT and find a representation of the form 

(2.1) with C2 = 0, 72 = 0, and 

(2.3) C = {3. (at (.I )-la , and 7 = C /1. 
1 .L.LfJ.L .L 1 1"" 

whereas the value of 70 depends on whether we fix all of ZO' or admit the stationary 

components to have their invariant distribution, that is, it depends on how we interpret the 

expectation in the calculation of the deterministic trend. 

This is an instance of the celebrated representation theorem by Granger, see Engle 

and Granger (1987), which is a way of finding the MA representation from the AR 

representation, and vice versa, when there are 1(1) variables in the system. 

Granger also used model (2.2) to define common trends by the following 

observation: if we multiply the equation (2.2) by a' we obtain a set of variables that 
.L 

evolve without reacting to the disequilibrium error, and in this sense can be considered as 

modeling the driving forces of the economy. 

DEFINITION 2.4 The variables a~ X t are the common trends. 

The representation (2.1) contains the cumulative shock ~i ti with the coefficient matrix 

Cl' but the expression (2.3) shows that only the linear combinations a~ ~i ti enter the 

representation. Thus the driving forces of the process are modelled by a' ~lt t·. From the 
.L 1 

expression 

a~Xt = a~~iti + a~(70 + 71 + Yt ) 

it is seen that the common trends have the same non-stationary component as the driving 

force. 

The error correction model, exemplified by (2.2), was introduced into econometrics 
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by Sargan (1964), and has since been applied when modelling an economy where agents 

learn from the past when making their plans for the future. 

The error correction model (2.2), which is constructed around the cointegrating 

relations as error correction terms, and the MA model (2.1) that is constructed in terms of 

unobserved common trends, are of course complementary, in the sense that the two 

approaches are mathematically equivalent, but they may appeal to different types of 

intuition. 

Figure 1 

Legend to Figure 1: 

The process Xt is pushed along the attractor set sp ((3,) by the 

common trends a~ Xt and pushed away from this by the shocks to the 

system. The process reacts to the disequilibrium error (3' Xt via the 

adjustment coefficients and is pushed back towards the attractor set 
in the direction a. 
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The picture that one should have in mind is that the economic forces, OI~Xt' drive 

the economic variables to lie in the space spanned by (3 ) termed the attractor set by 
.1 

Granger. The agents react to these forces and create economic variables that move around 

the common trends, following the economic "laws" or structural relations {3' X = 0, in the 

sense that the variables react to the disequilibrium errors, (3' Xt , through the adjustment 

coefficients, 01, and are forced back towards the attractor set. 

This closes our discussion of the fundamental concepts like trending variables, 

cointegration, and common trends, and the next sections will contain various attempts to 

model and analyze these phenomena. We conclude this section with some general 

comments on the purpose of building models for economic data. 

2.2. Some comments on model building 

First of all it must be emphasized that the purpose of constructing a statistical model, that 

is a parametrised family of probability distributions, is not to replace serious economic 
. 

models with arbitrary statistical descriptions, but rather to provide a framework in which 

one can compare the economic theories with reality, as measured by the data series. 

It seems that a proper statistical treatment of systems of trending variables should 

include the formulation of a statistical model where one can 

1) Describe the stochastic variation of the data, such that 
inferences conducted concerning the various economic questions are 
valid. 

2) Define precisely the economic concepts, like a "stable 
relation" and "driving force" as the statistical concepts cointegration 
and common trends. 

3) Formulate interesting economic theories and questions in 
terms of the parameters of the model. 

4) Derive estimators and test statistics as well as their 
(asymptotic) distributions such that useful inferences can be drawn. 
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If we have such a statistical model describing a relevant set of economic variables, the first 

task is to check for model specification, to make sure that property 1 is true, or at least not 

completely false. If it turns out that the model is valid from a statistical point of view, one 

can proceed to test that the formulated economic theory, or economic model, is consistent 

with the data. The reason that this point is important is that often the economic theory is 

developed for rather abstract concepts, whereas when it comes to the observations, one has 

to put up with actual data series that are not observations of the abstract concepts, but 

carefully selected proxies. Thus although the economic theory may be fine, the data chosen 

may not illustrate this. Hence a careful statistical analysis helps to support the economic 

conel usions. 

In the case of cointegration and common trends there are a number of questions that 

need a statistical formulation and treatment. First of all the number of the cointegrating 

relations or common trends has to be determined, to compare with the number prescribed 

by the theory. Next economic hypotheses about the cointegrating relations or common 

trends have to be formulated and tested, and here the interpretation of the concepts 

becomes very important. 

An economic theory is often formulated as a set of behavioral relations or structural 

equations between the levels of the variables, possibly allowing for lags as well. If the 

variables are 1(1) it is convenient to reformulate it in terms of levels and differences, such 

that if a structural relation is modeled by a stationary relation then we are lead to consider 

stationary relations between levels, that is cointegrating relations. 

