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Abstract This paper discusses autoregressive models allowing for processes integrated 

of order 2, and the various types of cointegration that can occur. A statistical analysis for 

such models which allows for the determination of the order of integration and the 

cointegrating ranks is outlined. The notion of weak exogeneity is discussed for 1(1) 

processes. The results are illustrated by the UK money data of Hendry and Ericsson 

(1991). 
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o Introduction 

Many macro variables show trending behavior over time. This phenomenon is in 

econometrics modeled by non-stationary time series, and this paper discusses 

autoregressive Gaussian models for p-dimensional systems of economic variables. Such a 

time series Xt is called 1(1) if the difference LlXt = Xt - Xt- 1 is stationary, while Xt is 

non-stationary. For a p-dimensional system of 1(1) processes, it can occur that a linear 

combination V' Xt is stationary. If this is the case the variables are called cointegrated, 

and the stationary relation is called a cointegrating relation and v the cointegrating vector. 

An alternative formulation is that the common non-stationary forces, the so-called 

common trends, can be eliminated by considering the linear combination v'Xt . 

Some time series like the log of prices (p) have the property that even the inflation 

rate Llp is non-stationary, whereas the second difference Ll2p is stationary. Such a 

variable is called 1(2), and we shall show by a statistical analysis how one can analyze 

processes that may be 1(2). 

For 1(2) variables various types of cointegration can occur. First of all linear 

combinations of 1(2) variables may be 1(1) or even 1(0), but it is also possible that there are 

linear 1(1) combinations that cointegrate with the difference of the process, which is an 1(1) 

process. 

The concept of cointegration was introduced by Granger (1981) and is used in 

econometrics to discuss long-run economic relations. This definition allows the question of 

existence of long-run economic relations to be discussed from a statistical point of view 

which is what we shall do in the present paper. 

A very important consequence of the basic definition of cointegration as a statistical 

concept is that the cointegrating properties of a multivariate time series can be analyzed 

from the reduced form of the model, even if they gain their importance only when 
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interpreted in a suitable structural model. 

It was shown in Johansen (1988), Johansen and Juselius (1990), and Ahn and 

Reinsel (1990) how one can make inference on the number of cointegrating relations and 

how one can test hypotheses about the coefficients of the cointegrating relations, such that 

economic questions and hypotheses can be tested against the data. 

There are in particular two questions that we shall be concerned with in this paper, 

namely the order of integration of the variables and the concept of weak exogeneity. 

The statistical analysis of a system of variables is somewhat involved and is 

sometimes replaced by the analysis of a partial system, thereby reducing the dimensionality 

of the system whose properties need to be modeled explicitly. The concept of weak 

exogeneity, see Engle, Hendry and Richard (1983), was introduced to justify considering 

some variables given (exogenous) in the analysis of other (endogenous) variables. It is 

important to emphasize that weak exogeneity is also a statistical concept, and as such can 

be tested against the data. 

With this background the purpose of the present paper is to show by example how 

one can test for weak exogeneity, and investigate the order of non-stationarity of the 

processes. 

1 Error correction models, cointegration and the 1(1) analysis 

This section contains a reformulation of the VAR model as a reduced form error correction 

model, and a discussion of the hypothesis of cointegration and its consequences for the 

process formulated as a representation theorem for 1(1) variables. The statistical analysis 

based upon the likelihood function is described and the results are illustrated using the 

money demand data for UK. We show how the cointegrating rank can be determined and 

how some hypotheses on the coefficients of the long-run relations can be tested. 
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1.1 The reduced form error correction model and the representation of 1(1) processes 

The p-dimensional vector autoregressive process Xt is defined by the equations 

k 
Xt = El ITiXt_i + Jl + Et, t = 1, ... , T, (1) 

where X -k+l' ... 'XO are fixed and {Et, t = 1,2, ... } is a sequence of independent Gaussian 

variables with mean zero and covariance matrix O. The parameters are the pxp matrices 

ITl' ... ,ITk, the covariance matrix 0 together with the p-dimensional vector Jl. The model 

can be written as a reduced form error correction model 

k-1 ( ) ~Xt = ITXt_1 + El f iL1Xt_i + Jl + Et, t = 1, ... ,T, 2 

where IT = Ek1IT. - I, f. = - E~+lIT., i = 1, ... ,k-1, or in anticipation of the later analysis 
1 1 1 J 

of the 1(2) model we can write it as 

2 k-2 * 2 L1 Xt = ITXt_2 + f L1Xt_1 + El f i L1 Xt- i + Jl + Et, t = 1, ... , T, (3) 
k-1 * k-2 where f = El f. -I + IT and f. = - E·+1f., i = 1, ... ,k-2. 

1 1 1 J 

The advantage of this reformulation is that the hypothesis of cointegration can be 

formulated entirely as a restriction on the matrix IT, leaving the other parameters 

unrestricted. 

For r = 0,1, ... ,p, the hypothesis of at most r cointegrating vectors is defined as the 

reduced rank condition 

H: IT = 0'.(3' (4) r 

where a and (3 are pxr matrices. Thus HO specifies that IT = 0, and Hp that IT is 

unrestricted. If rank( a) = rank((3) = r, and if 

rank{ a' f(3 } = p-r, 
.L .L 

(5) 

then the process Xt generated by model (1), or equivalently (2), is non-stationary but the 

differences are stationary, that is, Xt is an 1(1) process. We have used the notation O'..L for 

a px (p-r) matrix of full rank such that a' a = 0, and hence rank( a, a ) = p. In case r = 
.L .L 

0, that is, when r, a and (3 are all zero, we define a = (3 = 1. In this case (2) becomes a 
.L .L 

model for L1Xt , and the full rank condition (5) reduces to the requirement that ~Xt be an 
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invertible stationary process which excludes cointegration between levels. 

