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0 Introduction

Many macro variables show trending behavior over time. This phenomenon is in
econometrics modeled by non—stationary time series, and this paper discusses
autoregressive Gaussian models for p—dimensional systems of economic variables. Such a
time series X, is called I(1) if the difference AX, = X, — X, , is stationary, while X, is
non—stationary. For a p—dimensional system of I(1) processes, it can occur that a linear
combination V’Xt is stationary. If this is the case the variables are called cointegrated,
and the stationary relation is called a cointegrating relation and v the cointegrating vector.
An alternative formulation is that the common non—stationary forces, the so—called
common trends, can be eliminated by considering the linear combination I/’Xt.

Some time series like the log of prices (p) have the property that even the inflation
rate Ap is non—stationary, whereas the second difference Azp is stationary. Such a
variable is called I(2), and we shall show by a statistical analysis how one can analyze
processes that may be I(2).

For I(2) variables various types of cointegration can occur. First of all linear
combinations of I(2) variables may be I(1) or even I(0), but it is also possible that there are
linear I(1) combinations that cointegrate with the difference of the process, which is an I(1)
process.

The concept of cointegration was introduced by Granger (1981) and is used in
econometrics to discuss long—run economic relations. This definition allows the question of
existence of long—run economic relations to be discussed from a statistical point of view
which is what we shall do in the present paper.

A very important consequence of the basic definition of cointegration as a statistical
concept is that the cointegrating properties of a multivariate time series can be analyzed

from the reduced form of the model, even if they gain their importance only when



interpreted in a suitable structural model.

It was shown in Johansen (1988), Johansen and Juselius (1990), and Ahn and
Reinsel (1990) how one can make inference on the number of cointegrating relations and
how one can test hypotheses about the coefficients of the cointegrating relations, such that
economic questions and hypotheses can be tested against the data.

There are in particular two questions that we shall be concerned with in this paper,
namely the order of integration of the variables and the concept of weak exogeneity.

The statistical analysis of a system of variables is somewhat involved and is
sometimes replaced by the analysis of a partial system, thereby reducing the dimensionality
of the system whose properties need to be modeled explicitly. The concept of weak
exogeneity, see Engle, Hendry and Richard (1983), was introduced to justify considerihg
some variables given (exogenous) in the analysis of other (endogenous) variables. It is
important to emphasize that weak exogeneity is also a statistical concept, and as such can
be tested against the data.

With this background the purpose of the present paper is to show by example how

one can test for weak exogeneity, and investigate the order of non—stationarity of the

processes.
1 Error correction models, cointegration and the I(1) analysis

This section contains a reformulation of the VAR model as a reduced form error correction
model, and a discussion of the hypothesis of cointegration and its consequences for the
process formulated as a representation theorem for I(1) variables. The statistical analysis
based upon the likelihood function is described and the results are illustrated using the
money demand data for UK. We show how the cointegrating rank can be determined and

how some hypotheses on the coefficients of the long—run relations can be tested.



1.1 The reduced form error correction model and the representation of I(1) processes

The p—dimensional vector autoregressive process Xt is defined by the equations

_ vk _
X, =S{ILX, . +p+e, t=1,.,T, (1)

where X_ +1,...,X0 are fixed and {et, t = 1,2,...} is a sequence of independent Gaussian
variables with mean zero and covariance matrix ). The parameters are the pxp matrices
Hl"“’Hk’ the covariance matrix (2 together with the p—dimensional vector x. The model

can be written as a reduced form error correction model

_ k—1 _
AX, =TX, |+ TAX i +p+e, t=1..T, (2)

k k

where I = Elﬂi -L T =- Ei +1H = 1,...,k—1, or in anticipation of the later analysis

1
J)
of the I(2) model we can write it as

2 _ k—2.% , 2 B
A*X, =TIX, 5+ I‘AXt_1*+ BT AKX, 4 pt e, t=1,.T, (3)
k-1 k=2 .

The advantage of this reformulation is that the hypothesis of cointegration can be
formulated entirely as a restriction on the matrix II, leaving the other parameters
unrestricted.

For r = 0,1, ... ,p, the hypothesis of at most r cointegrating vectors is defined as the
reduced rank condition

H: II= af’ (4)
where o« and [ are pxr matrices. Thus HO specifies that II = 0, and Hp that II is
unrestricted. If rank(a) = rank(f) = 1, and if

rank{a/T'8 } = p-1, (5)
then the process X, generated by model (1), or equivalently (2), is non—stationary but the
differences are stationary, that is, Xt is an I(1) process. We have used the notation a for
a px(p—r) matrix of full rank such that a’a =0, and hence rank( o, al) =p. Incaser =
0, that is, when r, a and £ are all zero, we define a = ﬁ; = 1. In this case (2) becomes a

model for AX,, and the full rank condition (5) reduces to the requirement that AX, be an



invertible stationary process which excludes cointegration between levels.