It is well known that structural results are difficult to extract from the reduced form 

equations, but it is easy to see that the property of non-stationarity and stationarity can 

be deduced from the reduced form since they are basically statistical concepts, rather than 

economic notions. 

The reason that cointegration is interesting is that the cointegrating relation 

captures the economic notion of a stable economic relation. And the reason that a 
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statistical theory (rather than an economic theory) for the estimation and testing of 

cointegrating relations can be constructed rests on the fact that the reduced form suffices 

for the determination of the basic cointegrating relations. On the other hand a mindless 

attempt to finding cointegrating relations without knowing what they mean is not going to 

be fruitful, so I believe that the econometrician has to carefully choose the variables that 

should enter the study, and carefully discuss the economic theory that motivates this. 

The reason for this discussion of the statistical model is that one often finds the 

opinion expressed that the purpose of a statistical analysis is to find the estimates of the 

parameters that one knows are the interesting ones. What I want to point out is that the 

statistical model offers a much richer basis for discussion of the relation between economic 

theory and economic reality. 

In the above discussion we have focused entirely on statistical models that describe 

full systems, that is the joint stochastic behavior of all the processes observed. In 

situations where one has 25 or even 100 variables, this may not be feasible, since the 

interrelations between so many variables is extremely difficult to understand. It is 

customary to fix certain variables, which it is felt influence the main variables without 

being influenced by the variables of main concern. Thus assuming some sort of exogeneity 

one can construct a partial model. 

It is obvious that if we do not specify the stochastic properties of the exogenous 

variables it is impossible to make statistical inferences for the parameters that have been 

estimated. A compromise is to model some variables carefully and some variables less 

carefully; that is, one can try to develop methods for the parameters of interest that are 

valid under a wide range of assumptions on the exogenous variables. This is the 

background for the semi parametric and regression type models considered in the next 

section and the topic will be discussed further in connection with the V AR model. 
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3. Statistical analysis of models for [(1) variables 

The most widely used type of non-stationarity for economic series is 1(1), and this section 

contains some results for this type of variables. We distinguish between regression type 

models and models for systems. This distinction is not quite clear cut and meant only as 

an attempt to structure a large body of work done by many authors. 

3.1. Regression models for the lonrrrun parameters 

3.1.1 Estimation of parameters 

Consider the model with variable, Xt = (Yit,Y2t ), , of dimensions PI and P2 respectively. 

(3.1) Ylt = BY2t + Ult 

(3.2) ~ Y 2t = U2t' 

where the process Ut is assumed to be an invertible stationary process. This is a model 

which has imbedded into it the cointegrating relations f3 = (l,-B)' and the common trends 

Y2t = EiU2i' The appealing property from the model point of view, is that one focuses on 

the interesting parameters B and considers the dynamics of the underlying stationary 

process as nuisance parameters. The model is treated in detail by Phillips (1990), and 1 

shall here give a short summary of the results obtained. 

As parameters in the model one can consider 

__ ------13.3) 
-~ 

where fu denotes the spectral density of the process {Ut}. This is a model with minimal 

assumptions, many parameters, and no structure on the spectral density. It contains as 

sub-models almost any possible model in relation to the present questions, since it only 

requires that Y It and Y 2t cointegrate, and that the common trends Y 2t are known. We 

exemplify by considering some sub models, taken from the paper by Phillips. 

The first example is purely pedagogical, since it involves specifying that 

(3.4) 

This is in applications far from realistic, but the model serves the purpose of generating an 
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estimator namely the regression of Y It on Y 2t and Ll Y2t , which can be derived as the 

maximum likelihood estimator. If in particular U It and U2t are assumed independent, 

then the estimator generated is the regression of Y It on Y 2t as originally suggested by 

Engle and Granger (1987), and investigated by Stock (1987), under more general 

assumptions, as the first estimation method for cointegrating relations. The real advantage 

of model (3.4) is not its realism, but instead the fact that it is relatively easy to see that 

the asymptotic distribution of the maximum likelihood estimator is mixed Gaussian. Thus 

the model provides a simple framework in which one can convince oneself without too 

many technicalities that all this discussion about mixed Gaussian distributions is necessary 

even in the very simplest unrealistic cases as long as 1(1) variables are involved. 

A more realistic example is the sub model found by parameterizing the spectral 

density f = f .0 by a finite number of parameters '/J such that the parameters become 
u U,'IF 

(3.5) (B,'/J) E wx8 

The Whittle likelihood, see Dunsmuir and Hannan (1976) 

(3.6) LW(B,'/J) = 1nl E( '/J) I + T-1Estr{~1(As;'/J)w(As)w \Asn 

with AS = (27rS)/T and 

fu( A, '/J) = (27r)-1(EOCk( '/J)ekiA)E( '/J)(EOCk( '/J)e -kiA) 

and 

w(A) = (27rT)-1EI(Ylt-BY2t_1,LlY2t)feitA 

is a useful way of writing explicitly an expression for an approximation to the Gaussian 

likelihood function involving the spectral density and the empirical periodogram, thus 

avoiding the inversion of a large covariance matrix for the observations (Y It,Y 2t' t = 
l, ... ,T). 