Below we multiply the equations by the full rank matrix (a, a ) and transform the 
.l 

variables using the full rank matrix ({J,{J). It is a property of the system (1) with 
.l 

conditions (4) and (5) that the linear combinations {J'Xt , the cointegrating relations, are 

stationary. The fundamental paper by Engle and Granger (1987) has the basic definitions 

and results about this type of non-stationary processes, which can be summarized in 

Granger's representation theorem which describes the solution of the equation (1) under 

condition (4) and (5) 

t 
Xt = Ci~1 Ei + Cl (L)Et + TO + T1 t, 

where C = - {J (a'f{J )-1a, so that {J'C = Ca = O. The trend is determined by T1 = Cfl, 
.l .l.l .l 

so that the trend vanishes if a' fl = O . 
.l 

1.2 The statistical analysis o/the J(1) model 

The statistical analysis of model (2) under the restriction of reduced rank of the 

matrix IT can be performed by reduced rank regression as introduced by Anderson (1951), 

see also Johansen (1988) for the application to non-stationary processes and Ahn and 

Reinsel (1988) for the application to stationary processes. The variables .6.Xt and Xt- 1 are 

regressed on the lagged values .6.Xt_1,· .. ,.6.Xt_k+1 and 1 to form residuals ROt and Rlt , 

and residual product moment matrices 

-1 T 
S .. = T E 1 R.tR~t, i,j = 0,1. IJ 1 J 

The cointegrating relations are then estimated as the eigenvectors corresponding to the r 

largest eigenvalues of the equation 

1 ),S11 - 810806S011 = o. (6) 

The likelihood ratio test statistic of the hypothesis Hr in Hp is given by the so-called trace 

statistic: 
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Q = -TEP+lln(l-~.). r r 1 
(7) 

Under the assumption that the number of cointegrating relations is r, and that the 

coefficient a'l" f. 0, such that there is a linear trend in the data, the limit distribution, 
.L 

which only depends on the degrees of freedom p-r, is non-standard and tabulated by 

* simulation in Johansen and Juselius (1990) Table Al. The hypothesis Hr that the trend is 

absent (a' I" = 0) can be analyzed by another reduced rank regression, and the test statistic 
.L 

* * * Qr of Hr in Hp has under Hr a limit distribution given by Table A3 in Johansen and 

Juselius (1990). 

1.3 An illustration o/the 1(1) analysis by the UK money demand data 

To illustrate the results of the 1(1) analysis we analyze the data given in Hendry 

and Ericsson (1991) on the UK money demand, and discussed in Ericsson, Campos and 

Tran (1991) and Hendry and Mizon (1990). The data consists of four variables: The 

measure of money M, is nominal money Ml. The income measure is denoted by 1NC, and 

is given by constant price Total Final Expenditure at 1985 prices. The price measure P, is 

the implicit deflator of TFE, and as a measure of the opportunity cost of holding money we 

* * use R. Here R is defined as the three month local authority interest rate (R3) less the 

learning adjusted retail sight-deposit interest rate (Rra). The data are quarterly 

seasonally adjusted from 1963(1) to 1989(2) and the first six observations are used as initial 

values in order to fit an autoregressive model with 5 lags. This leaves a total of 100 

effective observations. The data is carefully discussed in the above references and the 

present analysis is a supplement to the previous analysis with respect to the question of 

weak exogeneity and the question of the order of integration of the variables. 

The data are transformed logarithmically into mt , inct and Pt' whereas the interest 

* rate Rt is kept untransformed. Figure 1 shows the non-stationarity of the variables m and 
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p, and Figure 2 shows the differences of m and p. 

Figure 1 and 2 about here 

The results of the initial cointegration analysis from model (2) with 5 lags reproduce the 

results in Ericsson, Campos and Tran (1991). 

Table 1 here 

The determination of the cointegrating rank is made difficult by the many hypotheses that 

can be formulated, and by the non-standard limit distributions. As mentioned in section 

1.2, the limit distribution of Qr' see (7), depends on the presence or absence of the trend. 

The distribution of Qr' if in fact the trend is absent, is given by Table A2 in Johansen and 

Juselius (1990) and has broader tails than that given by Table AI. Thus if one wants to 

make sure that the size of the test based upon Q has the correct value for all parameter 
r 

points in H , one should apply the quantiles in Table A2. This procedure increases the 
r 

quantiles considerably for small degrees of freedom, and instead another procedure is 

suggested, see Johansen (1991a), based upon an idea of Pantula (1989). The idea is to use 

not one test statistic to reject H but two, namely Q compared to its quantile c given by r r r 
* * Table Al and Qr compared to its quanti le cr given by Table A3. Hence Hr is rejected if 

HO' ... ,Hr- 1 are rejected and if further 

* * Qr > cr and Qr > cr . 

This procedure guarantees that the asymptotic size of the test is correct for all parameter 

* values in H \ H . r r 

In the example we have concluded on the basis of Figure 1 that a trend is needed to 

* describe the data. Thus we have accepted that Qr is larger than its quantile, and the rest 

of the analysis only requires the quantiles as given by Table AI. The cointegrating rank 

can be formally estimated as the smallest r which is not rejected at a given level of 

significance. In the present example, see Table 1, we can clearly reject r = 0, since the test 

statistic is 77.54 and the quantile is only 47.18. The hypothesis H1 of r ~ 1 is a borderline 

case since the statistic 30.50 corresponds roughly to the 95% quantile in the asymptotic 
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distribution. The hypothesis H2 can be accepted. If we decide to accept HI we can work 

with r = I in the following, which we shall do, but the evidence for a choice between r = 1 

and r = 2 is not very strong. Having decided that r = 1 the estimate of f3 is given as the 

first column of the eigenvectors in Table 1, and the estimate of a is the first column of the 

adjustment coefficients in Table 1. Note that if we had chosen r = 2, the estimates of a 

and /3 are given as the first two columns, thus it is quite easy, once the eigenvalue problem 

has been solved, to do the analysis for various values of r. 