Below we multiply the equations by the full rank matrix (a, al) and transform the
variables using the full rank matrix (ﬂ,ﬁl). It is a property of the system (1) with
conditions (4) and (5) that the linear combinations §’X,, the cointegrating relations, are
stationary. The fundamental paper by Engle and Granger (1987) has the basic definitions
and results about this type of non—stationary processes, which can be summarized in
Granger’s representation theorem which describes the solution of the equation (1) under
condition (4) and (5)

X, = Ciélei + C;(L)e, + 7y + 748,
where C = — ﬂ¢( aiI‘ﬁl)_lai so that §’C = Ca = 0. The trend is determined by Ty = Cu,

so that the trend vanishes if a/p=0.

1.2 The statistical analysis of the I(1) model

The statistical analysis of model (2) under the restriction of reduced rank of the
matrix II can be performed by reduced rank regression as introduced by Anderson (1951),
see also Johansen (1988) for the application to non—stationary processes and Ahn and
Reinsel (1988) for the application to stationary processes. The variables AXt and X, are
regressed on the lagged values AXt—l""’AXt—k 41 and 1 to form residuals ROt and th,
and residual product moment matrices

—-1T

8;;=T L R;R,, i,j=0,l.

The cointegrating relations are then estimated as the eigenvectors corresponding to the r
largest eigenvalues of the equation
-1
12811 = 8105005011 =0 (6)
The likelihood ratio test statistic of the hypothesis H_in Hp is given by the so—called trace

statistic:



b In(1-},). (7)

Under the assumption that the number of cointegrating relations is r, and that the

Q, = —T=P

coefficient a/p# 0, such that there is a linear trend in the data, the limit distribution,
which only depends on the degrees of freedom p-r, is non—standard and tabulated by
simulation in Johansen and Juselius (1990) Table Al. The hypothesis H: that the trend is
absent ( ol p= 0) can be analyzed by another reduced rank regression, and the test statistic

* * *
Q, of H_in Hp has under H_ a limit distribution given by Table A3 in Johansen and

Juselius (1990).
1.8 An illustration of the I(1) analysis by the UK money demand data

To illustrate the results of the I(1) analysis we analyze the data given in Hendry
and Ericsson (1991) on the UK money demand, and discussed in Ericsson, Campos and
Tran (1991) and Hendry and Mizon (1990). The data consists of four variables: The
measure of money M, is nominal money M1. The income measure is denoted by INC, and
is given by constant price Total Final Expenditure at 1985 prices. The price measure P, is
the implicit deflator of TFE, and as a measure of the opportunity cost of holding money we
uwse R. Here R is defined as the three month local authority interest rate (R3) less the
learning adjusted retail sight—deposit interest rate (Rra). The data are quarterly
seasonally adjusted from 1963(1) to 1989(2) and the first six observations are used as initial
values in order to fit an autoregressive model with 5 lags. This leaves a total of 100
effective observations. The data is carefully discussed in the above references and the
present analysis is a supplement to the previous analysis with respect to the question of
weak exogeneity and the question of the order of integration of the variables.

The data are transformed logarithmically into m,, inct and Py whereas the interest

*
rate R ¢ is kept untransformed. Figure 1 shows the non—stationarity of the variables m and



p, and Figure 2 shows the differences of m and p.
Figure 1 and 2 about here
The results of the initial cointegration analysis from model (2) with 5 lags reproduce the
results in Ericsson, Campos and Tran (1991).
| Table 1 here

The determination of the cointegrating rank is made difficult by the many hypotheses that
can be formulated, and by the non—standard limit distributions. As mentioned in section
1.2, the limit distribution of Q,, see (7), depends on the presence or absence of the trend.
The distribution of Qr’ if in fact the trend is absent, is given by Table A2 in Johansen and
Juselius (1990) and has broader tails than that given by Table Al. Thus if one wants to
make sure that the size of the test based upon QI has the correct value for all parameter
points in Hr’ one should apply the quantiles in Table A2. This procedure increases the
quantiles considerably for small degrees of freedom, and instead another procedure is
suggested, see Johansen (1991a), based upon an idea of Pantula (1989). The idea is to use
not one test statistic to reject Hr but two, namely Qr compared to its quantile C, given by
Table A1 and Q: compared to its quantile c: given by Table A3. Hence Hr is rejected if

Hy, ..., H _; arerejected and if further

0
* *
Qr>craner>cI.

