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Summary 

This survey of the theory of Gaussian homogeneous diffusions in finite 

dimensions (GHO's) contains sections on the structure of the transition 

probabilities, the construction of GHO's as solutions to stochastic 

differential equations, a characterization of GHO's with nonsingular 

transition probabilities, a description of the smooth (at least one time 

differentiable) components of a GHO, a discussion of coordinatewise, 

possibly timedependent, affine transformations that carry one GHO into 

another, a characterization of stationary GHO's and finally, conditions 

for equivalence between the measures on the space of continuous paths (in 

finite time) induced by two different GHO's 

AMS 1980 subject classifications. 60G15, 60J60 

Key words and phrases. Gaussian diffusion, hypoellipticity, smooth 

component, rotating Brownian motion, invariant measure, Radon-Nikodym 

derivative on path space. 
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O. Introductiun 

In 1944 Doob [4J published a paper, "The Elementary Gaussian Processes", 

where he presented a classification of all strictly stationary Gaussian 

processes X = (Xt ) which are timehomogeneous Markov. While his results 

deal with processes in discrete as well as in continuous time, we shall 

here discuss only the continuous time diffusion case. For that he showed, 

assuming X to have mean zero, that each X is (after a linear trans-

formation) the direct product of stationary Gaussian processes of certain 

types, which he labelled i8 
M(O), M(l), M(e ) and M. Of these 

the trivial null process and the M(l), i8 M(e )-processes are 

M(O) is 

deterministic in the sense that they are completely determined by their 

value at time 0, while the members of the class M were shown by Doob 

to have the representation 

(0.1) 

as stochastic integrals with respect to a multidimensional Brownian 

motion W, where B is a square matrix with characteristic roots that 

all have strictly negative real parts and where D is symmetric and 

positive semidefinite. 

The deterministic components of type i8 
M(O), M(l), M(e ) are all 

smooth in the sense that they are, as functions of time t, in fact 

differentiable infinitely often. Doob noticed however that even 

components of type M-processes may have sample paths that are at least 

one time continuously differentiable. This lead him to define the concept 
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of a real-valued Gaussian process Y which is Markov of order N: the 

pathwise derivatives y(I),y(2), ... ,y(N-l) must all exist, and for all, 

s ~ t, 

= E(YtIY Y(I) ..... y(N-l)) 
s, s s 

In the literature this property is later referred to as Y being N'th 

order Markov in the restricted sense. 

Some years later. Levy [12J developed what he called a general theory 

of Gaussian random functions, focusing on representations of the form 

for a real valued Gaussian proces Y. where F is non-random and W is 

standard one-dimensional Brownian motion. Obviously Y has mean zero . 

but otherwise need neither be stationary nor Markov. However, in 

particular Levy determined the structure of the representation for a Y 

which is N'th order Markov in the general sense, that is. a process Y 

such that E(Ytl (Y ) < ) for u u_s s < t depends only on Y and 
s 

random variables measurable on the pre-s a-algebra for Y. 

N-I other 

We have highlighted some of the contents of these early papers by 

Doob and Levy, because obviously. they inspired much of the work that was 

done over the next several years on Gaussian processes with (at least) 

some Markov like properties. While Levy himself [13J went on to study 

representations of non-Gaussian processes, Hida [7J continued Levy's 

original approach concentrating on the Levy representation for a N'th 
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order (general sense) Markov, stationary Gaussian process, and also 

connecting Levy's work to that of Doob. Some more recent references on 

this are Mandrekar [15J and Okabe [18]. The latter paper in particular, 

apart from discussing further results on N'th order Markov. stationary 

Gaussian processes, also contains a section on a derived class of 

N-dimensional, timehomogeneous Gaussian diffusions (see the end of 

Section 4 below). Finally, a much more recent reference continuing Doob's 

work, is Gzyl [6J. As we shall see below (Section 5), there appears to be 

a flaw in his main result, but once this is remedied, a nice product 

representation of a certain class of n-dimensional, homogeneous Gaussian 

diffusions results. 

Although reciprocal processes (another class of generalized Markov 

processes) will not be discussed here, it is appropriate to list some 

references. Reciprocal stationary Gaussian processes have been studied by 

Jamison [10J (one dimension), Miroshin [17J (two dimensions) and very 

recently, by Carmichael et al. [2J, (several dimensions). 

The purpose of the present paper is to give an overview of the 

theory of timehomogeneous Gaussian diffusions in n dimensions. Of the 

earlier work mentioned above, that concerning stationary Gaussian 

diffusions is most closely related to what follows below. However, in 

principle we study all timehomogeneous Gaussian diffusions, whether they 

can be made stationary or not - with, of course, Brownian motion the most 

celebrated non-stationary member of this extended class. It should be 

stressed also, that the overlap with Doob's work [4J is through his class 

M only: we do not discuss diffusions with deterministic components. 

It is quite amazing that there is hardly any literature on the class 



4 

of timehomogeneous Gaussian diffusions as such, and even in the textbooks 

they are rarely mentioned and then mostly as examples. Undoubtedly, quite 

a few of the results that are presented below are known, but it would 

seem, either as part of the folklore or contained in scattered references 

by authors with highly varying backgrounds. 

The present paper is organized as follows: in Section 1 we introduce 

the class of (A,B,C)- diffusions with the property that the transition 

probabilities are Gaussian and form a one-parameter transition semigroup. 

The three parameters determining the diffusion are a n-vector A (the 

constant drift coefficient). a n x n matrix B (the linear drift 

coefficient) and a symmetric, positive semidefinite n x n matrix C 

(the infinitesimal covariance matriX). Various functional equations and 

explicit expressions for the conditional expectations and covariances 

determining the transition probabilities, are found. 

Section 2 discusses the construction of (A,B,C) - diffusions as 

solutions to stochastic differential equations of the form. 

(0.2) 

where W is a multidimensional Brownian motion and D satisfies 

DDT = C. We give a direct proof that the solution is a Gaussian diffusion 

with transitions as described in Section 1, and also discuss the explicit 

solution to (0.2) (which is the expression (0.1) in the case A = 0). A 

Levy-type characterization of (A,B,C) - diffusions is included as well. 

In Section 3 we determine which (A,B,C) - diffusions have transition 

probabilities with nonsingular covariances. It is shown that all the 
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transitions are nonsingular if and only if the infinitesimal generator 

for the transition semigroup is hypoelliptic, a condition satisfied in 

particular if C is nonsingular. We call an (A,B,C) - diffusion with 

this property nonsingular. but point out, that even though the 

finitedimensional (Gaussian) distributions are nonsingular, a nonsingular 

(A,B,C) - diffusion with C singular, has singular paths in the sense 

that some of the components of the process are completely determined by 

others. 

The remainder of the paper is concerned with nonsingular (A.B,C) -

diffusions. In Section 4 we show that the members of this class for which 

C is singular, may be characterized by the property that there exists a 

nontrivial linear combination of the components with continuously 

differentiable sample paths. We also determine the linear combinations 

which are differentiable a specified number of times. 

It is natural to try to reduce the class of all nonsingular (A.B.C) -

diffusions to a few standard forms. This we attempt in Section 5, where 

we call two diffusions affinely equivalent if there exist affine mappings 

with. in general, time dependent coefficients. that transform one 

diffusion into the other. This permits the introduction of what we call 

rotating Brownian motion and rotating Ornstein-Uhlenbeck processes. In 

turn these processes (in two dimensions) appear as building blocks in our 

version of Gzyl's [6J representation theorem for (A,B.C) - diffusions 

with a normal linear drift coefficient B. 

Section 6 is devoted to stationarity. and in particular it is shown 

that a nonsingular (A.B.C) - diffusion has a strictly stationary version 

if and only if the real parts of the characteristic roots for B are all 

strictly negative. 
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The final Section 7 briefly discusses equivalence between measures 

n induced by nonsingular (A,B.C) - diffusions on the space of ill - valued 

continuous paths on a finite time interval. If C is nonsingular, the 

main result follows easily from standard theory, but we present also an 

expression for a Radon-Nikodym derivative valid for pairs of nonsingular 

(A,B,C)- diffusions with the necessarily same singular C. 
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1. (A,B,C) - diffusions 

Let X = (Xt)t~O denote a ffin-valued stochastic process. We shall call X 

a Gaussian homogeneous diffusion (GHO) provided X is Gaussian and time-

homogeneous Markov with continuous sample paths. 

Suppose X is a GHO and let to ~ 0, t > O. Since X is Gaussian 

and Markov, there exists a version of the regular conditional distribu-

tion of 

(1.1 ) 

given Xt ' of the form 
o 

Here N(f,T) denotes the Gaussian law on ffin with expectation § and 

covariance T. 