The solution of the eigenvalue problem (6) constructs the eigenvectors as new 

regressors in model (2). They are normalized such that the eigenvalues A. measure the size 
1 

of the adjustment coefficients: \ = ai S06ai' Thus the test that r = I is really a test that 

A2 = A3 = A4 = 0, whereas Al > 0, or equivalently that the a's in the last three columns 

are insignificantly small. 

It is quite clear that the first cointegrating relation, the first column of the 

eigenvectors, shows homogeneity of the price and income variables and this can be 

formulated as a test on the coefficients /3 of the form K' /3 = ° where K contains the two 

vectors (1,1,0,0) and (1,0,1,0). This type of hypothesis was analyzed in Johansen and 

Juselius (1990) and there it was shown, that under such a restriction the statistical analysis 

was still given by a reduced rank regression, and that the test statistic was a comparison of 

the eigenvalues from (6) by means of the statistic 

TE1rln{(1-X. )/(1-~.)} = 1.02, 
1 1 

which in this case is asymptotically X2 with 2 degrees of freedom. Here;. (X.) is calculated 
1 1 

without (with) the restrictions on /3. Since X~5%(2) = 5.99 the test statistic is seen not to 

be significant and the analysis of the full system can be summarized from the point of view 

of the long-run relation by 

lr . * mt = Pt + mCt - 7.01Rt , 

which represents the optimal estimate of the long-run economic relation between the 

variables provided model (2) with condition (4) and r = 1 is maintained. The coefficients in 
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the relation are found as the first column of the eigenvectors estimated under the 

restriction K 1 (3 = o. 

2 Partial systems and weak exogeneity 

This section contains a discussion of the concepts of weak exogeneity and partial or 

conditional models. The hypothesis of weak exogeneity for the long-run parameters is 

formulated as a parametric restriction on the adjustment coefficients and the procedure is 

illustrated by the UK money demand data. 

2.1 Weak exogeneity and the efficiency of partial models 

An advantage of the vector autoregressive formulation is that one can formulate a partial 

system as a conditional model and discuss its properties. That is, despite ones interest in 

modeling only the equations of some of the variables given the others, the stochastic 

properties of the conditioning variables are well defined in the V AR model. 

Consider therefore the autoregressive model (2) under the hypothesis of 

cointegration Hr' see (4). Let the process Xt be decomposed into the variables Yt and Zt 

of dimension p and p respectively, where p = p + p , and let a, f1' ... ,fk l' /L, Et and y z y Z -

o be decomposed correspondingly. Model (2) can be decomposed into the conditional 

model for Y t given Zt: 

11 Yt = wI1Zt +( a -wa )(3IXt 1+Ek1-1(f .-wf . )I1Xt .+/L -w/L +E t-WE t' (8) 
y Z - y1 Zl -1 Y Z Y Z 

and the marginal model of Zt: 

k-1 ( ) I1Zt = a (31 Xt 1 + El f .I1Xt . + /L + E t' 9 
Z - Zl -1 Z Z 

-1 where W = 0 0 . yz zz 

Note that all the cointegrating relations (3IXt_1 enter into the marginal as well as 

the conditional model, and that the conditional model has new adjustment coefficients 
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a - wa depending on the covariance matrix of the errors and all the adjustment y z 

coefficients. In general the parameters of the marginal and the conditional system are 

interrelated which means that full system analysis is needed to draw efficient inference 

about the parameters. 

There is, however, a very special case in which the partial model (8) contains as 

much information as the full system about the cointegrating relations and the adjustment 

coefficients, and where analysis of the partial model is efficient. This is when Zt is weakly 

exogenous for a and {3, see Engle, Hendry and Richard (1983). 

The variable Zt is said to be weakly exogenous for the parameters of interest, if 

Condition 1 The parameters of interest are functions of the parameters in the 

condi tional model. 

Condition 2 The parameters in the conditional model and the parameters in the 

marginal model are variation free, that is, they do not have any joint restrictions. 

It can be shown that if we define the parameters of interest in model (2) to be all 

the parameters of {3, then weak exogeneity of Zt with respect to (3 equivalent to the 

condition that a = 0, that is, the rows of a corresponding to the z-equations are zero, and z 

the models (8) and (9) reduce to 

k-1( ) ~ Yt = W~Zt + a {3/Xt 1 + El r .-wr . .6.Xt '+f.l -wf.l + E t - WE t' Y - yl Zl -1 Y Z Y Z 
(10) 

and 

k-1 
~Zt = El r ,~Xt . + f.l + E t· Zl -1 Z Z 

(11) 

In this case {3 and the remaining adjustment coefficients a enter only in the partial model 
y 

(10), and the properties of the Gaussian distribution show that the parameters in the 

models (10) and (11) are variation free, see Johansen and Juselius (1990) for a discussion of 

the results, and Johansen (1990c) and Boswijk (1990) for a fuller discussion of partial 
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systems. Note that equation (11) contains as well LlZt_ i as Ll Yt- i . If also the coefficients 

of Ll Y t - i are zero, or in other words Yt does not Granger cause Zt' then Zt is said to be 

strongly exogenous for (3. Thus weak exogeneity means that LlZt does not react to 

disequilibrium errors, but may still react to lagged changes of Yt , and strong exogeneity 

implies that LlZt does not react to the lagged Yt , whether Y is in changes or levels. 