This gives, at least in principle, a possibility of calculating a pseudo maximum 

likelihood estimator provided one can prove it exists. It is clear that the interpretation of 

the parameters '/J is a bit difficult in such a general formulation but special cases may exist, 

where this is possible. One can also achieve an even more general type of model in which 
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the parameter B also enters into the spectral density f = f .Q B' such that the parameters u u, 'if, 

in the cointegrating relation and the spectral density are no longer variation independent, 

This last formulation has the advantage that it contains all V AR models, and in fact all 

ARM A and ARIMA models, 

The main result of Phillips (1990) on the analysis of these models is that if one 

applies Gaussian maximum likelihood estimation in models like (3.6) then one achieves 

optimal inference in a sense discussed by Phillips (1990). For the present purpose we will 

think of optimal inference as the possibility of obtaining a mixed Gaussian distribution for 

B, expressed in terms of two independent Brownian motions, and thus asymptotic X2 

inference concerning hypotheses on B, our parameter of interest. 

Thus it is a very general type of model, where the main conclusion is that in order 

to make sure that one gets optimal inference one should model the dynamics and calculate 

the maximum likelihood estimator. The model is defined in such general terms that it is 

more a framework in which usual inference works, than a prescription of which model to 

use, and how to analyze it. 

The model (3.1) has given rise to a large number of different estimators of regression 

type. A direct regression of Y 1 t on Y 2t leads to a limit distribution which is a mixture of 

Gaussian distributions, but expressed in terms of two dependent Brownian motions. It 

turns out that the variance matrix of these Brownian motions is just the long run variance 

matrix for the underlying stationary process. This has lead to a modified regression 

estimator, see Phillips and Hansen (1990) or Park (1988): 

1) Estimate B by regression of Y 1t on Y 2t. 

2) Estimate a long run variance matrix from the residuals by for instance a spectral 

estimator. 

* * 3) Correct Y 1 t and Y 2t to Y 1 t and Y 2t using the long run variance matrix and!:::.. Y 2t· 

* * 4) Regress Y 1t on Y 2t· 

The effect of the correction is that now the regression estimate will have a mixed Gaussian 
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distribution, and asymptotic inference can be performed by Wald tests using the estimate 

of the long run variance matrix. 

Phillips (1988) estimates B by regression in the frequency domain, and another way 

of achieving the independence between the two Brownian motions in the limit distribution 

is to regress Y 1t on Y 2t plus leads and lags of L1 Y 2t' see Saikkonen (1989) and Stock and 

Watson (1991). These regression estimates have the property that the dynamics of the 

process Ut need not be modeled, only the long run variance needs to be estimated for 

optimal inference on B to be possible. 

The reason for spending relatively little space on these regression type estimators, is 

that they are basically invented as extensions of the usual regression method with the 

purpose of deriving estimates without modeling the structure of the data in detail, and the 

main purpose of this paper is to discuss the analysis of systems. 

3.1.2 Determination of co integration rank 

There is one aspect of the practical problem that has not been dealt with in the discussion 

of the above class of models. That is how to determine the cointegration rank, or the 

number of common trends. In fact the model formulation assumes that we can point out 

the common trends, as the variables belonging to Y 2t. Another way of saying this is that 

we have to assume that the variables Y 1t enter in the cointegrating relations in such a way 

that one can solve them for Y It. 

From my experience with econometric data it is rather rare that ones prior guess of 

the number of cointegrating relations is correct, and it seems important to have a way of 

checking that one is not completely wrong. But why is this not possible in the above 

formulation? Usually when we want to test hypotheses, it is convenient to think of one 

model as a sub-model of another, that is, the models are nested. This gives the possibility 

of formulating likelihood ratio tests. The drawback of the model formulation (3.1) and 

(3.2) is that if we change the dimension of Y 1t we get non-nested hypotheses. That is, 
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there is no value of the parameters in the model with Pl = 3, say, for which the model 

reduces to a model with PI = 2. Thus the model with P2 = 2 is not a sub-model of the 

model with Pl = 3. This implies that there seems to be no simple way of testing if the 

original model formulation is correct with respect to the specification of the number of 

common trends, or cointegrating relations. 

The first paper to deal systematically with this problem from the point of view of 

the analysis of a system is the paper by Stock and Watson (1988). They explicitly 

formulate the nested hypotheses '" of k common trends, and suggest some methods for 

testing the v\ in %m' m < k. Their starting point is the model considered by Granger 

.6.Xt = C(L)ft , 

where Et are i.i.d with mean zero, say, and 

C(z) = ~ocii 
The parameter space is not explicitly given, but one can supplement it by specifying a 

parametric dependence of the coefficients Ci on some parameters. This however is not used 

in the analysis that follows. 