This procedure guarantees that the asymptotic size of the test is correct for all parameter

*

valuesin H \ H_.
In the example we have concluded on the basis of Figure 1 that a trend is needed to

*

describe the data. Thus we have accepted that Qr is larger than its quantile, and the rest
of the analysis only requires the quantiles as given by Table Al. The cointegrating rank
can be formally estimated as the smallest r which is not rejected at a given level of
significance. In the present example, see Table 1, we can clearly reject r = 0, since the test

statistic is 77.54 and the quantile is only 47.18. The hypothesis H1 of r < 1is a borderline

case since the statistic 30.50 corresponds roughly to the 95% quantile in the asymptotic



distribution. The hypothesis H2 can be accepted. If we decide to accept IwI1 we can work
with r = 1 in the following, which we shall do, but the evidence for a choice betweenr = 1
and r = 2 is not very strong. Having decided that r = 1 the estimate of #is given as the
first column of the eigenvectors in Table 1, and the estimate of « is the first column of the
adjustment coefficients in Table 1. Note that if we had chosen r = 2, the estimates of a
and J are given as the first two columns, thus it is quite easy, once the eigenvalue problem
has been solved, to do the analysis for various values of r.

The solution of the eigenvalue problem (6) constructs the eigenvectors as new
regressors in model (2). They are normalized such that the eigenvalues A; measure the size
of the adjustment coefficients: )‘i = o Saéai. Thus the test that r = 1 is really a test that
)\2 = /\3 = A 4= 0, whereas /\1 > 0, or equivalently that the a’s in the last three columns
are insignificantly small.

It is quite clear that the first cointegrating relation, the first column of the
eigenvectors, shows homogeneity of the price and income variables and this can be
formulated as a test on the coefficients § of the form K’f = 0 where K contains the two
vectors (1,1,0,0) and (1,0,1,0). This type of hypothesis was analyzed in Johansen and
Juselius (1990) and there it was shown, that under such a restriction the statistical analysis
was still given by a reduced rank regression, and that the test statistic was a comparison of
the eigenvalues from (6) by means of the statistic

TEIn{(1-%,)/(1-A,)} = 1.02,
which in this case is asymptotically X2 with 2 degrees of freedom. Here :\i(xi) is calculated
without (with) the restrictions on f. Since X§5% (2) = 5.99 the test statistic is seen not to

be significant and the analysis of the full system can be summarized from the point of view

of the long—run relation by

|
t

which represents the optimal estimate of the long—run economic relation between the

T . *
m, = p, +inc, — 7'01Rt’

variables provided model (2) with condition (4) and r = 1 is maintained. The coefficients in



the relation are found as the first column of the eigenvectors estimated under the

restriction K’ = 0.
2 Partial systems and weak exogeneity

This section contains a discussion of the concepts of weak exogeneity and partial or
conditional models. The hypothesis of weak exogeneity for the long—run parameters is

formulated as a parametric restriction on the adjustment coefficients and the procedure is

illustrated by the UK money demand data.

2.1 Weak exogeneity and the efficiency of partial models

An advantage of the vector autoregressive formulation is that one can formulate a partial
system as a conditional model and discuss its properties. That is, despite ones interest in
modeling only the equations of some of the variables given the others, the stochastic
properties of the conditioning variables are well defined in the VAR model.

Consider therefore the autoregressive model (2) under the hypothesis of
cointegration H_, see (4). Let the process Xt be decomposed into the variables Yt and Zt
of dimension py and D, respectively, where p = py + D, and let a, I‘l, ey Fk—l’ by € and
Q2 be decomposed correspondingly. Model (2) can be decomposed into the conditional

model for Y, given Z:

_ , k-1,
AY, = wAZt+(ay—wozz)ﬂ X, +Z; (I‘yi wPZi)AXt_i+yy—wﬂz+eyt—wezt, (8)
and the marginal model of Zy:
— 0 B k—1
AZt - azﬂ Xt—l + Z]1 PziAXt—i Tyt Egp (9)

where w = Q—l.
Yz %

Note that all the cointegrating relations ﬁ'Xt_l enter into the marginal as well as

the conditional model, and that the conditional model has new adjustment coefficients
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o —wa, depending on the covariance matrix of the errors and all the adjustment
coefficients. In general the parameters of the marginal and the conditional system are

interrelated which means that full system analysis is needed to draw efficient inference

about the parameters.

There is, however, a very special case in which the partial model (8) contains as
much information as the full system about the cointegrating relations and the adjustment

coefficients, and where analysis of the partial model is efficient. This is when Zt is weakly

exogenous for a and f, see Engle, Hendry and Richard (1983).

The variable Zt is said to be weakly exogenous for the parameters of interest, if

Condition 1 The parameters of interest are functions of the parameters in the

conditional model.

Condition 2 The parameters in the conditional model and the parameters in the

marginal model are variation free, that is, they do not have any joint restrictions.