Now suppose in addition, that for every to > 0, Xt given Xo is 
o 

nonsingular Gaussian (the conditional covariance is nonsingular). 

Combining (1.1) with the fact that X is timehomogeneous, it is seen 

that there exist functions a,~,2 such that for all to ~ 0, t > 0 and 

Lebesgue almost all 

given is 

(1.2) 

n 
x t ffi , the conditional distribution of 

N(a(t) + ~(t)x, 2(t») 

Notational convention Vectors, such as aCt), x are viewed as n x 1 

column martrices, while ~(t). 2(t) are n x n matrices. o 
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Let s > 0. Using (1.2) and computing E(Xto+s+tIXto = x) by 

conditioning first on it is seen that for almost all x, 

aCt + s) + ~(t + s)x = aCt) + ~(t)(a(s) + ~(s)x) 

and consequently 

(1.3) aCt + s) = aCt) + ~(t)a(s) 

(1.4) ~(t + s) = ~(t)~(s). 

Considering instead the conditional covariances, one obtains 

(1.5) L(t + s) = L(t) + ~(t)L(s)~T(t), 

where T denotes the transpose. 

Because X is continuous and Gaussian, for almost all x, 

are both continuous. It follows that the functions a,~,L are continuous 

on ffi+ = [0,00) with boundary values 

(1.6) a(O) : = Urn aCt) = 0, 
tW 

(1. 7) ~(O): = Urn ~(t) = I, 
tW 

(1.8) L(O): = lim L(t) = 0, 
t!O 
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where I = I denotes the n x n identity matrix. 
n 

It was assumed apove, that the law af Xt given Xo should be non­
o 

singular Gaussian for all to > 0, and some such assumption is needed to 

arrive at (1.3) - (1.5): in general. for a given to > 0, the expression 

(1.2) for the conditional distribution of given will 

hold for almost all x with respect to the distribution of Xt ' so for 
o 

instance (1.2) need only be valid for all x in the affine subspace of 

ffin supporting that distribution. And since the affine support may depend 

on to' see Example 1.23 below, there may not be a universal choice of 

a,~,L such that (1.2) describes all the transition probabilities. 

Suppose now that a,~,L are continuous functions that satisfy 

(1.3) -.(1.4), but allow for the L(t) to be positive semidefinite, i.e. 

not necessarily nonsingular. The arguments leading to these equations 

also show, that if Pt(x,o) denotes the N(a(t) + ~(t)x, L(t)) distri-

bution, the Pt form a one-parameter transition semigroup and hence, 

given any Gaussian distribution M on ffin , there exists a GHD X with 

transition probabilities Pt and initial distribution M. (The path 

continuity of X follows from Theorem 2.1 below). 

In the sequel we shall (Example 1.23 excepted) exclusively treat 

GHD's with transition probabilities of the form N(a(t) + ~(t)x, L(t)) as 

above. The resulting class of GHD's in ffin is denoted by ~ . As the 
n 

preceding discussion shows, any n-dimensional GHD such that for all 

Xt given Xo follows a nonsingular Gaussian distribution, 
o 

belongs to ~ , but not all GHD's are in ~ . 
n n 

The first task is to obtain a parametrization of the class ~ by 
n 
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solving the functional equations (1.3) - (1.5). 

1.9 Proposition The continous functions a.~,2 are solutions to the 

functional equations (1.3) - (1.5) subject to the boundary conditions 

(1.6) - (1.8) and with all 2(t) positive semidefinite, if and only if 

(1.10) 

(1.11) 

(1.12) 

Nt) 
tB = e 

ft B 
aCt) = e S Ads. 

o 

for some n x 1 column vector A, some n x n matrix B and some 

symmetric positive semidefinite n x n matrix C. 

Notation for any n x n matrix D. 

Sketch of proof If a,~,2 are continuous solutions to (1.3) - (1.5) 

satisfying the boundary conditions (1.6) - (1.8), (1.10) follows directly 

from (1.4). One next shows that the limits 

lim i- aCt) = A. 
UO 

lim i- 2(t) = C 
uo 

exist with. evidently. C positive semidefinite. From (1.3) and (1.5) it 

then follows that a,2 are differentiable with 
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(1.13) a'(t) = (3(t)A, 

(1.14) 2'(t) = (3(t)C{3T(t) 

and (1.11), (1.12) follow using (1.6), (1.8). 

If conversely a,{3,2 are given by (1.10) - (1.12) one easily 

verifies (1.3) - (1.5) directly and (1.6) - (1.8) hold trivially. Also, 

if C is positive semidefinite, so is the integrand in (1.12) for every 

s, and hence, so is 2(t). D 

From now on, call a GHD from the class ~ with transition 
n 

probabilities of the form (1.2) and a,{3,2 given by (1.10) - (1.12) an 

(A,B,C) - diffusion. Note that 

A=a'(O). B={3'(O), C=2'(0). 

Instead of (1.11), (1.12), one may use the series expansions 

()() k 
(1.15) a(t) = 2 ~ Bk- 1 A 

k=l 
k! ' 

()() k k-l 
[k~lJBj C (BT)k-l- j . (1.16) 2(t) = 2 ~ 2 

k! . 0 k=l J= 

We shall list some other formulae that are consequences of 

(1.10) - (1.12). For instance, (1.11) implies 

(1.17) Ba(t) = (e tB_ I)A, 
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in particular. if B is nonsingular 

(1.18) 

A compact expression for ~(t) is available only in rather special cases, 

e.g. if C = cl with c l 0 and if BBT = BTB with B + BT nonsingular, 

~(t) 

Finally note that always 

(1.19) ~'(t) = C + B~(t) + ~(t)BT, 

indeed, by partial integration in (1.12), 

and (1.19) follows using (1.14). 

T 
sB d e s 

The formulae above all relate to the functions a,~ and ~. It may 

be useful to have also an expression for the cross covariances: if X is 

an (A,B,C) - diffusion with Xo ~ N(~,r), we have 
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and an easy calculation gives 

(1.20) 

T T = 2(S)~ (t) + ~(S)r~ (S + t). 

1.21 Example (See Mehr and Mc Fadden [16J). For n = 1, A = a, B = b 

and C = c > 0 are constants and 

1 tb 
aCt) = ~e - 1)a. ~(t) 

c 2tb 
2(t) = 2b (e - 1). 

tb = e 

For b = 0 we obtain one-dimensional Brownian motion with constant drift 

a and variance parameter c. For c > 0 and b < 0 (b > 0), the 

(a,b,c) - diffusion is the one - dimensional Ornstein-Uhlenbeck process 

in its recurrent (transient) form. o 

1.22 Example BM(n), the n - dimensional standard Brownian motion. is 

the (0,0,1) - diffusion. o 

1.23 Example This example of a twodimensional GHD not in ~2' is due to 
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Tue Tjur (personal communication). 

Let Y be a one dimensional (a,b,c) - diffusion (example 1.21) with 

a = 0, let S > ° and define X = (X1 ,X2 ) by 

X1 ,t = Yt cos St, 

X2 ,t = Yt sin St, 

which is obviously a continuous Gaussian process. One may check that X 

is timehomogeneous Markov with transition probabilities Pt(x,o), which 

for t > 0, x # ° are Gaussian with affine support the line through the 

origin and x, rotated counter clockwise through the angle St, and where 

the position on the line is determined by the transitions for Y. (The 

assumption a = ° is in fact needed for the argument to work: with a = ° 
the transitions for X from X # ° are the same whether x is identified 

with a positive or negative value y of Y). 

The fact that the subspace supporting Pt(x,o) depends on t, shows 

that X is not in ~2' cf. Theorem 3.2 (ii) below. 