Cointegration is associated with reduced rank of the matrix C(l) = ~OCi' If f3 is 

defined as the matrix of largest rank such that ,8'C(l) = 0, then Stock and Watson 

introduce the coordinate system defined by (,8,,8 ), where,8 is a matrix of full rank such 
.L .L 

that ,8',8.L = O. They further define the common trends Wt = ,8~Xt. The idea is now that 

if Wt really contains all the common trends and they do not cointegrate, then .6. Wt is an 

invertible stationary process, and a regression of Wt on Wt- 1 will give a coefficient <I> that 

converges toward the identity. It therefore seems natural to construct a test based upon 

the eigenvalues of <I> to see if they are close to 1. Thus the test that they give for the null 

of r = p-k cointegrating relations against s = p-m cointegrating relations, m < k, is to 

investigate the m'th largest real part of the eigenvalues of <1>. While this explains the main 

idea, the actual procedure they suggest is to first estimate ,8, using principal components of 

the sums of squares matrix formed by the data, then use the estimated ,8 to calculate Wt , 
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and finally filter the series Wt by regressing it on its lagged value. The matrix <Pf is then 

constructed by regressing the residuals on the lagged residuals. They find the asymptotic 

distribution of the eigenvalues as those of the functional 

[J6BB' du]-l f6B( dB)', 

where B is a p-r dimensional Brownian motion, and tabulate the critical values. Thus the 

procedure consists of fixing k, estimating /3, filtering W t and finding the (m + 1)' th largest 

eigenvalue of <I> f as the test statistic. 

It is a bit difficult to see how one can derive formally their analysis by an analysis of 

the model. Certainly the long-run variance is C(l)Var( ct)C(l)', which is singular if C(l) 

is, hence the smallest principle components of the sum of squares of the observations is a 

candidate for an estimate of the cointegrating relations /3. It is clear that the filtering 

makes one think of an autoregressive model for the common trends. We shall see how the 

analysis of the V AR model in the next section leads to similar procedures as a result of an 

analysis of the likelihood function. Notice how the principal component analysis treats the 

variables on an equal footing, that is without solving the relation for any of the variables, 

and how one can choose any number of principal components to model the number of 

common trends, but note first of all how the formulation of the model allows the 

hypotheses of interest to be nested. Thus by exploiting the reduced rank of the MA 

representation that served as the starting point for Granger's original formulation of the 

cointegration problem, Stock and Watson manage to formulate the hypotheses of interest 

as nested hypotheses, thus making a formal test possible. We shall see how the VAR 

model allows a similar formulation exploiting the dual form of the representation, namely 

the autoregressive representation. 

3.2 The auto regressive model 

The interest in the VAR model formulation in econometrics seems to have been inspired by 

the paper by Sims (1980), and many of the estimation problems in the unrestricted VAR 
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have been solved by Sims, Stock and Watson (1990). The reduced rank regression 

technique, which originally was proposed by an analysis of the likelihood function in the 

LLd case by Anderson (1951) was applied by Ahn and Reinsel (1988) for stationary 

processes, and by Johansen (1988) for non-stationary processes. The corresponding 

asymptotic theory was given in Johansen (1988) and was also developed by Ahn and 

Reinsel (1990) and Reinsel and Ahn (1990), and the results are generalized by Phillips 

(1990), in the above discussed framework. 

What then is so special about the VAR model, when it is just a sub model of the 

general set up in section 3.1 ? 

In my opinion the flexibility of the autoregressive formulation allows not only the 

statistical description of a large number of real data sets, but it also allows the embedding 

of interesting economic hypotheses into a general statistical framework, in which one can 

define the concepts of interest and actually prove results about them, as discussed in 

section 2. I shall therefore spend some more time on the autoregressive models. 

What we gain by the autoregressive formulation should be apparent from what 

follows; what we loose is of course that we treat a rather small class of processes, such that 

in the scale between convenience and realism some may feel that we are a bit too far in the 

direction of convenience. Our experience with analyzing macro data, however, is that the 

models quite often provide an adequate fit of the data, especially after we have considered 

carefully which variables should be included in the analysis. It is our belief that seasonal 

dummies serve to diminish the required lag length considerably. It is also our belief that 

the multivariate information set allows one to decrease the lag length compared to a 

univariate analysis. It is an empirical finding that we have so far been able to manage with 

two lags for seasonally unadjusted data. This is important, since in VAR models one can 

easily get involved in estimating many parameters explicitly. 
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3.2.1 Definition and representation of /(1) variables 

The V AR model with Gaussian errors is defined by the equations 

k 
(3.7) Xt = ~lIliXt-i + /-LO + /-LIt + Et, t = 1, .. "T, 

The parameter space is defined by the parameters 

(3,8) 

varying freely. If Et are i.i.d Np(O,O) then the maximum likelihood estimation of the 

parameters is just ordinary least squares, which of course is quite convenient since most 

computer packages can do this without hesitation and regression coefficients are well 

understood in econometrics. 