It can be shown that if we define the parameters of interest in model (2) to be all
the parameters of (, then weak exogeneity of Zt with respect to 4 equivalent to the

condition that o, = 0, that is, the rows of a corresponding to the z—equations are zero, and

the models (8) and (9) reduce to

_ , k=1, _ _ _
AY, = wAZy + o X, g + Ty (Tl )AX, jp—up, + € — weyy, (10)
and
AZ =S5ID AX 44 e (11)
t— “1 zZi— Tt Hy zt’

In this case # and the remaining adjustment coefficients oy enter only in the partial model
(10), and the properties of the Gaussian distribution show that the parameters in the
models (10) and (11) are variation free, see Johansen and Juselius (1990) for a discussion of

the results, and Johansen (1990c) and Boswijk (1990) for a fuller discussion of partial
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systems. Note that equation (11) contains as well AZ, . as AY, .. If also the coefficients
of AY, . are zero, or in other words Y, does not Granger cause Z,, then Z, is said to be
strongly exogenous for f. Thus weak exogeneity means that AZt does not react to
disequilibrium errors, but may still react to lagged changes of Y, and strong exogeneity
implies that AZt does not react to the lagged Y, whether Y is in changes or levels.

It should be pointed out that the notion of weak exogeneity depends on an explicit
choice of parameters of interest. If for instance Py = 1, and if we define the parameters of
interest to be the cointegrating vector in the conditional model ﬂ}’r = (ay—waz)ﬂ’, then
condition 1 above is certainly satisfied. If we then decompose £ into ﬂy and ﬂz and write
azﬂ’ = azyﬁ}’, + azzﬁé, then the parameters of the conditional and marginal models
become variation free if only Oy = 0. Thus for this choice of parameters of interest, Zt is
weakly exogenous if Oy = 0. This situation occurs in that analysis of Hendry and Mizon
(1990).

The statistical analysis of (10) consists of a reduced rank regression if Py >, and
an ordinary regression if py=r. In particular, if py=1= 1, the analysis of (10) reduces
to the well-known single—equation analysis. It is seen that this analysis is efficient if the
remaining variables are weakly exogenous for 4, and if there is only one cointegrating
relation.

Modeling and analyzing the partial system with Py =T is therefore simpler and
easier to interpret, but the usefulness is limited by the fact that more assumptions need to
be made, thus for instance one has to assume weak exogeneity and py = 1, which it is easy
to assume but difficult to check efficiently without doing a full system analysis.

Thus the hypothesis of weak exogeneity of Zt for a and g is formulated as

H: a, = 0.
This hypothesis is a linear restriction on « and is discussed in Johansen and Juselius
(1990), where it was shown that under the hypothesis H the maximum likelihood

estimation of the parameters could be performed by reduced rank regression, and that the
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test of H in H_ consists in comparing the eigenvalues :\i(xi) calculated without (with) the
restriction. The test statistic is

TS0 {(1-1)/(1-1,)}, (12)
which is asymptotically distributed as x2(rpz).

The test requires that the partial model be embedded in the full model, and in fact
comes from an analysis of the full model. For the present example where only 4 variables
enter the system, the analysis of the full model is relatively simple. For systems with 25
variables the full system analysis is more difficult to perform, and it is suggested to make a
simplified analysis by assuming that py > 1 and analyze the partial model by reduced rank
regression. The weak exogeneity can then be tested by an F—test in the marginal model

11), as the hypothesis that the coefficients to the added regressor (§’X is zero, see
y & t—1

Johansen (1990c).
2.2  Anillustration of the test for weak exogeneity

In the example we have calculated the statistic (12) to test the weak exogeneity of each of
the variables m, p, inc, and R*, in the hope that one can justify the analysis of a single
equation.
Table 2 here

It is seen that we can safely assume that inc and R* are weakly exogenous for the long—run
parameters, but it seems that the equation for p may contain information about the
cointegrating relation and a single equation analysis is going to miss this. The test of the
hypothesis that p, inc, and R* are all weakly exogenous for the long—run parameters, that
is, that a_ = o = aR* = 0, can be performed by the same procedure and it is found
that the test statistics is 4.85 which should be compared with a x§5% (3) = 7.81. This is

clearly not significant, and it follows that by testing all hypotheses simultaneously one can

hide the information in the second equation. There is, however, not strong evidence
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against weak exogeneity of (p, inc, R*) but the individual tests indicate that there may be
some information in the equation for p and as a consequence it may not be efficient to
analyze a single equation to estimate the parameters in £.

The purpose of reporting the single equation for Amt given Apt, Ainct, AR;'< and
the lags of all variables is to obtain a single equation describing the dynamics of money.
This single equation can of course be derived from the full system, and is given by (8) for
Yt= m, and Zt = (pt,inct,Rj:). For given value of § = b the equation can then be further
reduced by conventional F—tests in order to decrease the number of parameters needed in
the equation, see Ericsson, Campos and Tran (1991) or Hendry and Mizon (1990) for
details.

It should be emphasized that the difficulty with the single—equation approach lies in
the estimation of . The estimator of 4 is consistent, but the asymptotic distribution of
the estimator does not permit the use of the usual X2 distribution, unless there is weak
exogeneity. This problem is also discussed in Phillips (1991).

Thus it is suggested to keep the full system analysis for inference on f, and once the
relevant hypotheses on £ have been tested, one can go to the single equation estimation in

which one can interpret and make the usual inference on the remaining parameters, keeping

g fixed.
3 Formulation and analysis of a model for I(2) variables.