Although there is no natural candidate for the transitions from x = 

0, since Pt(~'{O}) = ° for t > ° and ~ # ° it is easy to define 

Pt(O,o) so as to make the Pt an exact transition semigroup, i.e. 

for all s,t ~ 0, x t ffi2. However, it is then also seen that the example 

is pathological in the sense that X is not strong Markov (another 
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reason why it cannot be ~2): the strong Markov property fails at the 

non-degenerate stopping time 

T = inf {t 

since conditionally on the pre-T behaviour of X within (T < 00), the 

law of X T+t is supported by a line which cannot be recovered from the 

information X = 0 alone. o 
T 

1.24 Example It is easily verified that an (A,B,C) - diffusion has 

independent and, necessarily, stationary increments iff B = 0, in which 

case 

aCt) = tA, f3(t) = 1. 2:(t) = tC. o 
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2. (A,B,C) - diffusions as solutions to stochastic differential equations 

Let (Q'~'~t'P) be a filtered probability space satisfying the "usual 

conditions". Also let W be a BM(n')- process (standard n'- dimensional 

Brownian motion) on this space, in particular W is adapted and 

is independent of ~. 
s 

process x an (A,B,C) - diffusion with respect 

to the filtration (~t)' if X is an adapted (A,B,C) - diffusion such 

that for any to ~ 0, t > 0, conditionally on ~t ' X 
o to+t 

N(a(t) + ~(t)X ,2(t))- distributed. 
to 

is 

Given a n-column vector A, a n x n-matrix B and a n x n 

positive semidefinite matrix C ~ 0, let D be a n x n'-matrix such 

that T DD = C. We shall show 

2.1. Theorem Given a ~O-measurable ffin-valued Gaussian random variable 

XO' the stochastic differential equation 

(2.2) dX = (A+BX)dt + DdW 

with initial value Xo has a unique strong solution, and this solution 

is an (A,B,C) - diffusion with respect to the filtration (~t). 

Remarks That (2.2) has a unique strong solution which is a GHD is of 

course known, see e.g. Section IV.8 of Ikeda and Watanabe [9J. The 

argument presented there exploits the explicit solution (see (2.6) 

below), but here we find it useful to give a proof that permits a direct 

identification of the transition probabilities. 
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Proof Let (.,.) denote the inner product on mn, let a, ~ be given by 

(1.11). (1.12) and recall that pet) tB = e wi th inverse e -tB That X, 

the solution to (2.2), is an (A,B,C) - diffusion will follow if we show 

that for any n 
u Em, 

-tB 1 T -tB -tBT 
Zt = exp{i(u, e (Xt-a(t))) + 2 u e ~(t)e u} 

is an adapted, complex - valued martingale: from E(Z +tl~ ) = Z , s s s 
T 

replacing u by e(s+t)B v and using (1.3), (1.5), it follows that 

E(exp(i(v,X t))I~) s+ s 

(2.3) 

i.e. 

1 T = exp(i(v,a(t) + P(t)Xs) - 2 v ~(t)v), 

conditionally on ~ ,X t 
S s+ is Gaussian with mean aCt) + P(t)X 

s 

and covariance ~(t), as desired. 

We now show that Z is a local martingale. Since Z is uniformly 

bounded on compact intervals, it is then automatically a martingale, and 

the proof will be complete. 

But by Ito's formula and (2.2), 

dZt = Zt{i(u,e-tB[Ba(t) - a'(t) + AJ)dt 

T 
+ ~ uTe-tB(_B~(t) + ~'Ct) - ~Ct)BT)e-tB u dt 

tB 1 T -tB -tBT 
+ i(u, e D dWt ) - 2 u e d[X,XJ t e u}, 
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and since 

d[X,X]t = C dt, 

it is seen that this reduces to 

which renders Z a local martingale, provided we verify that 

(2.4) Ba(t) - a'(t) + A = 0, 

(2.5) - BL(t) + L'(t) - L(t)BT- C = 0. 

But (2.5) is just (1.19), and (2.4) follows from (1.13) and (1.17). D 

The SDE (2.2) is of course so simple that it may be solved 

explicitly. Expressions like (2.6) below were used already by Doob [4], 

Section 4 in his study of stationary, Gaussian Markov processes in 

continuous time. 

Defining 

y = X - DW, 

it is seen that the paths for Y satisfy the ordinary differential 

equation. 
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and hence 

(2.6) 

The next result is a simple generalization of Levy's characterization of 

Brownian motion as a cntinuous local martingale with quadratic variation 

[W,WJ t = tI. 

2.7 Theorem Let X be an adapted. continuous process on (Q'~'~t'P) 

and suppose that Xo is Gaussian. Then X is an (A,B,C) - diffusion if 

and only if the process U, where 

(2.8) 

is a continuous local martingale with [U,UJ t = tC. Furthermore, if X 

is an (A,B,C) - diffusion, U is automatically a martingale. 

Remark Note that if C is nonsingular and D is n x n with 
T 

DD = C, 

then U is a continuous local martingale iff D-1U is a BM(n) process. 

Proof If X solves (2.2). it is immediate that d[X,XJ t = C dt and 

that U is a continuous, local martingale. If X is any (A,B,C) 

o 
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diffusion, it is still true that d[X,XJ t = C dt, this being a 

distributional property of the diffusion, and then also [U,UJ t = tC by 

(2.8). We show that U is a martingale by direct computation, using the 

regular conditional probability given ~ on the a-algebra a(X ) > ' s u u_s 

obtained because X is Markov: for s,t ~ 0, 

E(U I~) = E(X I~) - Xo - (s+t)A - fOs BX du - E(fs+tBX dul~ ) 
s+t s s+t sus u s 

which reduces to U provided 
s 

(2.9) aCt) 
t = tA + fO Ba(u)du 

(2.10) 
t 

~(t) - I = fO B~(u)du 

Here (2.10) is trivial since ~(u) 
uB = e and (2.9) is equivalent to 

(2.4). 

Suppose now that X is adapted and continuous, and that U defined 

by (2.8) is a, necessarily continuous, local martingale with [U,UJ t = tC. 

Find an orthogonal matrix S such that C = SCST is diagonal, and 

introduce the process D = SUo Then D is a continuous local martingale 

with DO = 0, [D,DJ t = tC. If, as we may assume, 

C = diag (AI" .. ,A ,0, ... ,0) 
n 
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with Al ..... A all> 0, it follows from Levy's theorem that 
n' 

is a BM(n') - process. Also, for n' < t ~ n. Ut is a continuous local 

martingale of vansishing quadratic variation, and hence 

U , 1 -n + 

Consequently 

with D the n x n° - matrix 

== U == 0. n 

where K = diag ({Al' .... {An ,) and ° is the (n-n')x n' null matrix. 

Using (2.8), we see that 

Since DDT = C, it follows from Theorem 2.1 that X is an (A,B,C) -

diffusion. o 
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From the proof we read off the following 

2.11 Corollary Suppose X is an (A,B,C) - diffusion defined on 

(D'~'~t'P), and let n' = rank(C}. Then there exists an adapted BM(n'} 

process W such that, using this W, X solves the stochastic 

differential equation (2.2). o 

Suppose again that X is an (A,B,C) - diffusion, Markov with respect 

to the given filtration (~t)' and define 

2.12 Proposition Y is a Gaussian process with independent increments, 

i.e. for any is Gaussian and independent of 

Proof Using (2.3), the conditional characteristic function of an 

increment is found to be 

E(exp{i(v,Y +t- Y }}I~ ) s s s 

(2.13) 

~. 
s 

T 
{ .( -(s+t)B (t)) _ l T -(s+t)B~(t) -(s+t)B } = exp 1 v,e a 2 v e ~ e v , 

which is non-random as required. 

Because Y has independent increments, r is additive, while f is 

o 



23 

additive automatically: 

f(s,u) = f(s,t) + f(t,u), T(s,u) = T(s,t) + T(t,u) 

for s S t S u. We can read off f and T from (2.13), and, using 

(1.3), (1.5). write them in additive form, 

f(s,t) 

T(s.t) 

-tB sB t -uB = e aCt) - e a(s) = f e A du, 
s 

T T 
= e-tB~(T)e-tB _ e-sB~(s)e-sB t -uB _uBT 

= f e Ce du, 
s 

see also (1.11), (1.12). 

In general, V is not a GHD because the increments are 

non-stationary. It is easily verified that V has stationary increments 

iff 

BA = 0, BC + CBT = 0, 

in which case V is an (A,O,C) - diffusion, cf Example 1.24. 

It may also be noted, that the general V is a martingale iff A = o. 
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3. Nonsingularityand singularity of (A,B,C) - diffusions 

Let X be an (A,B,C) - diffusion, so that the covariances 2(t) for 

the transition probabilities Pt(x,o) are given by either of the 

expressions (1.12) or (1.16). 

3.1 Definition X is nonsingular if 2(t) is nonsingular for all 

t > 0, and singular if 2(t) is singular for all t > O. o 

The definition is exhaustive by the first statement in the following 

3.2 Theorem (i) An (A,B,C) - diffusion is either nonsingular or singu-

lar. It is nonsingular if and only if 

(3.3) 
~ ~1 rank(D,BD,B-U,···,B D) = n, 

where D is any matrix such that T 
DD = C. 

(ii) The linear subspace of ffin determined by the affine support for 

the Gaussian probability Pt(x,o). is the same for all t > 0 and all 

x t ffin. 