The hypothesis of cointegration is defined as 

(3.9) ~: Il = I - III - ... - Ilk = a{3t 

where a and {3 are pxr matrices. Note that ~ specifies that the rank of IT is less than or 

equal to r which ensures that the models are nested: J'GQ ( ... ( ~. If we reparametrize 

the model (3.7) as a reduced form error correction model we can write it as 

( ) k4 
3.10 LlXt = a{3t Xt- l + El fiLlXt_ i + /-La + /-Ll t + Et 

with parameter space 

(3.11) (a,{3,f l, .. ·,f k-l' /-LO' /-Lp 0), 

- (Ili+1 + ... + Ilk)' This parameterization has the advantage that the 

parameters vary unrestrictedly. Thus (3.10) defines a sub-model of the general VAR 

model, and this sub-model will be called an 1(1) model. Note that since only the product 

afJt enters into the model the parameters a and (3 are not identified. What can be 

estimated is sp({3), the space spanned by the columns of (3 or equivalently the rows of Il, 

and similarly sp( a), the space spanned by the columns of Il. 

The version of Grangerts theorem we apply here is given in Johansen (1989,1991c). 

The properties of the process Xt under the conditions of reduced rank of Il are given in the 

next Theorem. In order to formulate the results we define the mean lag matrix f = I -

k-1 k. 
El rj = E11Ili · 
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THEOREM. 3.1 If the roots of the characteristic polynomial of (3.7) are outside the 

unit disk or at z = 1, if II = a{i' I and if a' r {i has full rank} then the processes ..6.Xt and 
..l ..l 

{i' X t can be given initial distributions such that they become stationary. In this case the 

process Xt has the representation 

t 2 
(3.12) Xt = Ci~l f.i + C1(L)f.t + 70 + 71t + i 72t + Pro 

where C = {i (a' r (i ) -1 a' I and 72 = C/11! and P{i is the projection on the space spanned 
..l 1...l 1. 

..l 

by {i I that is P{i = {i ({i' (i )-1{i1. 
1. 1. 1. 1. 1. 

..l 

The autoregressive model allows us to define under which conditions we get 1(1) variables 

and cointegration, thus allowing these assumptions to be checked against the data. We 

also get a possibility to define the attract or set, and the common trends, and discuss how 

these spaces can be interpreted. The adjustment coefficients a should be interpreted as the 

"force of adjustment" of the changes .to the errors in the long-run relations, after the 

lagged changes have been taken into account. The "speed of adjustment" is determined by 

the roots of the characteristic polynomial, and is a complicated function of the parameters. 

3.2.2 Likelihood inference 

The analysis of the likelihood function under the assumption of reduced rank was 

carried out by Anderson (1951) in connection with independent errors, and applied to the 

analysis of stationary processes by Ahn and Reinsel (1988), and to non-stationary 

processes by Johansen (1988). The statistical calculations come down to a reduced rank 

regression of ..6.Xt on Xt- 1 corrected for the lagged differences, constant and linear term. 

Since the parameters are variation free one can first eliminate the lagged differences, the 

constant and the linear term and obtain residuals ROt and Rlt . Then we define the 

product moment matrices 
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-1 T 
S .. = T ~ 1 R.tR~t, i,j = O,l. IJ 1 J 

The estimation procedure amounts to solving the eigenvalue problem: 

I ASll - S10S0~SOll = O. 

We find Al > ... > Ap and eigenvectors v1,oo.,vp Note that this eigenvalue decomposition 

gives the partial canonical correlations between the levels and the changes in the process 
A 

conditional on the lagged changes. The estimate of the cointegrating space is sp(/3) = 

sp(v1, ... ,vr) and the likelihood ratio test statistic Q(~I~) for ~ in ~, the full VAR 

model, is 

Q = -2InQ( d6' I d6') = -T~P+11n(1-A')' r r p r 1 

So far the algebra follows Anderson (1951). The new aspect that has interested Ahn and 

Reinsel (1990), Johansen (1988) and also Phillips (1990) is the non-standard limit 

distribution of this test statistic which can be expressed as 

(3.13) 

where B is a p-r dimensional Brownian motion, and F is B with the last component 

replaced by t2, and then corrected for the trend. If instead the model with 110 = 111 = 0 is 

considered, then F = B. These distributions are then tabulated by simulation (see 

Johansen and Juselius (1990) and Johansen (1991£)). Note the similarity with the limit 

distribution appearing in the above mentioned work of Stock and Watson. The estimate of 

a is given by a = SOI/3, and n = SOO - aa'. More interesting is the estimate of (}..L' the 

common trend coefficients, which is given as S06S01 (vr+1, ... ,vp) or as the eigenvectors to 

the dual eigenvalue problem 

I ASOO - SOl SliS10 I = 0 

corresponding to the p-r smallest eigenvalues, which are the same as for the other 

eigenvalue problem. Thus the dual economic concepts of cointegrating relations and 

common trends are treated in a statistically similar way in the estimation procedure. 