It should be pointed out that the notion of weak exogeneity depends on an explicit 

choice of parameters of interest. If for instance p = 1, and if we define the parameters of y 

interest to be the cointegrating vector in the conditional model {3' = (a -wa )(3', then y y z 

condition 1 above is certainly satisfied. If we then decompose (3 into (3 and (3 and write y z 

a (3' = a (3' + a (3', then the parameters of the conditional and marginal models z zy y zz z 

become variation free if only a = O. Thus for this choice of parameters of interest, Zt is zy 

weakly exogenous if a = O. This situation occurs in that analysis of Hendry and Mizon zy 

(1990). 

The statistical analysis of (10) consists of a reduced rank regression if p > r, and y 

an ordinary regression if p = r. In particular, if p = r = 1, the analysis of (10) reduces 
y y 

to the well-known single-€quation analysis. It is seen that this analysis is efficient if the 

remaining variables are weakly exogenous for (3, and if there is only one cointegrating 

relation. 

Modeling and analyzing the partial system with p = r is therefore simpler and y 

easier to interpret, but the usefulness is limited by the fact that more assumptions need to 

be made, thus for instance one has to assume weak exogeneity and p = r, which it is easy y 

to assume but difficult to check efficiently without doing a full system analysis. 

Thus the hypothesis of weak exogeneity of Zt for a and (3 is formulated as 

H: a = O. z 

This hypothesis is a linear restriction on a and is discussed in Johansen and Juselius 

(1990), where it was shown that under the hypothesis H the maximum likelihood 

estimation of the parameters could be performed by reduced rank regression, and that the 
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A 

test of H in H consists in comparing the eigenvalues A.(X.) calculated without (with) the r 1 1 

restriction. The test statistic is 

TEr1ln {(1-X.) / (l-A.)}, 
1 1 

which is asymptotically distributed as x2(rp ). z 

(12) 

The test requires that the partial model be embedded in the full model, and in fact 

comes from an analysis of the full model. For the present example where only 4 variables 

enter the system, the analysis of the full model is relatively simple. For systems with 25 

variables the full system analysis is more difficult to perform, and it is suggested to make a 

simplified analysis by assuming that Py ~ rand analyze the partial model by reduced rank 

regression. The weak exogeneity can then be tested by an F-test in the marginal model 
A 

(11), as the hypothesis that the coefficients to the added regressor ,B'Xt _ 1 is zero, see 

Johansen (l990c). 

2.2 An illustration of the test for weak exogeneity 

In the example we have calculated the statistic (12) to test the weak exogeneity of each of 

* the variables m, p, inc, and R , in the hope that one can justify the analysis of a single 

equation. 

Table 2 here 

* It is seen that we can safely assume that inc and R are weakly exogenous for the long-run 

parameters, but it seems that the equation for p may contain information about the 

cointegrating relation and a single equation analysis is going to miss this. The test of the 

* hypothesis that p, inc, and R are all weakly exogenous for the long-run parameters, that 

is, that frp = frinc = frR * = 0, can be performed by the same procedure and it is found 

that the test statistics is 4.85 which should be compared with a X~5%(3) = 7.81. This is 

clearly not significant, and it follows that by testing all hypotheses simultaneously one can 

hide the information in the second equation. There is, however, not strong evidence 
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* against weak exogeneity of (p, inc, R ) but the individual tests indicate that there may be 

some information in the equation for p and as a consequence it may not be efficient to 

analyze a single equation to estimate the parameters in {J. 

* The purpose of reporting the single equation for Llmt given LlPt' Llinct , LlRt and 

the lags of all variables is to obtain a single equation describing the dynamics of money. 

This single equation can of course be derived from the full system, and is given by (8) for 
* ~ 

Yt = mt and Zt = (Pt,inct,Rt )· For given value of {J = {J the equation can then be further 

reduced by conventional F-tests in order to decrease the number of parameters needed in 

the equation, see Ericsson, Campos and Tran (1991) or Hendry and Mizon (1990) for 

details. 

It should be emphasized that the difficulty with the single--€quation approach lies in 

the estimation of {J. The estimator of {J is consistent, but the asymptotic distribution of 

the estimator does not permit the use of the usual X2 distribution, unless there is weak 

exogeneity. This problem is also discussed in Phillips (1991). 

Thus it is suggested to keep the full system analysis for inference on {J, and once the 

relevant hypotheses on {J have been tested, one can go to the single equation estimation in 

which one can interpret and make the usual inference on the remaining parameters, keeping 

{J fixed. 

3 Formulation and analysis of a model for £(2) variables. 

Section 3 contains results for 1(2) processes that parallel the results for 1(1) processes. We 

formulate conditions on the parameters of the VAR model for the process to be 1(2) and 

discuss the various types of cointegration that can occur. The properties of the process are 

summarized in a representation for 1(2) processes. A statistical analysis is suggested which 

consists of an analysis of model (2) with reduced rank of IT, followed by a reduced rank 

regression of an equation derived for the differenced data. The money demand data is used 
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to illustrate the determination of the cointegrating ranks and the long-run economic 

relation is estimated for the 1(2) system. 

3.1 Cointegration in the 1(2) model and the representation of 1(2) processes 

Consider again model (2) under the condition of reduced rank (4). If condition (5) 

fails and the matrix a' f (3 has reduced rank: J. J. 

a~f(3J. = <pr!" (13) 

where <p and TJ are (p-r)xs of rank s, and if a further full rank condition is satisfied, then 

the process Xt is 1(2). In the special case r = 0, so that a = (3 = 0 and a = {J = I, J. J. 

condition (13) reduces to the condition that the impact matrix for the process LlXt has 

reduced rank, allowing LlXt to be 1(1) and hence Xt to be 1(2). In any case one obtains, 

see Johansen (1990b), that the properties of the process can be summarized by the 

representation 

t j t 
Xt = C2.~ . ~ Ei + Cl . ~ Ei + C2(L)Et + 1'0 + 1'1 t + t1'2t(t+l). 