Notation If M1 ,···,Mk are matrices with the same number of rows, rank 

(M1 ,···,Mk ) denotes the dimension of the subspace spanned by the column 

vectors in all the M .. 
I 

Remarks The condition (3.3) is necessary and sufficient for the infinite-

simal generator of the transition semigroup (Pt)tLO to be hypoelliptic, 
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see Section 6 of Ichihara and Kunita [8J or Chaleyat - Maurel and Elie 

[3J. It is also the condition for the pair (B,D) of matrices to be 

controllable, see Zakai and Snyders [20J. Section 4.2 of Davis [21J or 

Section 5.6 A in Karatzas and Shreve [llJ. Also Okabe [18J, Theorem 4.1, 

arrives at (3.3) for the particular GHD's that he studies. 

Theorem 3.1 (i) is contained in Proposition 6.2 of [8J, and Proposi-

tion 4.2.5 of [21J. o 

Proof From (1.5) it is seen that t ~ ~(t) is increasing in the sense 

that for s,t ~ O. ~(t + s) ~(t) is symmetric and positive 

semidefi-.nite. In particular, for any a e rnn , the non-negative function 

(3.4) T 
t ~ a ~(t)a 

is non-decreasing. 

The subspace determined from the affine support for Pt(x,o) does 

not depend on x, and equales L(t) = M~(t), where 

M(t) 
n = {a e rn 

T 
a ~(t)a = O}. 

Since the function in (3.4) is increasing, the subspaces L(t) increase 

with t. Introduce L = n L(t) and conclude that L(t) = L for t suffi­
t)O 

ciently small and hence that ~ 
a e L iff aT~(t)a = 0 for t sufficient-

ly small. But (1.16) provides a Taylor expansion for T t ~ a ~(t)a, con-

verging for all t, so if ~ 
a eL, since the function vanishes on a 

non-degenerate interval, it vanishes everywhere and thus we see that 
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LL k M(t) for all t > 0, i.e. L 2 L(t) and the assertion L = L(t) 

for all t > ° follows. We have shown (ii) and also that an (A,B,C) -

diffusion is either non-singular or singular. 

To establish the condition (3.3) for an (A,B,C) - diffusion X to be 

nonsingular, we assume, as we may, that X is obtained as a solution 

to (2.2) where 

(3.5) 

where 

Suppose that 

T~ 
Var(a Xt ) = ° 

X 

or 

T 
DD = C. With X = X - E(X), from (2.2) we have 

~X _ tB"J 
t e Xo = 

J = It e(t-s)BBDW ds. 
t ° s 

is singular. Then for any 
L T 

a t L ,0, a 2(t)a = 0, i.e. 

T~ 
a Xt = ° (since for all t. Now, 

~ 

assuming for convenience that Xo = 0, 

and since 
T~ T~ T T~ 

[a X, a X] = 0, we see that a D = ° and then, since a X = 0, 

that 

The quadratic variation of this process is therefore 0, i.e. aTBD = 0, 

and then aTBJ = ° follws. Since 
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also 

whence aTB~ = 0 etc. Continuing, it is seen that aTBkD = 0 for all 

k = 0,1, ••• , and thus the subspace spanned by all columns in the BkD 

has dimension < n. so (3.3) does not hold. If conversely (3.3) does not 

hold since the subspace spanned by all columns in all matrices BkD is 

the same as that spanned by the first n, n-l D,···,B D, we can find a # 0 

such that aTBkD = 0 for all k. But then (1.12) or (1.16) shows that 

aTL(t)a = 0 for all t. i.e. the diffusion is singular. 

In the sequel we shall exclusively discuss nonsingular (A,B,C) -

o 

diffusions. The reader is reminded that this subclass of ~ agrees with 
n 

all GHD's in n dimensions for which all the transitions are nonsingular 

Gaussian. 

Note that if X is nonsingular, then for all k and all 

o < tl ••• < t k , the kn - dimensional random variable 

follows a Gaussian distribution with a covariance of full rank kn. 

Consider a nonsingular (A,B,C) - diffusion with C singular. Even 

though the diffusion is nonsingular in the sense of Definition 3.1, it is 

singular in the sense that parts of the process are completely deter-

mined from others. More specifically we have 

3.6 Proposition Let X be a nonsingular (A,B,C) - diffusion with C 

singular. Then there exists a nonsingular n x n - matrix F such that 

with 
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where Yl contains the n' = rank(C) first and Y2 the n - n ' last 

components of FX, the process Y2 is adapted to the filtration 

o 
(~t(Yl) V Y2,O)t~O· Furthermore, Y1 solves an equation of the form 

where W is a BM(n') - process and Zt is 

Notation ~~(Yl) V Y2 ,O denotes the a-algebra generated by the random 

variables Y 1,s for o ~ s ~ t and Y2 ,O. 

Proof There exists F nonsingular so that FX is an (A,B,C) 

diffusion wi th 

(3.7) 

o 

see Propositions 5.3 and 5.4 below. Without loss of generality we may 

therefore assume that C itself is given by (3.7). Further, by Corollary 

2.11 there exists a BM(n')-process W such that 

where 

D = r~l 
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Writing 

B = 

where e.g. Xl consists of the first n ' components of X and Bll is 

the upper left n ' x n ' - submatrix of B, it is seen that 

(3.8) 

The latter is an ordinary differential equation for X2 with a unique 

solutuion if X2 ,O and Xl are specified. The desired conclusions now 

follow easily. 0 
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4. (A,B,C) - diffusisions with smooth components 

From Theorem 3.2 it is clear that there exist nonsingular (A,B,C) -

diffusions with a singular C. In this section we shall discuss a 

characteristeric path property of such diffusions. As usual, D denotes 

n x n'- matrix with DDT = C. any 

4.1. Definition (a) An (A,B,C) - diffusion X has a smooth component if 

there exists L: ffin ~ ffi linear, L # 0, such that the paths of the 

process L(X) are continuously differentiable. 

(b) A smooth component L(X) is of degree d ~ 1 provided the paths of 

L(X) are d times continuously differentiable and the normalized d'th 

derivative L(X)(d)-L(X)~d) has non - vanishing quadratic variation. 0 

Notation Instead of writing L(x), where L: ffin ~ ffi is linear, we shall 

write aTx with a a n-column vector. 

4.2 Theorem Let X be a non-singular (A,B,C) - diffusion. Then 

(a) X has a smooth component if and only if C is singular; 

(b) for a # 0, aTX is smooth of order d if and only if 

(4.3) 
T T T d-1 T d 

aD = a BD = ... = a B D = 0, aB D # 0; 

and in that case the derivatives are given by 

(4.4) (1 ~ p ~ d) 

(c) X has a smooth component of order at least d if and only if 
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d-l rankCD,BD, ... ,B D) < n. 

Proof Throughout the proof we assume that X solves the SDE (2.2) with 

W a BM(n')-process. Also, for convenience we assume that Xo = o. 

Obviously (a) is a special case of (c) (for d=l) and (b) implies (c). 

Even though we need only prove (b), we find it instructive to present a 

simple direct proof af Ca). 

Because of (2.2), for any m 
aEffi , 

(4.5) T T T d(a X) = a (A+BX)dt + a DdW. 

But if C is singular, there exists a ~ 0 such that aTD = 0, and we 

see that aTX is continuously differentiable. Conversely, if aTX is 

so (4.5) shows that T 
a C a = 0, 

i.e. C is singular. 

To prove (b), assume first that a ~ 0 satisfies (4.3). From the 

argument just given since T 
aD = 0 we know that is continuously 

differentiable, and now proceed to show by induction, that if aTX is 

p - 1 times continuously differentiable, where 2 ~ p ~ d, it is also p 

times continuously differentiable with p'th dervative (aTX)(p) given by 

(4.4) (which for p = 1 is just (4.5) when aTD = 0). 

But with (4.4) valid for p - 1, it follows from (2.2) that 
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since aTBP- 1D = o. Thus (aTX) (p-1) is differentiable with derivative 

given by (4.4). 

Using (4.4) for p = d, one finds 

in particular 

does not vanish and thus aTX is smooth of degree d. 

T If conversely a X is smooth of degree d, we show that (4.4) holds 

and that aTBP- 1D = 0 for 1 ~ p ~ d. Indeed. since aTX is smooth, the 

right hand side of (4.5) is of bounded variation on finite intervals, 

hence aTD = 0 and (4.4) holds for p = 1. And if aTBP- 2D = 0 and 

(4.4) holds for p - 1, where 2 ~ p ~ d, then 

in particular the right hand side is of bounded variation wherefore 

aTBP- 1D = 0 and (4.4) holds for p. 