The test statistic Q can either be used to check prior beliefs about the number of 
r 

cointegration relations or to estimate the cointegrating rank. The rank can be estimated 
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by the following procedure. Let cr denote the quantiles calculated from the distribution 
A 

(3.13), for some level 5% , say. Then we define the estimator r by 

{r = r} = {QO > cO, .. ·,Qr-1 > cr- 1,Qr < cr}· 
A 

It is not difficult to show that in the limit r takes on the correct value with probability 

95%, see Johansen (1991e) for an application to cointegration of an idea due to Pantula 

(1989). 

The next question that we shall discuss is the formulation and testing of hypotheses 

on the coefficients Cl( and {J. 

Often the relevant economic question to ask concerns the value of the coefficients of 

one of the structural equations. How can one do this when the cointegrating relations are 

only defined up to linear transformations? The economic answer to this is that one has to 

identify the equations first, in one of the many senses of this word. We here used the word 

to mean that the cointegrating relations are just identified if we have chosen a coordinate 

system in which we want to express the results. 

The formal definition is to take a matrix c of dimension pxr and define the 

normalized cointegrating relations as {3c = {3( c' (3)-1. Thus the vectors are normalized such 

that c' {3 = 1. If in particular we take c = (1,0) I the normalization corresponds to solving 
c 

the cointegrating relations for the first r variables. This corresponds to the formulation in 

(3.6), where the relations have been solved for Yt . Other normalizations can be expressed 

by different choices of c. 

Once this has been done, hypotheses can be tested on the coefficients as over 

identifying restrictions. The Wald tests are especially convenient since they do not require 

re-estimation of the parameters under the null, but of course one can also do the likelihood 

ratio test if the calculations can be performed. 

It follows from the general results on the asymptotic distribution of Cl( and {3 that the 

likelihood ratio tests or Wald tests of hypotheses on either Cl( or {3 are asymptotically 

distributed as X2. 
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A number of hypotheses have a structure that allows the estimation under the null 

to be carried out by various modifications of reduced rank regression. An example is that 

some economic questions can be formulated as linear restrictions on all of the beta vectors 

simultaneously. For instance the hypothesis of price homogeneity, would mean that 

coefficients on two prices were equal with opposite sign in all relations. Such a hypothesis 

can clearly be expresses as a restriction of f3 without first identifying or normalizing the 

coefficients. The hypothesis that a certain vector is cointegrating, that is if a given linear 

combination is stationary, is also an example of a hypothesis that can be tested without 

normalizing the coefficients first. Examples of the tests of such hypotheses are given in 

Johansen and Juselius (1991). Note that the hypothesis that a given unit vector is a 

cointegrating relation is really a test that a given variable is stationary. Thus by using this 

formulation we have decomposed the question of the stationarity of a given variable into 

two questions. The first is whether there are cointegrating relations at all, and the second 

is whether such a vector can be chosen as the given unit vector. Notice that in this last 

case the null is the null of stationarity, and the asymptotic inference is X2. 

3.2.3 The role of the constant term 

Our first goal is to interpret the parameters JiO and Jil and discuss their influence on the 

process Xt . From Granger's representation theorem, see (3.12), it follows that Xt has a 

quadratic trend with the coefficients 72 = f3 (a'ff3 )-la' Jil' Thus the coefficients a' Jil 
.i .i.i .i .i 

give rise to the quadratic trend which influences the linear combinations f3~Xt' but f3IXt 

has no quadratic trend only a linear trend. 

The model we get under the restriction a~Jil = 0, or equivalently Jil = af31 for some 

rxl vector f3p the model has the interesting property that it allows a linear trend in the 

cointegrating relations as well as in the common trends. The analysis of the model is again 

performed by a reduced rank regression since we can write 

* * af3'Xt + af31t = a(f3',f31)(Xf,t)' = af3 IXt , 
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* say, Thus by a reduced rank regression of L1Xt on Xt corrected for lagged differences and 

the constant we can derive estimators of a, {3 and {31' The likelihood ratio test for the 

restriction a~J.L1 = 0 is found by comparing the eigenvalues from the calculations with and 

without the restriction, and the asymptotic distribution is given by the X2 distribution, see 

Johansen (1991£). 

Another hypothesis that is of interest is concerned with trend stationarity. In the 

model with no quadratic trend, the cointegrating relations are allowed to have a linear 

trend. Thus if we want to investigate if a given linear combination of Xt , or any of its 

components, is trend stationary we can formulate this as a hypothesis on the cointegrating 

relations as follows: Let b (pxrO) denote the linear combinations believed to be trend 

stationary. The hypothesis is then expressed as 

* (3 = (Hep,7/J), 

where 

H = [~~l 
is of dimension (p+1)x(rO+1), epis (rO+1)xrO and 7/J is (p+1)x(r-rO)' This way of writing 

the hypothesis of trend stationarity shows that the calculations can be performed as a 

switching algorithm between two reduced rank regressions, see Johansen and Juselius 

(1991) for a discussion of this. The asymptotic distribution of the likelihood ratio test for 

this hypothesis is X2. 

Finally one can test if the trend stationary relations {3' Xt in fact have no trend, by 

analyzing the model with J.Ll = O. Again a comparison of the eigenvalues derived by 

reduced rank regression will give the likelihood ratio test which is asymptotically X2. 