Section 3 contains results for I(2) processes that parallel the results for I(1) processes. We
formulate conditions on the parameters of the VAR model for the process to be I(2) and
discuss the various types of cointegration that can occur. The properties of the process are
summarized in a representation for I(2) processes. A statistical analysis is suggested which
consists of an analysis of model (2) with reduced rank of II, followed by a reduced rank

regression of an equation derived for the differenced data. The money demand data is used



14

to illustrate the determination of the cointegrating ranks and the long—run economic

relation is estimated for the I(2) system.
8.1  Cointegration in the I(2) model and the representation of I(2) processes

Consider again model (2) under the condition of reduced rank (4). If condition (5)

fails and the matrix ozil‘,[il has reduced rank:

aTf = on’, (13)
where ¢ and 7 are (p—t)xs of rank s, and if a further full rank condition is satisfied, then
the process Xt is I(2). In the special case r = 0, so that @« = § = 0 and a = ﬂl =1,
condition (13) reduces to the condition that the impact matrix for the process AX, has
reduced rank, allowing AX, to be I(1) and hence X, to be I(2). In any case one obtains,

see Johansen (1990b), that the properties of the process can be summarized by the

representation

t t
X, =C, JEIE ¢ +C; Ele + Cy(L)e, + 7 + 7yt + $7ot(t+1).

The matrices C2 and C1 determine the cointegration properties of the process, and since
B’ C, =0, but ﬂ’Cl # 0 it is seen that ﬂ’Xt is not stationary in general, but only I(1). In
order to make it stationary one needs to bring in the differences in the form niﬁiAXt, and
it can be shown that
X, + Ko AX, (14)
is a stationary process, where ﬂf = p,n,and k = (o’ a)—la’I‘ﬂf(ﬁf’ ﬂf)_l. The vectors
1_ o} (ﬂiﬂl)_ln determine other combinations that reduce the order from 2 to 1, but
they do not cointegrate with the differences. Similarly we define ai = a/(a, al)_lgo, and
af =ap. With this notation we can express
ﬂ Ta ’, (15)

for some (p—t)x (p—r) matrix 7 of full rank.
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Thus the p components of Xt are split into three sets of dimensions r, s, and p—1—s
respectively. The px(r+s) matrix (ﬂ,ﬂi) represents all the possible cointegrating relations,
in the sense that (ﬂ,ﬂ})’Xt is either I(1) or I(0), whereas ﬁf’Xt is an I(2) process that does
not cointegrate. The process ﬁi’Xt is an I(1) process which does not cointegrate, and
finally X, cointegrate with the I(1) process ﬁf’AXt and hence is in general an I(1)
process. Finally if ¢ is a matrix such that £k = 0, then ¢’ ﬂ'Xt is stationary, see (14).

The expression (15) for C, in terms of ﬁf and af shows that the cumulated shocks

t ]
Y ¥ e enter the variables through the linear combinations af, and that they are

j=li=1
distributed among the variables through the coefficients ﬂf . This interpretation will be

useful in the discussion of the example below.

8.2  The statistical analysis of the I(2) model

The hypothesis Hr, ¢ is defined by conditions (4) and (13) with « and g of full rank r
and ¢ and 7 of dimensions (p—r)xs. The likelihood function is easily described for the I(2)
model due to the Gaussian errors. The analysis, however, does not lead to explicit
solutions. The problem is of course how to estimate the parameters o and # at the same
time as the matrices ¢ and 7 since the second reduced rank condition (13) involves all
parameters.

Instead another procedure is suggested, which consists of first analyzing model (2),
that is the VAR model, with reduced rank of II, but without the restriction (13), and then
perform another reduced rank regression on a derived equation for the differenced process.

The following procedure turns out to yield valid inference, see Johansen (1991b).
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A. Perform a reduced rank regression of
AX,on X, , corrected for AXt—I""’AXt—k+1 and 1.
This determines r, o, and (.
B. Perform a reduced rank regression of
" LA2 p 2 2 Py
a;A"X, on f:AX, , corrected for AX,_ .., AKX, 4 o1 and fPAX, .

A A

This determines s,p, and 7.

To see that this analysis is relevant consider the equation given by (3) but multiplied by

o’
L

_9 %
k2I‘

Y A2 , /
a/AX, = oTAX, | +3;] TAX, .+ oap+al. (16)

This is now a reduced form error correction model for the differences.

The decomposition

T = aT{H(E )6 + B,(6,6)7"6:} = «TBB 66 + on (B:6,)78:
introduces the second reduced rank condition (13) explicitly into the equation and shows
that if we know a and f we can estimate equation (16) by the above mentioned reduced
rank regression.

The equation (16) can be given the interpretation as an analysis of the common
trends. Granger defines a/X, as the common trends since the equation for a  does not
contain any term corresponding to the disequilibrium error. Thus the second step in the
analysis is a reduced rank analysis of the common trends.