Finally, from (4.4) for p = d 

and since by assumption this quadratic variation must not vanish, 

o 
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Remarks Combining (c) with Theorem 3.2, we see that all smooth 

components of a nonsingular (A,B,C) - diffusion are of degree ~ n - 1. 

Furthermore, since 
d-l 

rank(D,BD, ... ,B D) increases strictly with d 

until the value n is reached, we see that if rank(C) = r < n, all 

smooth components are of degree ~ n - r. 

Singular (A,B,C) - diffusions may be characterized as those with 

()() 

C - smooth components: if X is singular, we know from Section 3 that 

there exists a ~ 0 with T 
a 2:(t)a = 0 for all t, i.e. 

Var(aTXtIXo) = 0 and consequently, a.s, simultaneously for all t 

T = a (a(t) + ~(t)XO)' 

with the rightmost expression differentiable infinitely often. 

Dym [5J studies a particular class of n-dimensional GHD's with a 

smooth component of order n - 1. In our notation, these processes are 

(O,B,C) - diffusions with B of the form 

0 1 0 0 0 
0 0 1 0 0 

B = 
0 0 0 0 1 
b b n-l b n-2 b2 b 1 n 

and C = DDT with DT = (0 ... 0 1). Essentially the same class of 

processes reappear in Okabe [18], Section 4. (See also Example 4.6 and 

Proposition 4.10 below). o 
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4.6. Example The simplest example of a nonsingular X with a singular 

C is obtained for n = 2 with 

We may take D = [~J in which case BD = [~J, so (3.3) holds and the 

diffusion is indeed nonsingular. 

Solving (2.2) with W a BM(l)-process gives 

so if we add the initial condition Xo - 0, 

The example is easily generalized to n dimensions, where smooth 

components of order 1, ... ,n - 1 are obtained as successive integrals of 

a one-dimensional Brownian motion: take A = 0 and 

use 

B = [~" 0] 
O· . i 0 ' [1 0 .. 'OJ 

C = ??.? .. . .. . 
o 0 ... 0 

DT = (1 0 ... 0) and with W as above, obtain 

(2 ~ p ~ n). 

o 
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4 7 E I I h I h 2 · e- tB = I - tB, . xamp e n t e previous examp e wit n = ,Slnce 

one finds that the associated process with independent increments is 

given by (see Proposition 2.12) 

Note that V is a martingale, cf. the final comment of Proposition 2.12. 

Suppose also that Vo - O. Then tV1,t + V2 ,t is differentiable 

i.e. V is an example of a continuous multidimensional martingale M = 

(M1 ,· .. ,Mn) for which there exists continuous functions f 1 , ... ,fn 

giving the process 

(4.8) 
n 
2: 

i=l 
f .M. 

1 1 

smooth paths, while still the process in non-trivial (non-constant). (Of 

course, if f 1 , ... ,fn are constants, (4.8) defines a continuous 

martingale; and therefore, if it has smooth paths, it is constant). 0 
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4.9 Example For n = 2, A = 0, 

where b ~ 0, D -- rolJ we obtain us ing II with W a BM(l), 

which, for b < 0, makes Xl a recurrent Ornstein-Uhlenbeck process, and 

X2 the classical Ornstein-Uhlenbeck velocity process. o 

We shall conclude this section with some comments on the connection 

between the results above and the theory of higher order Markov processes 

(see the introduction for references). The reader is first reminded that 

(Doob [4J, p. 272), a real valued process Y = (Yt)t~O is p'th order 

Makov in the restricted sense if the sample paths are p -1 times 

differentiable and for all s ~ 0, t > 0 the conditional distribution of 

Y given (Y) depends only on Y , y(l), ... ,y(p-l). 
s+t u O~u~s s s s 

In particular l'st order Markov is just Markov, Note that if Y is 

p'th order Markov, it is also Markov of any order higher than p, as 

long as the required path derivatives exist. 

4.10 Proposition Le X be a n-diminsional nonsingular (A,B,C) -

diffusion, and let aTX be a linear component. 
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(a) If aTX is smooth of order d ~ 0, then aTX is p'th order 

Markov in the restricted sense, where 1 ~ p ~ d + 1, provided 

( 4.11) 

(b) If aTX is a linear component which is smooth of maximal order 

n - 1, then aTX is n'th order Markov in the restricted sense. 

Remarks (a) applies in particular if aTX is smooth of order 0, i.e. 

if aTX has a non vanishing quadratic variation. In that case we see 

is Markov Hf 
T T 

aB=caB for some constant c. The reader 

may verify that this is the same as the condition (5.16) below when 

T 
Fx = a x. 

It was noted above that for an (A,B,C) - diffusion in n dimensions, 

all components are smooth of order d ~ n - 1. (b) tells us what happens 

for those rather special diffusions that posess a smooth component of 

order n - 1, such as the diffusions studied by Dym [5J and Okabe [18J 

(who started with a n'th order process and then arrived at his 

diffusions). 

Proof (a) Let aTX be smooth of order d and fix p, 1 ~ p ~ d + 1. 

In particular, the derivatives (aTX)(£) exist for 1 ~ £ ~ p - 1. 

Clearly, to show that aTX is p'th order Markov, it suffices to show 

that for sand t > ° given 
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where ~ stands for distribution. But both conditional distributions are 

Gaussian with, as a consequence, non random conditional variances. It 

therefore suffices to show that there exist constants and 'Y 

that 

or, using (4.4), that 

aT(a(t) + ~(t)X ) 
s 

p-1 T L p-1 T L-1 
= 2 cL a B X + 2 cL a B A + 'Y. 

L=O s L=l 

But this is possible if cL = cL(t) can be found such that 

i.e. precisely when 

p-1 T L 
= 2 cL aB, 

L=O 

T T L 
a ~(t) € span {a B : 0 ~ L ~ p - I}, 

such 

and that this is true for all t > 0 is immediate from (4.11) which 

implies that aTBm is in the linear span of the vectors aTBL 

(0 ~ L ~ p - 1) for all m. 

(b) If aTX is smooth of order n-l, 

(4.12) 
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by Theorem 4.2(b). In particular 

n-2 rank(D,BD,.o.,B D) < n. 

On the other hand, (303) holds and therefore 
L-l PL = rank(D,BD, .. 0 ,B D) 

increases strictly with L as long as 1 ~ L ~ no This is possible only 

if PL = L, in particular rankeD) = 1 and we may choose D to be a 

n x 1 column vector and then deduce that the n vectors n-l D,BD, ... ,B D 

are linearly independent and span mn. Using this we shall show that 

(4.13) T L n 
span {a B : 0 ~ L ~ n - I} = m , 

which implies (4.11) for p = n, completing the proof. 

That (4.13) holds, follows if we show that if x € mn satisfies 

T L 
a B x = 0, 0 ~ L ~ n - 1, then x = O. Write x in the form 

Using (4.3) with d = n we obtain 

forcing = 0 and 
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But then, again using (4.3). 

so en- 2 = O. Continuing we find e L = O. 0 ~ L ~ n - 1. and thus x = 0 

as desired. o 
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5. Affine equivalence of (A,B,C) - diffusions 

In this section we discuss conditions that permit us to transform, in a 

simple manner, the paths of an (A,B,C) - diffusion into those of another. 

We shall focus on transformations that are coordinatewise affine with. 

possibly. timedependent coefficients. 

Let ~ denote the space of continuous functions ~: [0,00) ~ mn. and 

let ~ denote the space of continuous functions ~ from [0,00) to the 

space of nonsingular n x n-matrices. Further, let X be an (A,B,C) - and 

X an (A,H,C) - diffusion, both n-dimensional and nonsingular. 

5.1. Definition X and X are affinely equivalent, denoted X ~ X, if 

there exists ~ € ~ and ~ € ~ such that the process ~ + ~X is an 

(A,H,C) - diffusion. o 

Notation The process ~ + ~X at time t takes the value ~(t) + ~(t)Xt. 

o 

For ~ + ~X to be an (A,H,C) - diffusion, it must be continuous. 

With X nonsingular, the continuity of ~ and ~ is then forced and is 

therefore assumed in the definition of ~ and ~. As will be seen 

below, only ~ and ~ that are 
00 

C need to be considered. 