J=lI=l 1=1 

The matrices C2 and Cl determine the cointegration properties of the process, and since 

(3' C2 = 0, but (3' Cl :f= 0 it is seen that (3IXt is not stationary in general, but only 1(1). In 

order to make it stationary one needs to bring in the differences in the form TJ' {JI LlXt , and J. J. 

it can be shown that 

{JIXt + Ki;,' LlXt (14) 

is a stationary process, where rr = (3 TJ, and K = (a l a)-la/ f(32(rr'(32)-1. The vectors J. J. J. J. J. .L 

(31 = {J ({J' (3 )-lTJ determine other combinations that reduce the order from 2 to 1, but 
.L .L.L .L 

they do not cointegrate with the differences. Similarly we define a1 = a' (a a )-1 <p, and 
.L .L.L J. 

2 
a = a <p . With this notation we can express 

.L .L.L 

C = (32 1'a2 
I (15) 2 .L.L' 

for some (p-r) x (p-r) matrix l' of full rank. 
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Thus the p components of Xt are split into three sets of dimensions I, s, and p-r-s 

respectively. The px(r+s) matrix ((3,(31) represents an the possible cointegrating relations, 
.L 

in the sense that ((3,(3:)/Xt is either 1(1) or 1(0), whereas ~IXt is an 1(2) process that does 

not cointegrate. The process (3: I Xt is an 1(1) process which does not cointegrate, and 

finally (31 Xt cointegrate with the I( 1) process (3:' LlXt and hence is in general an 1(1) 

process. Finally if e is a matrix such that el K, = 0, then e' (3IXt is stationary, see (14). 

The expression (15) for C2 in terms of rr and Ot2 shows that the cumulated shocks 
.1. .1. 

t j 
.E .E E· enter the variables through the linear combinations Ot2, and that they are 
. l' 1 1 .L J= 1= 

distributed among the variables through the coefficients rJ.. This interpretation will be 
.L 

useful in the discussion of the example below. 

3.2 The statistical analysis a/the J(2) model 

The hypothesis H is defined by conditions (4) and (13) with Ot and (3 of full rank r r,s 

and 'P and 'f/ of dimensions (p-r)xs. The likelihood function is easily described for the 1(2) 

model due to the Gaussian errors. The analysis, however, does not lead to explicit 

solutions. The problem is of course how to estimate the parameters Ot and f3 at the same 

time as the matrices 'P and 'fJ since the second reduced rank condition (13) involves all 

parameters. 

Instead another procedure is suggested, which consists of first analyzing model (2), 

that is the VAR model, with reduced rank of IT, but without the restriction (13), and then 

perform another reduced rank regression on a derived equation for the differenced process. 

The following procedure turns out to yield valid inference, see Johansen (1991b). 
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A. Perform a reduced rank regression of 

t::.Xt on Xt - 1 corrected for !1Xt_ 1, ... ,!1Xt_k+ 1 and 1. 
A 

This determines r} a, and (3. 

B. Perform a reduced rank regression of 

~~ t::. 2Xt on {J~ fj.X t - 1 corrected for fj.2Xt_l} .. ·}fj.2Xt_k+2,1 and (3' /1Xt_l' 

This determines Sd), and'T}. 

To see that this analysis is relevant consider the equation given by (3) but multiplied by 

at: 
.1 

a' t::. 2Xt = a' r !1Xt 1 + ~k1-2r:t::. 2Xt . + a' l1 + a' Et· 
.1 .1 - 1 -1 .1 .1 

This is now a reduced form error correction model for the differences. 

The decomposition 

a'r = a /r{(3((3I(3)-1(31 + (3 ((31(3 )-1(3/} = a /r(3((3I(3)-1(31 + rp'T}'((3I(3 )-1(31 
.1.1 .1 .1.1 .1 .1 .1.1 .1 

(16) 

introduces the second reduced rank condition (13) explicitly into the equation and shows 

that if we know a and (3 we can estimate equation (16) by the above mentioned reduced 

rank regression. 

The equation (16) can be given the interpretation as an analysis of the common 

trends. Granger defines a' Xt as the common trends since the equation for a does not 
.1 .1 

contain any term corresponding to the disequilibrium error. Thus the second step in the 

analysis is a reduced rank analysis of the common trends. 

The reduced rank analysis of (16) reduces to the solution of an eigenvalue problem 

like (6) giving eigenvalues p., i = 1, ... ,p-r and the test statistic for the hypothesis H in 
1 r,s 

Hr is given by 

_ p-r ( ) Q - -T~ +11n 1-p. r,s S 1 
(17) 

It can be shown, see Johansen (1991b), that the estimators of (3 and rp are 

asymptotically mixed Gaussian allowing for usual X2 inference, and that Q has the same r,s 
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limit distribution as Q , but with p-r-s degrees of freedom. Thus both Q and Q have a r r r,s 

distribution determined by the deficiency of the matrix being tested for reduced rank. 

Another important consequence of the limit results is that the tests performed on 

the coefficients a and f3 in the I(1) analysis remain valid in the I(2) analysis, but of course 

the parameters and hence the hypotheses have a different interpretation. Thus the test 

that rn, p, and inc have coefficients proportional to (1,-1,-1) still holds in the presence of 

1(2) variables, but for a relation that is I(1). One can also test a = 0 by a x2 test, but the z 

restriction (13) ruins the variation independence of the parameters and hence the 

interpretation of the hypothesis as a hypothesis of weak exogeneity is not valid. Thus the 

formal properties of the test remain valid, but the interpretation has changed in the I(2) 

model. 

3.3 An illustrative example 

The nominal variables Pt and mt might well be I(2) instead of I(1) processes. 

Graphs of the data in differences, see Figure 2, show that indeed the differences could be 

described by an I(1) process, and we shall here show how one can analyze this phenomenon 

using the methods of Johansen (1991b). 