3.2.4 Partial models 

In the autoregressive formulation of Xi = (Y i ,ZO we can interpret a partial model 

as a conditional model of Yt given Zt' that is, as the model given in error correction form 
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( ) k~ 
3.14 ~ Yt = W~Zt + ay,8'Xt_1 + El liXt-i + f y.zt · 

where W = 0 0-1, such that f t = f t - Wf t is independent of f t' If Zt is weakly yz zz y.z y z z 

exogenous or equivalently if a = 0 then the analysis of the full V AR model will give the z 

same estimator as the analysis of the partial model, see Johansen (1991g). Thus under 

some conditions one can determine the cointegration rank from the partial system. The 

condition is that the number of equations analyzed is larger than the number of 

cointegration relations and that the variables that we condition on are weakly exogenous. 

Note that the conditioning variables can cointegrate among themselves. 

The problem about weak exogeneity is that it is clearly not enough to assume it, one 

should also check that it holds. This of course is a bit difficult without analyzing the full 

system. A simple solution is to perform an F test on the coefficients of ,8' Xt- 1 in the 
A 

z~quations, where ,8 is the estimate derived from the equation for Y given Z. If the test 

rejects we are still faced with the real problem, and that is, that there is more information 

about the cointegrating relations in the equations we are leaving out. If one tries the 

maximum likelihood estimation of ,8 in the partial system we can still find the asymptotic 

distribution, but it turns out that the asymptotic distribution depends on nuisance 

parameters, and that inference is difficult to say the least. 

4. The statistical analysis of models for 1(2) variables. 

While the non-stationarity of economic variables can often be described by 1(1) variables 

there are some variables that are perhaps best described by 1(2) processes. Thus if Xt is 

the log of a price variables, it is clearly non-stationary, but even the inflation rate LlXt 

can be non-stationary. If LlXt is described by an 1(1) variable, then Xt is 1(2). Inference 

for 1(2) variables is being developed and not many results exist. Below we sketch some of 

the regression type results, and some results for the V AR model for systems. 
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4.1. Regression models for the long-run parameters 

The regression model (3.1) and (3.2) can be formulated for I( d) variables see Stock and 

Watson (1991). We shall discuss the results for d = 2. For 1(2) variables they suggest that 

the variables in X t be split into Y It, Y 2t and Y 3t such that 

2 (4.1) b" Ylt = Ult 

(4.2) b"Y2t = 8 1b"Ylt + U2t 

(4.3) 

where Ut is an invertible stationary process. 

Thus the model assumes that we know the common 1(2) trends,Ylt 1 and that we 

know that the variables Ylt can cointegrate with Y2t . Finally the variables Y3t can 

cointegrate with levels Y It, Y 2t and differences b" Y 2t· 

They focus on the estimation of the last equation and suggest regression estimates 

based upon (4.3) augmented by leads and lags of b" Y It and b" Y 2t. They find that their 

estimator not only gives consistent estimation of the parameters of interest but the 

asymptotic distribution of the estimated coefficients is mixed Gaussian such that usual 

inference can be performed. 

The auto regressive model 

Thus provided the structure of the data is so well understood that a model of the type 

(4.1), (4.2) and (4.3) can be built, regression type estimators can be used for making 

inference on hypotheses on the parameters 8. The VAR model discussed below allows one 

to analyze the structure of 1(2) variables and allows one to check the structure against the 

data. 

4.2.1 Cointegration and representation of /(2) variables 

The autoregressive model allows for the analysis of 1(2) variables, by suitably restricting 

the parameter space. Consider the general model (3.7) reparametrized in the error 



,-

27 

correction form 

( 4.4) 

where we have allowed a constant term in order to discuss various forms of trending 

behavior. Our first task is to find under what conditions the model allows for 1(2) 

variables. In order to formulate the results we need some notation. We let a = a(a/a)-l 

for any matrix a of full rank, such that ala = I, and the projection onto the space spanned 

by a is P = aa' = a(a/a)-la / . 
. a 

The 1(1) theory rests on the assumption that a' f f3 has full rank, so for the .l .l 
equations to generate I(2) variables we assume that a'ff3 = cpr]' has reduced rank and .l .l 
define a1 = a.l cp and f31 = 73.l T/, together with a2 = a.l cp 1. and f32 = f3.l T/ 1.' Then (a, a1, a2) 

are mutually orthogonal and span RP. The same holds for (f3,f31'f32). Finally we let <I> = 1-

Ef-2<I>i" The results are given in Johansen (1991a) 

THEOREM 4.1 If the roots of the characteristic polynomial are either outside the unit 

disc or at z = 1} if there exist matrices a and f3 both px (p-r), of full rank and matrices cp 

and T/ both (p-r)xs, of full rank such that 

(4-5) IT = af3') a~ff3.l = CpT/'} and a2(<I>-f7J(i'f )f32 has full rank, 

then i:J. 2Xt} f3jXt and f3' Xt + a' f73 tf32i:J.Xt can be given initial distributions such that they 

become stationary} and Xt has the representation 

t j t 2 
(4·6) X t = G2 .E .E fi + G1.E fi + G2(L)f t + TO + Tlt + tT2t + A + Bt, 

J=1z=l 7,=1 

with G2 = f32(a2(<I>-f7J(i'f )f3~-la2} and T 2 = Cff'. It also holds that f3' Cl E sp(a.2J} and 

f31C1 E sp(aj}a,2J. Here A and B can be determined by the initial conditions and (f3}f3l ) , B 

= 0 and f3' A + a' f73tf3,2B = o. 