Obviously, for any ~ € ~, ~ € ~, X = ~ + ~X is a Gaussian diffusion 

with, possibly, non-stationary transition probabilities. These are 

determined from the conditional expectations and covariances for X and 

using the nonsingularity of X it is then seen that the requirement that 

X be an (A,H,C) - diffusion is equivalent to ~,~ satisfying the 

equations 
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~(s + t) + ~(s + t)a(t) = ~(t) + ~(t)~(s) 

~(s + t)~(t) = ~(t)~(s) 

~(s + t)L:(tHT(s + t) = 2:(t) 

for any s,t L O. (Of course ~,~,2: are the functions given by (1.10) -

(1.12), using A,B,C as input). Fixing s, it is seen from the second 

m 
equation that ~ is C to the right of s and the first then shows 

m 
the same to be true for ~. Thus ~ and ~ are C on [O,m). The 

three functional equations as an easy consequence yield e.g. differential 

equations in ~ and ~, some of which will be explored further below. 

Of course, if ~ and ~ are constant, ~ + ~X belongs to «iI and 
n 

is nonsingular, see Proposition 5.3 below. To establish Proposition 5.4 

it is necessary to allow for timedependent ~. Allowing also for 

timedependent ~ makes it possible to construct certain (A,B,C) -

diffusions in a simple manner. see Example 5.13. 

The terminology used in Definition 5.1 suggests that is an 

equivalence relation. Formally this may be argued as follows: we saw 

above that if X is (A,B,C), then ~ + ~X, where ~ E ~, ~ E~, is 

(A,B,C) iff (5.2) holds. Consequently, if X* is another (A,B,C) -

diffusion and (5.2) holds, ~ + ~X* is (A,B,C). Now. to show for 

instance that is symmetric, assume that X ~ X with X (A,B,C), and 

find ~,~ such that X = ~ + ~X is (A,B,C,). Since 
-1 _lA 

-~ ~+~ x=x 

is (A,B,C), by what was just said, so is 
-1 -1~ ~ 

- ~ ~ + ~ X and hence X ~ 

X. 

A final remark in connection with (5.2): differentiating the last 

equation with respect to t, for t = 0 gives 
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T ~ 
~(s) C ~ (s) = C. 

in particular it is seen that X ~ X forces C and C to have the same 

rank. 

5.3. Proposition Let X be an (A,B,C) - diffusion and let ~(t) = E 

and ~(t) = F be constant with F nonsingular. Then X = E + FX is an 

(A,R,C) - diffusion, where 

The proof is trivial. 

A = FA - FBF-1E 

R = FBF-1 

~ T 
C = FCF . 

5.4. Proposition Any nonsingular (A,B,C) - diffusion is affinely 

equivalently to an (A,R,C) - diffusion, where A = ° and C is a 

diagonal matrix of the form 

(5.5) diag(l, ... , 1,0, ... ,0). 

o 

Proof Let X be an (A,B,C) - diffusion and choose F orthogonal such 

that FCFT is diagonal. By Proposition 5.3, FX is an (A,R.C) - diffusion 

with C = FCFT. Using a further linear transformation that permutes and 

rescales the coordinates appropriately, shows that X is equivalent to 

an (A,R,C) - diffusion with C as in (5.5). 
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Next, let again X be (A,B,C) and obtained as a solution to (2.2). 

Consider X = ~ + X. where (cf. (2.6)). 

It B 
~(t) = - oes A ds 

~ 

From (2.2) it is seen that X solves 

dX = BXdt + DdW, 

i.e. X is a (O,B,C) - diffusion. Since C is not affected by the 

transformation X ~X. it follows that any diffusion with C of the form 

(5.5) is equivalent to a diffusion with the same C and A = O. The 

proposition is proved. o 

We shall say that an (A,B,C) - diffusion is on standard form if 

A = 0 and C is given by (5.5). For the purpose of exploring the 

equivalence classes for Proposition 5.4 shows that it is enough to 

consider equivalence of two diffusions on standard form. We shall now do 

this for two diffusions X. X with C = C = I, A = A = O. Obviously, by 

Proposition 5.3, X ~ X if there exists F orthogonal such that 13 = 
-1 

FBF . The following result shows in particular, that it is possible to 

obtain X ~ X in some additional cases. 

5.6 Proposition Let B, 13 be given n x n matrices and let X be a 

(O,B,I) - diffusion. Then ~ + ~X. where ~ € ~. ~ € Ware 

differentiable, is a (0,13,1) - diffusion if and only if 



(5.7) 

(5.8) 

(5.9) 
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-.jJ' = B-.jJ - ..pB, 

T 
# = I. 

Remark ~,..p' denote the derivatives of ~ and -.jJ (componentwise). 

Note that (5.9) requires each -.jJ(t) to be orthogonal. 

Proof By Theorem 2.7. ~ + -.jJX is a (0,13,1) - diffusion iff 

is a BM(n) - process. Also, X satisfies 

dX = BXdt + dW 

with Wa BM(n), so by Ito's formula 

dU = {~' - B~ + (..p' - B..p + ..pB)X}dt + -.jJdW, 

which is a local martingale iff (5.7) and (5.8) hold (recall that X is 

nonsingular). Since 

(5.7) - (5.9) hold. 

T 
[U,UJ = # , it is seen that U is BM(n) 

Remarks Of course (5.7) has the complete solution 

tB 
~(t) = e ~(O). 

Hf 

o 
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The proposition may be rephrased as follows: for A = A = o. c = C = I, ~ 

and ~ solve the functional equations (5.2) iff they solve (5.7) -

(5.9). It is easy to derive the latter directly from (5.2), but more 

tedious to provide an analytic argument going the other way. 0 

The next result discusses the problem of finding the pairs (B.B) 

for which (5.8) and (5.9) are solvable and then determining the solution. 

The problem may be reduced slightly by imposing the boundary condition 

~(O) = I: suppose ~ with ~(O) = I solves (5.8) and (5.9) for the 

pair (B.FTBF) with F orthogonal. Then ~ = F~ solves (5.8) and (5.9) 

for the pair (B.B). and ~(O) = F. 

With B,B as above. introduce 

Q = B - B. 1 T 
R = ~B - B ). 

- 1 T 
B = 2"(B + B ). 

in particular R is skewsymmetric, B is symmetric and 

Also define the matrix-valued function 

bet) 
t(Q+R) -tR = e e. 

5.10. Proposition (a) Given B and B. there is at most one solution 

to the equations (5.8) and (5.9) that satisfy ~(O) = I. The solution 

exists if and only if 
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(ai) Q is skewsymmetric 

(aii) B and bet) commute for all t, 

and in that case is given by 

~(t) = bet). 

(b) In particular ~ = b solves (5.8) and (5.9) provided Q is 

skewsymmetric and either 

(bi) B commutes with Q and R 

or 

(bii) Q commutes with Band R. 

Proof Clearly (bi) implies (aii). And if (bii) holds, 

bet) = e 
tQ 

since Q and R commute, and again (aii) follows. Thus (b) follows from 

(a). 

For the proof of (a), we shall repeatedly use the fact that if M is 

T M skewsymmetric, M + M = 0, then e is orthogonal. 

Suppose ~ solves (5.8) and (5.9) with ~(O) = I. The differential 

equation (5.8) has the unique solution 

~(t) 
tB -tB = e e 
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but of course this ~(t) is not orthogonal in general. But with (5.9) 

true, also ~,~T + ~,T = 0, or 

~' = _ ~,T~ 

and inserting this in (5.8), solving for ~,T using (5.9) and 

transposing gives 

(5.11) 

For t = 0 this and (5.8) gives 
T Q = - Q , i.e. (ai) holds. But 

then taking the average of (5.8) and (5.11) gives 

(5.12) ~' = (Q + R)~ - ~R, 

which, when ~(O) = I, has 0 as its unique solution. Subtracting 

(5.11) from (5.8) and using that Q is skewsymmetric, shows finally that 

(aii) holds. 

If conversely (ai) and (aii) are true, ~(t) = o(t) is orthogonal 

since Q and Rare skewsymmetric, so (5.9) holds. And since (5.12) is 

true, adding B~ - ~B, which is 0 by (aii), to the right hand side of 

(5.12), we see that (5.8) follows. D 

Remarks An equivalent formulation of (aii) is that for all p, B 

commutes with o(p)(O), where o(p) is the p'th derivative of o. In 

particular, for p = 1 this shows that Band Q commute. 
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If Q is skewsymmetric and (bii) holds, as already noted a(t) = 
tQ 

e Thus (a(t))t~O defines a semigroup of orthogonal transformations: 

a(s + t) = a(s)a(t). 

In the two-dimensional case, the space of skewsymmetric matrices is 

one-dimensional, so that Q and R always commute. Hence a(t) = e tQ 

and with Q skewsymmetric, (aii) holds iff Q commutes with B. Using 

that B is symmetric it is readily checked that with Q # 0 (i.e. B # 

B which is the only interesting case), this is possible iff B = kI for 

some constant k. o 

5.13. Example Suppose that B = bI for some b € ffi. Proposition 5.10 

~ 

(a) shows that (5.8) and (5.9) are solvable, with ~(O) = I, iff B = 

B + Q with Q skewsymmetric and in that case the solution is ~(t) = 
tQ 

e . 