By repeated application of reduced rank regression we can estimate all parameters 

in the I(2) model and we demonstrate below how to determine the ranks rand s. 

For the UK data we find the results in Table 3 where the test statistics Q and Q r,s r 

are given as functions of the degrees of freedom p-r and p-r-s to facilitate the comparison 

with the quantiles. 

Table 3 here. 

The value of r is determined by reading the Qr column from top to bottom and 

comparing the observed value with the quantile for p-r degrees of freedom from Table A1 

in Johansen and Juselius (1990) derived under the assumption that there is a linear trend 

in the data. Once the value of r has been determined one reads the table from left to right 
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~ 

in the row with r = r, and compares with the quantiles with p-r-s degrees of freedom from 

before, but now listed in the second row from below for ease of reference. This again 

requires that we accept a constant term in model (16). 

Thus the determination of r is exactly as in the I(l) analysis, where we have chosen 

r = 1. Reading the row r = 1 from left to right we first test the hypothesis HI 0 that s = 0 , 
by the test statistic 62.32 as compared to the quantile 29.51. Thus HI 0 is rejected. Next , 
compare the test statistic Q11 = 12.20 with the quantile 15.20. This hypothesis is , 
accepted, indicating s = 1 and that the number of I(2) components is p-r-s = 2. Since 

this is a borderline case we choose to compare also Q1 2 = 4.07 with its quantile 3.96 which , 
is also a borderline case. Thus there seems to be I(2) variables in the system, but exactly 

how many is not so clear. 

The choice of the 95% quantile is quite arbitrary and the actual distribution of the 

test statistics is probably not very well approximated by the asymptotic distribution. 

From economic reasoning it seems plausible that there is no more than one common I(2) 

variable that drives the other variables, namely one that measures the nominal growth, and 

this hypothesis is supported by the above analysis of the data and by the graphs that show 

that only b.Pt and b.mt can best be described by I(l) processes and m - p by an I(l) 

process. 

We have thus continued the analysis of the data with r = 1, s = 2 and hence p-r-s 

= 1. We first give the results for the estimates of the matrix r in the I(l) model and the 

I(2) model in Table 4. 

Table 4 here 

The estimate of r in the two models are very similar. This is due to the fact that the 

reduced rank hypothesis (13) restricts a (p-r)x(p-r) = 3x3 matrix to have rank s = 2. 

This really loses only 1 degree of freedom, thus the difference between the I(l) model and 

the I(2) model corresponds to only one parameter restriction. Hence the estimates are 

rather similar. 
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If we proceed with the assumption of r = 1, s = 2 and p-r-s = 1, then there is 1 

common I(2) trend that drives all the variables. The vectors (3' Xt is in this case just one 

linear combination, and it is I(l) and not stationary. It can be made stationary by 

including the differences, see (14), with coefficients proportional to the vector If = (3 'fJ • 
.L .L .L 

Normalized on mt the stationary relation becomes 

* mt - 1.04 Pt -.95 inct + 7.46 Rt 

* + 2.33 Llmt + 2.71 LlPt - .30 Llinct + .03 LlRt . (18) 

It must be emphasized that since (,8,,8~), LlXt is stationary there are many different 

relations between ,8' Xt and LlXt that are stationary. We shall derive another below see 

(19) and (20). 

Table 5 here 

The interpretation of the vectors in Table 5 is not so easy. First of all the vector (3 is taken 

from Table 1 with the corresponding adjustment coefficient a. The vector no longer 

represents a stationary relation. In order to make it stationary it has to be corrected for 

the differences using i7..' LlXt , see (14). The adjustment coefficients a have the 

interpretation as the strength ofthe adjustment to the disequilibrium error defined by (14). 

The vectors ,81 represent I(l) variables which do not cointegrate, and the last column, rr, 
.L .L 

represents an I(2) variable which can be used to make ,8' Xt stationary as described. 

The parameters a2 = a tp are of special interest since the common I(2) trend is 
.L .L.L 

given by a:' Xt , which in this case is practically equal to the price variable. Thus the price 

is picked out as the variables that does not react to the disequilibrium error and in this 

sense it is the common driving I(2) force. The coefficients of rr from Table 5 show that 
.L 

the I(2) variables are mainly to be found in the variables m and p, see the expression (15) 

for the coefficients C2 to the twice cumulated shocks. Since the first two coefficients of i7.. 
are approximately equal, the common I(2) trend can be eliminated by taking the difference 

m-po 

In view of this analysis it seems that by introducing the variable mt - Pt one can 
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eliminate the 1(2) component and then work with the inflation rate inflt = .6.Pt instead of 

* Pt. With the variables (mt-pt, inflt, inct , Rt ) we can repeat the 1(1) analysis, and find 

first the results summarized in Table 6. 

Table 6 here 

It is seen from Table 6 that again there is just one cointegrating vector in the data. The 

coefficients are about the same as for the first eigenvector of Table 5, but this time with 

the coefficient of 7.22 to inflt . Thus it is seen that the inflation rate and the interest rate 

suffice to reduce the variable (m-p-y)t to stationarity. For this interpretation to hold we 

need to check that the reduction did in fact remove the 1(2) components. Hence the 1(2) 

analysis is performed for the new system and the results are reported in Table 7. 

Table 7 here 

From Table 7 it follows that for r = 1, the values s = 0, 1, and 2 are rejected, 

corresponding to the choice of s = p-r = 3, in which case the matrix in (13) has full rank, 

such that there are no 1(2) variables. 