The reduced rank analysis of (16) reduces to the solution of an eigenvalue problem
like (6) giving eigenvalues p,, i = 1,...,p—1 and the test statistic for the hypothesis Hr, gin
H_is given by

Q= —TEIS’:{ In(1—p,) (17)

It can be shown, see Johansen (1991b), that the estimators of § and ¢ are

asymptotically mixed Gaussian allowing for usual X2 inference, and that Qr S has the same
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limit distribution as Qr, but with p—r—s degrees of freedom. Thus both QI and Q rs have a
distribution determined by the deficiency of the matrix being tested for reduced rank.
Another important consequence of the limit results is that the tests performed on
the coefficients « and § in the I(1) analysis remain valid in the I(2) analysis, but of course
the parameters and hence the hypotheses have a different interpretation. Thus the test
that m, p, and inc have coefficients proportional to (1,—1,—1) still holds in the presence of
I(2) variables, but for a relation that is I(1). One can also test a,=0bya X2 test, but the
restriction (13) ruins the variation independence of the parameters and hence the
interpretation of the hypothesis as a hypothesis of weak exogeneity is not valid. Thus the

formal properties of the test remain valid, but the interpretation has changed in the I(2)

model.

3.8  Anillustrative ezample

The nominal variables p, and m, might well be I(2) instead of I(1) processes.
Graphs of the data in differences, see Figure 2, show that indeed the differences could be
described by an I(1) process, and we shall here show how one can analyze this phenomenon
using the methods of Johansen (1991b).

By repeated application of reduced rank regression we can estimate all parameters
in the I(2) model and we demonstrate below how to determine the ranks r and s.

For the UK data we find the results in Table 3 where the test statistics QI’ g and Qr
are given as functions of the degrees of freedom p—r and p—r—s to facilitate the comparison
with the quantiles.

Table 3 here.

The value of r is determined by reading the Qr column from top to bottom and
comparing the observed value with the quantile for p—r degrees of freedom from Table Al
in Johansen and Juselius (1990) derived under the assumption that there is a linear trend

in the data. Once the value of r has been determined one reads the table from left to right
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in the row with r = ;, and compares with the quantiles with p—r—s degrees of freedom from
before, but now listed in the second row from below for ease of reference. This again
requires that we accept a constant term in model (16).

Thus the determination of r is exactly as in the I(1) analysis, where we have chosen
r= 1. Reading the row r = 1 from left to right we first test the hypothesis Hl,O that s =0
by the test statistic 62.32 as compared to the quantile 29.51. Thus Hl,O is rejected. Next
compare the test statistic Ql,l = 12.20 with the quantile 15.20. This hypothesis is
accepted, indicating s = 1 and that the number of I(2) components is p—r—s = 2. Since
this is a borderline case we choose to compare also Q1’2 = 4.07 with its quantile 3.96 which
is also a borderline case. Thus there seems to be I(2) variables in the system, but exactly
how many is not so clear.

The choice of the 95% quantile is quite arbitrary and the actual distribution of the
test statistics is probably not very well approximated by the asymptotic distribution.
From economic reasoning it seems plausible that there is no more than one common I(2)
variable that drives the other variables, namely one that measures the nominal growth, and
this hypothesis is supported by the above analysis of the data and by the graphs that show
that only Ap, and Am, can best be described by I(1) processes and m — p by an I(1)
process.

We have thus continued the analysis of the data withr =1, s — 2 and hence p—I—§
= 1. We first give the results for the estimates of the matrix I" in the I(1) model and the
I(2) model in Table 4.

Table 4 here
The estimate of I' in the two models are very similar. This is due to the fact that the
reduced rank hypothesis (13) restricts a (p—r)x(p—r) = 3x3 matrix to have rank s = 2.
This really loses only 1 degree of freedom, thus the difference between the I(1) model and

the I(2) model corresponds to only one parameter restriction. Hence the estimates are

rather similar.
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If we proceed with the assumption of r = 1, s = 2 and p—r—s = 1, then there is 1
common I(2) trend that drives all the variables. The vectors ﬂ’Xt is in this case just one
linear combination, and it is I(1) and not stationary. It can be made stationary by
including the differences, see (14), with coefficients proportional to the vector 63 = ﬂﬂﬁ‘
Normalized on m, the stationary relation becomes

*
m, —1.04 D, —-95 inct + 7.46 Rt

t

+2.33 Am, + 271 Ap, — .30 Ainc, + .03 AR, (18)
It must be emphasized that since (ﬂ,ﬁi)’AXt is stationary there are many different
relations between ﬂ’Xt and AXt that are stationary. We shall derive another below see
(19) and (20).