Thus, if X has independent components which are (O,b,c)-

diffusions (one-dimensional Ornstein-Uhlenbeck processes with a = 0, 

see Example 1.21), Xt = etQXt defines a (0, bI +Q, cl) - diffusion 

whenever Q is skewsymmetric. If b = 0 we call X a rotating Brownian 

motion and, for b # 0, a rotating Ornstein-Uhlenbeck process. 

In particular, if b = 0, c = 1 and Xo = 0, X is a BM(n) -

process, and X becomes a (O,Q,I) - diffusion. Note that since I Ixl I = 

I Ixl I (with I I· I I the Euclidean norm), it follows that the radial part 

of a rotating Brownian motion in n dimensions (with c = 1) is a 

n-dimensional Bessel process. However, one cannot expect to find askew 

product representation of X since after the time change required to 

make the directional part of X Markovian, the rate of rotation will 

depend on the radial part. 
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For n = 2 a simple expression is available for the transformations 

tQ. a(t) = e . necessarily 

for some 8, and one finds 

tQ 
e = [ -

cos 8t sin 
8t]. 
8t 

o 
sin 8t cos 

It is easy to find other examples where Proposition 5.10 applies, but 

they appear mostly to involve transformations of little known processes 

into others that are equally unknown! 

The reduction to standard form performed in Proposition 5.4 is not 

entirely satisfactory, since it does not reduce the matrix B. As we 

shall now see, in certain cases, this is possible. 

The following result is a modification of Gzyl's theorem [6] (which 

deals only with stationary GHD's). We believe that there is a mistake in 

his reasoning, which leads him to consider deterministic processes in two 

dimensions of Doob's type M(e i 8) ([4], p. 240) rather than rotating 

Ornstein-Uhlenbecks. 

5.14. Froposition Let X be a (O.B,I) - diffusion, and suppose that B 

is normal. Then there exists F orthogonal such that FX is a (O.B.I) -

diffusion with B of the form 
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where each diagonal block matrix is either a scalar or a 2 x 2 matrix of 

the form 

Proof Use Proposition 5.3, and the fact used by Gzyl. that there exists 

F orthogonal such that FBF-1 = B (Schmidt [19], Theorem 3.2 (b)). D 

Remarks Recall that B is normal if BBT = BTB. In particular any B 

symmetric. skewsymmetric or orthogonal is normal. 

It may be noted, that the transformation a(t) carrying a (O.B,I) 

diffusion into a (O,B.I) - diffusion if conditions (ai), (aii) of 

Proposition 5.10 are satisfied, leaves the class of diffusions with 

~ 

normal B invariant: if B is normal. so is B = B + Q by (ai). (aii) 

and the first remark following Proposition 5.10. 

Proposition 5.14 has the following alternative formulation: if 

C = I, B is normal, after a suitable orthogonal transformation and 

conditionally on Xo = x say. X splits into independent components. 

each of which is either a one-dimensional Ornstein-Uhlenbeck process, a 

scaled BM(l) - process, a two-dimensional rotating Ornstein-Uhlenbeck or 

a two-dimensional rotating Brownian motion (cf. Example 5.13). D 
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We shall conclude this section with a result that deals with 

(constant) affine transformations. but not with affine equivalence. 

Let L: ffin ~ ffim be affine and given by a m-column vector E and a 

m x n-matrix F. 

Lx = E + Fx. 

Also, let ker(F) = {x € ffin: Fx = O} denote the kernel space for F. 

5.15. Proposition If X is a non-singular (A,B,C) - diffusion, then 

X = E + FX is an (A,R,C) - diffusion for some A,R,C if and only if 

(5.16) B ker(F) ~ ker(F). 

If this condition is satisfied, necessarily 

(5.17) 

(5.18) 

(5.19) 

In particular, if 

RF 

A 
~ 

C 

m ~ n and 

= 

= 

= 

FB 

FA - RE 

FCFT. 

F is of full rank m, 
~ 

A,R,C 

uniquely determined by these equations, and X is nonsingular. 

are 

Proof Assume as usual that X solves (2.2). By Theorem 2.7, X is an 

(A,R,C) - diffusion iff 
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~ 

is a local martingale with [V,VJ t = tC. But 

dV = {FA - A - BE + (FB - BF)X}dt + FDdW, 

and since X is nonsingular, it follows that X is (A,B,C) iff (5.17) 

- (5.19) hold. 
~ 

That (5.17) holds for some B is equivalent to saying that x ~ FBx 

depends on x only through Fx, a condition which is equivalent to 

(5.16). 

The proof of the last assertion is trivial. o 
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6. Stationarity 

Let X be a nonsingular (A,B,C) - diffusion on rnn. We shall say that 

X is stationary, or has a stationary version, if the transition 

probabilities 

Pt(X,o) = N(a(t) + ~(t)X,2(t)) 

for X admit an invariant probability, i.e. there is a probability w 

on such that 

for all t. 

Let 

spec(B) = {A E ~ Bz = AZ 
n for some Z E ~ ,O} 

denote the spectrum for B when viewed as a linear mapping on ~n. 

6.2 Theorem (a) For a nonsingular (A,B,C) - diffusion X to be 

stationary it is necessary and sufficient that 

(6.3) spec(B) ~ {A E ~: Re(A) < O}. 

In particular it is necessary that B be nonsingular. 
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(b) If (6.3) holds, the invariant probability rr is uniquely 

determined as the Gaussian law with mean ~ and nonsingular covariance 

T given by 

(6.4) A + B~ = 0, C + BT + TBT = O. 

(c) If (6.3) holds, 

lim (a(t) + ~(t)x) = ~ 
t~ 

lim ~(t) = T, 
t~ 

n (x E ffi ), 

that is, for every x E ffin , as t ~ 00, Pt(x,o) converges weakly to the 

invariant probability rr = N(~,T). 

(d) If (6.3) holds and X has initial distribution rr = N(~,T), 

then the covariance function for the stationary process X is R(t) = 
T 

E(XO - ~)(Xt -~) where 

Remarks Condition (6.3) was noted by Doob [4J (e.g. p. 265), and it is 

well known that if it holds, there is a unique invariant Gaussian law, 

see Zakai and Snyders [20J or Section 6 of Ichihara and Kunita [8J. D 

Proof We shall show that X has an invariant Gaussian probability rr 

iff (6.3) holds, and that with rr = N(~,T), (6.4) and (c) and (d) are 

true. If then ; is an arbitrary invariant probability, and (6.3) holds, 



56 

since ~ = TIPt ~ ~ weakly as t ~ 00, it follows that ~ =~. The proof 

is then completed by showing that the existence of an invariant 

probability implies (6.3). 

If ~ is Gaussian, so is TIP t as given by the expression on the 

right of (6.1). It follows that ~ = N(M.r) is invariant iff for all t 

(6.5) 

(6.6) 

M = aCt) + ~(t)M, 

r = ~(t) + ~(t)r~T(t). 

Suppose N(M,r) is invariant. By (6.6), r 2 ~(t) and since ~(t) 

is nonsingular, so is r. 

T Let now A € spec(B ) = spec(B) 

AZ. Then BTz = ~ z and 

tA = e z, 

and from (6.6) and (1.12) it follows that 

-T 
Z rz -T SAC SA d -T tAr tA =fot - -

z e e z s + z e e z 

-Tc ft 2sRe(A)d -Tr 2tRe(A) = z z e s + z ze , 
o 

in particular the right hand side is bounded as a function of t, and 

consequently, since r is nonsingular, Re(A) S 0 always, and if 
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Re(A) = 0, -T necessarily z Cz = 0, i.e. zTD = 0 for D determined so 

that T 
DD = C. But since X is nonsingular we can rule out this 

possibi li ty: in 

contradiction with (3.3). We have shown that if there is an invariant 

Gaussian law, then (6.3) holds. 

Now suppose that (6.3) holds. In particular B is nonsingular and 

therefore (6.4) has a unique solution in a vector ~ and a symmetric 

matrix f. Also because of (6.3), the limits 

~ 

(cf. (1.11) and (1.12)), exist and are finite with, evidently, f 

positive semidefinite. But, using (1.3), (1.5) it is readily checked that 

M, f satisfy (6.5) and (6.6), i.e. N(M,f) is invariant. 

Differentiating (6.5), (6.6) at t = 0 we see that ~, f solve (6.4) 

and therefore deduce that ~ = M, f = f and that N(~,f) is invariant. 