Note that the example (2.1) is a special case of (4.6) with A = B = 0 and Yt = C2(L)ft " 

This representation readily shows the asymptotic properties of the process and how it 
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should be normalized in the different directions exploiting the reduced rank of the matrices 

Cl and C2· Thus the reduced rank of the total multiplier matrix, IT, provides the 

cointegrating relations f3'Xt , which for 1(2) variables are only 1(1), but they cointegrate 

with the differences llf32,Xt with the coefficients a'r732. Another way of expressing this 

result is that the residuals Rt of Xt- 1 corrected for lagged differences are asymptotically 

stationary. This fits nicely in with the empirical findings in Johansen and Juselius (1990), 
A A 

where it was found that the plots of f3'Rt appear more stationary then the plots of f3IXt. 

The second condition in (4.5) can be given the following interpretation; multiply the 

equation (4.4) by Q;' to obtain 
.L 

112Q;~Xt = Q;~r~Xt_l + ~f-2Q;~<Pi~2Xt_i + Q;~J.t + Q;~ Et" 

Thus the combinations Q;~Xt evolve without taking into account the disequilibrium errors 

f3'Xt , hence can be called common trends. Now apply the identity 

I = /3lJ' + f3 73' 
.1 .1 

to decompose Q;' r into 
.1. 

giving the equation 

(4.7) ~2Q;~Xt=(Q;~rf3)73'~Xt_1+'P17'73~~Xt_1 + ~f-2Q;~<Pi~2Xt_i + Q;~J.t+ Q;~ft· 
Thus 'P and 17 are given a similar interpretation as Q; and f3 only for the differences of the 

original process. 

Thus the structure of the 1(2) model can be summarized by saying hat f32,Xt are the 

common 1(2) trends, while f3iXt are the common 1(1) trends. The combinations f3IXt 

represent cointegrating relations although only of type C(2.1). They can be made 

stationary by introducing the common trends f32,IlXt . Comparing with the model (4.1), 

(4.2), and (4.3) we see that we can choose Y1 = f32Xt , Y2t - 8 1 Ylt = f3iXt and Y3t -

8 2Y2t - 8 3Y3t= f3'Xt · 
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4.2.2. The role a/the constant term 

The model (4.4) allows for a quadratic trend with leading term tC2ILt2, and the hypothesis 

C2IL = 0 or 0:2P = 0 is the hypothesis of no quadratic trend. Note, however, that under 

this hypothesis it also holds that {3' Xt has no linear trend, since {3' Cl E Sp( 0:2), Thus 

under the hypothesis that 0:2P = 0, the quadratic trend disappears, and the linear trend is 

restricted to the combinations {31 and {32' If also ai IL = 0, then the linear trend in {31 

disappears, and only (32Xt has a linear trend. A similar discussion can be carried out if a 

linear term is inserted in the model, but this will not be attempted here. 

4.2.3. Likelihood analysis 

The analysis of the likelihood function corresponding to the model (4.4) is not so simple, 

see Johansen (1990). We shall here present an analysis that suggests itself on the basis of 

equation (4.7). If one introduces Ut = b,.Xt , and considers 0: and (3 known, then (4.7) is a 

cointegrating model for 1(1) variables Ut and the analysis of reduced rank after some 

preliminary regressions is as discussed in section 3. The only problem of course is that in 

practice 0: and {3 are unknown. It can be proved, that if 0: and (3 are estimated by the 

reduced rank regression described in section 3, that is, as if r is unrestricted by (4.5), then 

one can proceed with the analysis of (4.7) as if a and (3 were known and equal to the 

estimates just obtained. 

Thus a simple analysis of the cointegration ranks rand s is the following: 

1) First determine the rank r and the parameters 0: and (3 by a reduced rank regression 

of b,.2Xt on Xt - 2 corrected for lagged differences and the constant. That is, analyze the 

model (4.4) with r unrestricted. 

2) For the given estimates of r, 0: and {3 determine s, r.p and 'fJ by reduced rank 

regression of o:~ b,.2Xt on b,.73~Xt_l corrected for lagged second differences, 73' LlXt_ 11 and 
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the constant. 

3) It then holds that asymptotic inference about a, /3, cp and 'TJ can be conducted by 

means of the X2 distribution. The details can be found in Johansen (1991b) and an 

illustrative example is given in Johansen (1991d). 
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