Table 5 here

The interpretation of the vectors in Table 5 is not so easy. First of all the vector 4 is taken
from Table 1 with the corresponding adjustment coefficient o. The vector no longer
represents a stationary relation. In order to make it stationary it has to be corrected for
the differences using ﬁf’AXt, see (14). The adjustment coefficients o have the
interpretation as the strength of the adjustment to the disequilibrium error defined by (14).
The vectors ﬂJlL represent I(1) variables which do not cointegrate, and the last column, [i‘f ,
represents an I(2) variable which can be used to make 4’ X, stationary as described.

The parameters af = a ¢ are of special interest since the common I(2) trend is
given by af’Xt, which in this case is practically equal to the price variable. Thus the price
is picked out as the variables that does not react to the disequilibrium error and in this
sense it is the common driving I(2) force. The coefficients of ﬂf from Table 5 show that
the I(2) variables are mainly to be found in the variables m and p, see the expression (15)
for the coefficients 02 to the twice cumulated shocks. Since the first two coefficients of ﬂf
are approximately equal, the common I(2) trend can be eliminated by taking the difference
m — p.

In view of this analysis it seems that by introducing the variable m, — p, one can
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eliminate the I(2) component and then work with the inflation rate infl, = Ap, instead of
p,. With the variables (mt—pt, inﬂt, inc,, R::) we can repeat the I(1) analysis, and find
first the results summarized in Table 6.

Table 6 here
It is seen from Table 6 that again there is just one cointegrating vector in the data. The
coefficients are about the same as for the first eigenvector of Table 5, but this time with
the coefficient of 7.22 to inﬂt. Thus it is seen that the inflation rate and the interest rate
suffice to reduce the variable (m—p—y), to stationarity. For this interpretation to hold we
need to check that the reduction did in fact remove the I(2) components. Hence the I(2)
analysis is performed for the new system and the results are reported in Table 7.

Table 7 here
From Table 7 it follows that for r = 1, the values s = 0, 1, and 2 are rejected,
corresponding to the choice of s = p—r = 3, in which case the matrix in (13) has full rank,
such that there are no I(2) variables.

Thus it seems that the I(2) analysis can be avoided by introducing real variables
rather than nominal values. It is interesting to compare the cointegrating relation derived
from this second system, as given by the first column in Table 6, with the relation (18)
derived as stationary from the I(2) analysis. In equation (14) we have have used a vector
proportional to ﬂf in order to a,chieve stationarity. In reality we can use any vector not
orthogonal to ﬁf , that is, any vector hot in the space spanned by 4 and ﬂi. The reason for
this is of course that the vectors ,B’AXt and ﬂi’AXt are already stationary and can be
added to (18) without changing the stationarity of the relation. Any vector v can be
decomposed into the directions [, ﬁi, and ﬂf, and only the projection in the direction ﬂf is
needed. This projection is given by ﬂf(ﬂf ’ﬂf)_lﬂf’v, which shows that we can replace the
vector ﬂf = (2.33,2.71,—.30,.03) by the vector (ﬂf’ﬂf)(ﬁf’v)_lv. As an example we can

express the relation (18) as a relation between levels and Ap by considering v = (0,1,0,0).

This gives
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*
m, —1.04 p, —95 inc, + 7.46 R, + 4.75 Ap,. (19)
*
This result from the I(2) analysis of m, p, inc, and R is plotted in Figure 1 and can then
be compared with the result from the above I(1) analysis of the reduced system which gives

*
m, —p, —1.08 inc, + 7.16 R, + 7.22 Ap,. (20)

t
These equations are derived from different models, and the differences in the coefficients

reflect the statistical variability of the estimates.

It should be pointed out that a sudden jump in an otherwise stationary variable can
be mistakenly considered as an indication of a general persistence of the shocks to the
variable that is as an indication that the variables are I(1). Thus one should be careful
about drawing too strong conclusions from these various ways of looking at the data.
What is demonstrated here is that the tools now exist for a statistical analysis, and they

have to be combined by careful inspection of residuals, constancy over time of the

estimated parameters etc.

4 Conclusion

We have illustrated two statistical methods by an analysis of UK money demand.
The test of weak exogeneity of the variables Dy inct, and Rj: requires that the full data
vector can be described by an autoregressive model. If this is the case a simple test can be
performed. The test is needed as a requirement for the simpler analysis of a
single—equation regression to be efficient. Weak exogeneity is devised in order to avoid the
investigation of a full system, yet the test requires the modeling of a full system. If one can
apply a VAR model for this, the easiest is of course to analyze the full system.

After this has been done one can derive the conditional model that one would like to
interpret, in the present case the conditional model for the changes of m, conditional on Dy
inct and R: together with the lags of all variables. This last reduction does not require
weak exogeneity. Weak exogeneity is only relevant if one wants to apply the conditional

model for the estimation of the long—run parameters.
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The presence of I(2) components makes the analysis more difficult, not so much
because the method gets very much more involved, but because the interpretation becomes
more difficult; what was stationary before is now just I(1), and the differences of the
process have to be invoked to produce a stationary relation. The I(2) analysis, however,
allows one to identify the common I(2) trends which drive the economy, and which lend
themselves to an economic interpretation. The challenge with the I(2) analysis is that it
seems to allow for more economic questions to be asked and interpreted.