Thus it seems that the 1(2) analysis can be avoided by introducing real variables 

rather than nominal values. It is interesting to compare the cointegrating relation derived 

from this second system, as given by the first column in Table 6, with the relation (18) 

derived as stationary from the 1(2) analysis. In equation (14) we have have used a vector 

proportional to rP in order to achieve stationarity. In reality we can use any vector not 
~ , 

orthogonal to ;, that is, any vector' not in the space spanned by {3 and {31. The reason for 
~ ~ 

this is of course that the vectors {3' .6.Xt and {3~' .6.Xt are already stationary and can be 

added to (18) without changing the stationarity of the relation. Any vector v can be 

decomposed into the directions {3, {31, and;, and only the projection in the direction; is 
~ ~ ~ 

needed. This projection is given by ;(;,;)-l;,v, which shows that we can replace the 
~ ~ ~ ~ 

vector; = (2.33,2.71,-.30,.03) by the vector (;, ;)(;'v)-lv. As an example we can 
~ ~ ~ ~ 

express the relation (18) as a relation between levels and .6.p by considering v = (0,1,0,0). 

This gives 
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* mt -1.04 Pt -.95 inct + 7.46 Rt + 4.75 LlPt· (19) 

* This result from the 1(2) analysis of m, p, inc, and R is plotted in Figure 1 and can then 

be compared with the result from the above 1(1) analysis ofthe reduced system which gives 

(20) 

These equations are derived from different models, and the differences in the coefficients 

reflect the statistical variability of the estimates. 

It should be pointed out that a sudden jump in an otherwise stationary variable can 

be mistakenly considered as an indication of a general persistence of the shocks to the 

variable that is as an indication that the variables are 1(1). Thus one should be careful 

about drawing too strong conclusions from these various ways of looking at the data. 

What is demonstrated here is that the tools now exist for a statistical analysis, and they 

have to be combined by careful inspection of residuals, constancy over time of the 

estimated parameters etc. 

4 Conclusion 

We have illustrated two statistical methods by an analysis of UK money demand. 

* The test of weak exogeneity of the variables Pt' inct , and Rt requires that the full data 

vector can be described by an autoregressive model. If this is the case a simple test can be 

performed. The test is needed as a requirement for the simpler analysis of a 

single-equation regression to be efficient. Weak exogeneity is devised in order to avoid the 

investigation of a full system, yet the test requires the modeling of a full system. If one can 

apply a V AR model for this, the easiest is of course to analyze the full system. 

After this has been done one can derive the conditional model that one would like to 

interpret, in the present case the conditional model for the changes of mt conditional on Pt' 

* inct and Rt together with the lags of all variables. This last reduction does not require 

weak exogeneity. Weak exogeneity is only relevant if one wants to apply the conditional 

model for the estimation of the long-run parameters. 
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The presence of 1(2) components makes the analysis more difficult, not so much 

because the method gets very much more involved, but because the interpretation becomes 

more difficult; what was stationary before is now just 1(1), and the differences of the 

process have to be invoked to produce a stationary relation. The 1(2) analysis, however, 

allows one to identify the common 1(2) trends which drive the economy, and which lend 

themselves to an economic interpretation. The challenge with the 1(2) analysis is that it 

seems to allow for more economic questions to be asked and interpreted. 

It is important to note that if one wants to describe this data by an 1(2) model there 

are different choices of the dimensions rand s that are consistent with the data. The 

values chosen are chosen partly on the basis of the statistical analysis and partly on the 

basis of what is economically reasonable. We have fitted five lags to a 4 dimensional series 

which gives 94 parameters and 400 observations. The 1(2) model rests on only one 

restriction of these parameters, and it is important to check to what extend the conclusions 

depend on the choice of model. 

The present analysis is meant as a first illustration of a new technique, where the 

details have yet to be worked out, and it will take some time until we understand where 

these methods can be applied with success. 
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Table 1 

The cointegration analysis of the UK money demand data 
* The variables are ml PI inc and R . 

Eigenvalues .375 .166 .115 .002 

Hypotheses r=O r ~ 1 r ~ 2 r ~ 3 

Trace statistics 77.54 30.50 12.35 .150 

95 % Quantiles 47.18 29.51 15.20 3.96 

Eigenvectors (3 

m 1.00 1.22 -.61 1.17 

P -1.04 1.00 .35 -1.05 

mc -.95 -9.82 1.00 -.70 

R* 7.46 -8.11 -3.06 1.00 

Adjustment coefficients a 

!1m -.150 -.007 -.006 -.001 

!1p .030 -.008 .006 .001 

!1inc .008 .001 .053 -.001 

!1R* .031 .001 .031 .003 

Table 2 

The likelihood ratio statistics for testing weak exogeneity 

of each of the variables with respect (3. 

The asymptotic distribution is X2 {1} 
for which the 95% quantile is 3.84. 

m p mc R* 
24.82 4.21 .11 1.89 

25 
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Table 3 

The results of the 1(2) analysis of the UK money demand data 

r Qr8 Qr tr(95%) p-r , 

0 108.46 57.97 14.68 4.39 77.54 47.18 4 
8=0 8=1 8=2 8=3 

1 62.32 12.20 4.07 30.50 29.51 3 
8=0 8=1 8=2 

2 24.89 5.76 12.35 15.20 2 
8=0 8=1 

3 .29 .15 3.96 1 
8=0 

tr(95%) 47.18 29.51 15.20 3.96 

p-r-8 4 3 2 1 0 
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Table 4 

r estimated from the 1(1) model 

m -2.078 .974 -.112 -.397 

P .319 -.224 .297 .100 

me .486 -.619 -1.861 .327 

R* .384 -.129 .603 -1.069 

r estimated from the 1(2) model 

m -2.037 1.032 -.105 -.379 

p .373 -.148 .306 .123 

ine .500 -.600 -1.859 .333 

R* .395 -.114 .605 -1.065 
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Table 5 

The estimates of the co integrating vectors (3! and 

the supplementary vectors (31 = (3 ((3' (3 )-117 and (32 = (3 17 . 
.L .L.L.L .L.L .L 

(3 i .L ~ 

m 1.00 .88 8.24 -.97 

p -1.04 -1.46 -7.41 -1.13 

me -.95 -6.52 -3.17 .12 

R* 7.46 -1.15 -2.54 -.01. 