Assertion (c) is now also immediate since by (6.3), ~(t)x ~ 0 for all 

x, while (d) follows from (1.20). 

It remains to show that if rr is any invariant probability, then 

(6.3) holds. Suppose ; is invariant and that (6.3) does not hold. Find 

T A € spec(B ) with Re(A) L 0 and find z € ~n,O such that T B z = AZ. 
~ ~ 

Let X be a timehomogeneous Markov process with initial law rr and 

transitions and consider the complex-valued process z, where 
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Since ~ is invariant, the distribution of Zt does not depend on 

t. On the other hand, the conditional variances VRe and VIm given 

Xo = x for the realvalued variables Re(Zt) and Im(Zt) satisfy, cf. 

(1.12). 

VRe(t) + VIm(t) = -zTczlot e2sRe(A)ds. 

Reusing an earlier argument, since BTz = AZ and (A,B,C) - diffusions 

T T 
are nonsingular, we see that D z ~ 0 for D with C = DD. Because 

Re(A) ~ 0 therefore VRe(t) + VIm(t) ~ 00 as t ~ 00 which is enough to 

guarantee that for all x € mn and all r ~ 0 

lim P(/Zt/ ~ r I Xo = x) = o. 
t~ 

(Recall that given Xo = x, Re(Zt) and Im(Zt) are both Gaussian with 

a variance not depending on x). But then also 

tends to 0 as t ~ 00 for all r ~ 0, which is impossible with ~ a 

probability. o 

Let again X be a nonsingular (A.B,C) - diffusion and let F be a 

mxn - matrix. Assume that m ~ n and that F has full rank m. We 
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shall say that X has F as a stationary component if there exists a 

Gaussian law ~ = N(~,r) such that if X is run with initial 

distribution ~, the m-dimensional process FX is strictly stationary: 

the distribution of (FX) does not depend on s. 
s+t t~O 

The following result is read off from Proposition 5.15 and Theorem 

6.2. 

6.7 Proposition If X is nonsingular and F is of full rank m ~ n, 

then F is a stationary component provided 

B ker(F) ~ ker(F) 

and 

~ m 
spec(B)~ {A € ~ : Re(A) < O}, 

where B is the uniquely determined m x n - matrix satisfying BF = FB. 

o 
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7. Equivalence of measures 

denote the space of continuous paths . n w· IR ~ IR , 
+ 

° write Xt 

° for the projection Xt(w) = wet) and introduce the a-algebras 

o 
pX denote 
A,B,C Fix an initial state ° n x € IR and for A,B,C given, let 

the probability on 

diffusion starting at 
o 

x. 

o 

that makes 

For t ~ 0, 

o x 
restriction to ~t of PA,B,C· 

an (A,B,C) -

for the 

In this section we shall discuss the problem of equivalence between 

° ° two measures pt _ pt,x and 
- A,B,C 

pt = pt,x , 
A,B,C 

and in the case where 

pt ~ pt, determine the Radon-Nikodyrn derivative dPt/dPt. Note that 

since 
~t 
P and are both Gaussian. pt ~ pt Hf 

In agreement with the shorthand notation just introduced, we shall 

write P 

Let 

XO is 

for 

t > o. 

tC and 

lim 
n~ 

0 ° x P for pX 
PA,B,C' A,B,C 

Subject to p, the quadratic variation on [O,t] 

hence 

with convergence in P-probability. Passing to a P - a.s. convergent 

~ 

of 

subsequence, if pt« pt that subsequence must also converge P - a.s. 

to tC. It follows that if pt« pt, then C = C. 
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If C is nonsingular, standard results show that this condition is 

~ 

also sufficient for pt« pt. If however C = C is singular, under 

both P and P some components of XO are completely determined from 

~pt « pt others, cf. Proposition 3.6, and for to hold. it is then 

necessary that on [O.t] these components should be determined from the 

others in the same manner, regardless of whether p or is used. 

In the result to be stated now. we use the same block matrix notation 

as in Proposition 3.6 so that we write 

XO = [:!] , A = [~], B = [B11 
B21 

B12] 
B22 

with ° Xl the first n' components of XO Bll the upper left n' x n 
, 

submatrix of B etc. Also. as usual. D is any n x n I - matrix wi th 

T DD = C. 

7.1 Theorem (a) Ei ther pt ~ pt for all t > 0 or pt .L pt for all 

t > O. 

(b) If C is nonsingular. pt ~ pt if and only if C = C and in that 

case 

(7.2) 

where 

o 
Z = A + BX • s s 

z 
s 

~ ~ 0 
= A + BX . s 
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(c) If C is singular and (A,B,C) - diffusions are nonsingular, pt ~ pt 

if and only if C = C and 

(7.3) 
T~ T T~ T 

a A = a A, a B = a B 

for all a E mn with aTD = O. In particular, if 

(7.4) [
I I 

C = n 
o 

where n ' = rank(C) < n, pt ~ pt if and only if 

and in that case 

where 

Remark In Corollary 2.1.2 of [1], Le Breton and Musiela give the 

Radon-Nikodym derivative on [O,t], in the case where A = A = 0, 
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is allowed to be singular and + '" + B = (I - CC)B with C a generalized 

inverse of C. It is obvious that in this case the condition (7.3) is 

satisfied. o 

Proof (a) For a given t > 0 either pt '" pt or pt 1. pt since both 

pt and pt are Gaussian. That equivalence either holds for all or none of 

t > 0 is a consequence of (b) or (c) since the conditions given there do 

not depend on t. (If the (A,B,C) - diffusions are Singular one must 

first transform linearly into a nonsingular diffusion before using this 

argument) . 

(b) That pt« pt implies C = C was argued in the introductory 

'" remarks of this section. Suppose now that C = C is nonsingular and find 

F nonsingular so that T 
FCF = 1. Consider 

(7.6) ° ° Y = F(X - x ) 

which subject to P (P) ° -1 is a (F(A + Bx ), FBF ,I) - diffusion 

((F(A + BxO) , FBF-1 ,I) - diffusion) starting at the origin, cf. 

Proposition 5.3. In particular, under P there is a BM(n) - process W 

defined on 0° such that 

-1 = (F(A + Bx) + FBF Yt)dt + dWt 

with a similar expression valid under P. From the multivariate analogue 

of Theorem 7.7 in Liptser and Shiryayev [14] it then follows that if 

is the distribution of under p (P), we have 

with 

t 
1-L 
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d~t _ exp ut (ZT - ZT )dXo - 1:.. It (ZT Z - ZT ZF. s)dS] 
dMt - 0 F,s F,s s 2 0 F,s F,s F,s 

where 

"'t t But then P '" P and 

where f: 00 ~ 00 is the transformation corresponding to (7.6), i.e. 

o 0 0 -1 T 
Xt 0 f = F(Xt - x). Using this and C = F F, (7.2) follows easily. 

(c) If "'t t '" P «P we know that C = C. With (A,B,C) - diffusions 

nonsingular it also follows directly that (A,B,C) - diffusions are 

T T 0 
nonsingular. Let now a # 0 satisfy a D = o. Then a X is smooth 

under both P and P by Theorem 4.2 (b) and 

(7.7) 

"'t t '" and consequently P «P forces that P - a.s. 

T '" 0 a (B - B)X = constant s 

P - a.s. 

P - a.s. 

(0 ~ s ~ t). 
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Since XO is nonsingular under P it follows that 

inserting this in (7.7) then gives 
T", T 

a A = a A. 

T'" T a B = a B, and 

Suppose conversely that '" T'" T C = C and a A = a A, for all 

a with 
T 

a D = O. Considering Y = F(Xo - xc) for a suitable 

° nonsingular F. we may without loss of generality assume that x = 0 

and that C has the form (7.4) where n' = rank (C). We may then use 

which is n x n', and find that the assumptions on A,A,B,B translate 

into 

By Proposition 3.6, under both P and P, ° X2 is adapted to the 

° filtration generated by Xl' Combining this with (3.8) and Theorem 7.7 

in [14], we see that if PI' PI denote respectively the P - and P -

distribution of (so are probabilities on the space of 

, d" . 1 h) h "'pl
t « PIt n - lmenSlona continuous pat s . t en 

where (with a convenient notational abuse) XO now denotes the 
l,s 

° on 01) and e.g. 
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Again invoking the fact that is a function of it 

follows that pt« pt and that (7.5) holds. D 

7.8 Example Let n = 2, A = 0, B = [~ g], c = [~ g], cf. Example 4.6. 

Then pt ~ pt for all t > ° iff C = C and 

in which case 

with 

p - a.s. and P - a.s. D 
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