It is important to note that if one wants to describe this data by an I(2) model there
are different choices of the dimensions r and s that are consistent with the data. The
values chosen are chosen partly on the basis of the statistical analysis and partly on the
basis of what is economically reasonable. We have fitted five lags to a 4 dimensional series
which gives 94 parameters and 400 observations. The I(2) model rests on only one
restriction of these parameters, and it is important to check to what extend the conclusions
depend on the choice of model.

The present analysis is meant as a first illustration of a new technique, where the

details have yet to be worked out, and it will take some time until we understand where

these methods can be applied with success.
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Table 1

The cointegration analysis of the UK money >'agiemand data
The variables are m, p, inc and R .

Eigenvalues 375 .166 115 .002
Hypotheses r=0 r<l1 r<2 r<3
Trace statistics 77.54 30.50 12.35 .150
95% Quantiles 47.18 29.51 15.20 3.96
Figenvectors
m 1.00 1.22 —.61 1.17
D —1.04 1.00 35 ~1.05
mnce —.95 —9.82 1.00 —-.70
R* 746  -811  —3.06 1.00

Adjustment coefficients o

Am —.150 —.007 —.006 —.001

Ap .030 —.008 .006 .001

Adne .008 .001 .053 —.001

AR* .031 .001 .031 .003
Table 2

The likelihood ratio statistics for testing weak ezogeneity
of each of the variables with respect (.
The asymptotic distribution is x2 (1)
for which the 95% quantile is 3.84.
m P me R*
24.82 4.21 11 1.89
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Table 3

The results of the I(2) analysis of the UK money demand data

T Qr,s Q, tr(95%) p-r
0 108 . 46 57.97 14.68 4.39 77.54 47.18 4
s=0 s=1 §=2 s=3
1 62.32 12.20 4.07 30.50 29.51 3
s=0 s=1 §=2
2 24 . 89 5.76 12.35 15.20 2
s=0 s=1
3 .29 .15 3.96 1
s=0
tr(95%) 47.18 29.51 15.20 3.96
4 3 2 1 0

p—T—s



Table 4
I' estimated from the I(1) model

m  —2.078 974 —.112
D 319 —.224 297
inc 486 —619  —1.861
R" 384 —.129 603

' estimated from the 1(2) model

m 2037  1.032  —105
» 373 —.148 306
inc 500 —600  —1.859

R* .395 —114 605

—397
.100
327

—1.069

-379
123
333

—1.065



Table 5
The estimates of the cointegrating vectors 3, and
the supplementary vectors ﬂi = ﬂl(ﬂiﬂl)_ln and ﬂf = ﬂlnl.

1
8 g X
m 1.00 88 8.4 —.97
p  —1.04 146 —T.41 -1.13
inc  —95 —6.52 —3.17 12
R* 746 ~1.15 —2.54 —0l.

The estimates of the adjustment coefficients o and the

supplementary vectors ai = O‘;( a; al)_ @ and af =0

1 2
a a (0%
1 L
Am —.150 —.010 .005 046
Ap .030 —.042 .00 253
Ainc .008 270 .008 034

AR* .031 —076  .022 —.026



Table 6

The I(1) cointegration analysis of the UK money demand data.
The variables are m—p, Ap, inc, and R*.

The eigenvalues .386 128 .050 .009
Hypotheses r=0 r<i1 r<2 r<3
Trace statistics 68.58 19.83 6.09 .95
95% Quantiles 47.18 29.51 15.20 3.96
FEigenvectors (3
m—p 1.00 —.08 —1.26 1.33
infl 7.22 1.00 16.07 6.56
inc —1.08 —.04 1.00 -.13
R* 7.16 -.79 —7.00 1.00

Adjustment coefficients a

A(m—-p) —.183 —.034 .002 —.003
Ainfl 023 —.046 —.005 .003
Adne .000 227 —.007 —.001
AR* .034 139 .002 .007

The test for weak exogeneity with respect to o and 3.
The 95% quantile of the asymptotic x2 (1) distribution is 3.84.

m infl inc R+
34.54 3.42 .00 2.25
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The I(2) analysis of the UK money demand data.
The variables are m—p, infl, inc, and R*

Table 7

T Qr,s Q, tr(95%) p-r
0 133.53 80.62 39.71 8.30 68.58 47.18 4
s=0 s=1 §=2 §=3
1 8.16 37.77 6.38 19.83 29.51 3
s=0 s=1 §=2
2 33.40 24 6.09 15.20 2
s=0 =1
3 10 .03 .95 3.96 1
s=0
tr(95%)  47.18 29.51 15.20 3.96
p—T—s 4 3 2 1 0
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