The estimates of the adjustment coefficients Cl and the 
1 ( )-1 2 supplementary vectors Cl = Cl Cl' Cl cp and Cl = Cl cp 
.L .L.L.L .L.L .L 

1 2 
Cl Cl 

.L .L 

~m -.150 -.010 .005 .046 

~p .030 -.042 .000 .253 

~inc .008 .270 .008 .034 

~R* .031 -.076 .022 -.026 



Table 6 

The /(1) cointegration analysis of the UK money demand data. 

The variables are m-Pi ~p} inc} and R*. 

The eigenvalues .386 .128 .050 .009 

Hypotheses r=O r ~ 1 r~2 r ~ 3 

Trace statistics 68.58 19.83 6.09 .95 

95% Quantiles 47.18 29.51 15.20 3.96 

Eigenvectors /3 
m-p 1.00 -.08 -1.26 1.33 

infl 7.22 1.00 16.07 6.56 

mc -1.08 -.04 1.00 -.13 
* R 7.16 -.79 -7.00 1.00 

Adjustment coefficients ll' 

~(m-p) -.183 -.034 .002 -.003 

~infl .023 -.046 -.005 .003 

~inc .000 .227 -.007 -.001 

~R* .034 .139 .002 .007 

The test for weak exogeneity with respect to ll' and /3. 
The 95% quantile of the asymptotic X2(l} distribution is 3.84. 

m 
34.54 

infl 

3.42 

mc 

.00 

29 



30 

Table 7 

The [(2) analysis a/the UK money demand data. 

The variables are m-PI infll inc} and R~ 

r Qr8 Qr tr(95%) p-r , 

0 133 . 53 80.62 39.71 8.30 68.58 47.18 4 
8=0 8=1 8=2 8=3 

1 85.16 37.77 6.38 19.83 29.51 3 
8=0 8=1 8=2 

2 33.40 1. 24 6.09 15.20 2 
8=0 8=1 

3 10.03 .95 3.96 1 
8=0 

tr(95%) 47.18 29.51 15.20 3.96 

p-r-8 4 3 2 1 0 



1.5 
COINT ./ 

I 

1.0 LOGM / 
I 

LOGP 
I ./ ,-.-

... ---:' 
.5 ./ ,; 

/ I 
I " / / .... 

. 0 

-.5 

-1.0 

64 69 74 79 84 

Graphs of the series mt and Pt together with the disequilibrium error given by 

cointt = mt - 1.04inct - .95inct + 1.46Rt + 4· 15t1pt 

.075 
DIFLOGP \ 

--.! " 
I ' 

I I, ~ \ 1\ 
DIFLOGM 

~, 
I ~I ,,1," 
I I 

1 ,1,'1 
.050 

" 

, 
r 11 I ; I I 

" " 
" 

I 

:~ :; I':S 
," , 
I,' " 

" 
{I ::,~ , I 

r ~ { , " 
" 

(I " ; " ' ,11, 
I, " , III , 

" I, / " \ 
I I I 

r 'I ',11 11 III 1 I ) I " , , " 
" 

I ~ ~ • I ,_ r I I tl 11 ~ I , 

• ~" r ~ .025 ; ~ 11' ~t tl/ 
IU I \ I ,~ ~~, : :: I 

I 

, I ~ I r ", , , " " , ':&v~~' r 'I I ~ I \ ' I I I , 
1' ~ 1 11\ _ ~ _ 1 

~ 11 I I 
I ri' " ~ 'I I I " , 
~,~~~ '\".' I ",' 

, H' 1, 

" r ,,' I 1 I 1 ~I U ~ 

.000 ~ ',11 

\ 
11 ,)\1 
11 1,' 

" 
~ . 

11 \ 
~ 

-.025 
64 69 74 79 84 

Graphs of the series t1mt and ~Pt 



PREPRINTS 1990 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF 

MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, DK-2l00 COPENHAGEN 0, DENMARK, 

TELEPHONE + 45 31 35 31 33. 

No. 1 

No. 2 

No. 3 

No. 4 

Johansen, S~ren and Juselius, Katarina: Some Structural Hypotheses 
in a Multivariate Cointegration Analysis of the Purchasing Power 
Parity and the Uncovered Interest Parity for UK. 

Tjur, Tue: Analysis of Variance and Design of Experiments. 

Johansen, S~ren: A Representation of Vector Autoregressive Processes 
Integrated of Order 2. 

Johansen, S~ren: Co integration In Partial Systems and the Efficiency 
of Single Equation Analysis. 



PREPRINTS 1991 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF 

MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, DK-2l00 COPENHAGEN $, DENMARK, 

TELEPHONE + 45 31 35 31 33. 

No. 1 

No. 2 

No. 3 

No. 4 

Johansen, S~ren: Determination of Co integration Rank In the Presence 
of a Linear Trend. 

Johansen, S~ren: A Statistical Analysis of Co integration for 1(2) 
Variables. 

Jacobsen, Martin: Homogeneous Gaussian Diffusions in Finite Dimensions. 

Johansen, S~ren: Testing Weak Exogeneity and the Order of Cointegration 
in UK Money Demand Data. 



1.5 

COINT 

1.0 LOGM 
LOGP I ./ 

L.,.. .... 

,,,,,/ 
. 5 

./ ... 
./ I 

I " I / ... 
. 0 

-.5 

-1.0 

64 69 74 79 84 

Graphs of the series mt and Pt together with the disequilibrium error given by 

cointt = mt - 1.04inct - .95inct + 7.4 6Rt + 4· 75D. pt 

.075~------------------------------------~ 

.050 

.025 

64 69 74 79 84 

Graphs of the series D.mt and D.Pt 


