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A STATISTICAL ANALYSIS OF COINTEGRATION FOR 1(2) VARIABLES1 

Abstract. This paper discusses inference for 1(2) variables in a VAR model. The procedure 

suggested consists of two reduced rank regressions, and inference on the cointegration ranks 

can be conducted using the tables already prepared for the analysis of cointegration of 1(1) 

variables. The paper contains a multivariate test for the existence of 1(2) variables. The 

asymptotic distribution of the proposed estimators of the cointegrating coefficients is mixed 

Gaussian which implies that asymptotic inference can be conducted using the X2 distribution. 

The procedure is illustrated using a data set consisting of UK prices and exchange rates. 

1This paper was written while the author was visiting Department of 
Statistics University of Helsinki. The visit was supported by the Danish 
Social Sciences Research Council acc. nr. 14-5793. 
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1. The models 

Consider the vector autoregressive model with Gaussian errors in p dimensions 

k Xt = IJ1 IIiXt_i + ft, t = 1, ... ,T, 

where the initial values X -k+l' ... 'XO are fixed, where ft are independent Gaussian variables 

Np(O,O), and the parameter space is given by 

(1.1) (IIl' ... ,IIk,O) unrestricted. 

It is convenient to rewrite the model in an error correction form that anticipates the 

analysis of the 1(2) model given below 

2 k-2 2 (1.2) t:,. Xt = f t:,.Xt_1 + IIXt_2 + IJ1 fit:,. Xt_i + ft· 

The relation between the parameters (f,II,f 1, ... ,f k-2) and (IIl' ... ,IIk) is found by identifying 

coefficients of the lagged levels in the two different expressions. 

This model is the unrestricted V AR model and will be called the 1(0) model in the 

following, since in some sense, see Theorem 1, most of the probability measures of interest in 

this model are those that make the process Xt stationary, and this is the model that is usually 

applied to describe the variation of stationary processes. There are, however, many 

probability measures, that is, choices of parameter values in the set described in (1.1), that 

make the process non stationary, and in the following we define and analyse two classes of 

such models. The first class consists of the first order cointegration models, or the 1(1) 

models, given by the parameter restrictions 

(1.3) H: r II = a(3', 

where a and (3 are matrices of dimension pxr. It follows from Granger's theorem, see 

Theorem 2, that in the 1(1) model most processes are 1(1). The likelihood analysis of this 

model is given in Johansen (1988a), see also Ahn and Reinsel (1988). We have used the 

notation Hr for the model defined by (1.3) where the dimension of a and (3 is r. We let H~ 

denote the model where also the rank of a and (3 is r, that is, a and (3 have full rank. Then Hr 

r 
= U H~, and HO ( ... ( H , where H is just the 1(0) model or the unrestricted VAR model. 

i=O 1 P P 
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We consider here the further sub models, the 1(2) models, given by the parameter 

restrictions 

(1.4) 

(1.5) 

H r,s 

H : r,s 

IT = a{3' 

a' r {3 = II)'rl' 
.L .L 

where a and {3 are pxr matrices of rank rand cp and 'TJ are (p-r)xs matrices. 

Here and in the following we use for any p x r matrix 1 of full rank the notation 1 to 
l. 

denote a px(p-r) matrix of full rank such that 1'1 = o. It is also convenient to have the 
.L 

notation 1 = 1("('1)-1, such that 1'1 = 1 and the projection onto the column space spanned 

by 1 is 1( 1'1)-11, = 11' = 11'· 

We also define HO as the submodel of H defined by cp and 'TJ having full rank s. r ,s r,s 
s 0 0 

Then H = U H ., and HOC H 1 C ... C H = H cH. r,s i=O r,l r, r, r,p-r r r 

Table 1 

The relation between the various hypotheses in the /(2) model 

p-r r 

0 HO 0 c HO 1 c .. c H c HO,p 
0 

c HO P O,p-1 = HO , , 
n 

p-1 1 H10 c ... c H 0 
c H1 , 1,p-2 c H1,p-1= H1 
n 

1 p-1 H 0 
c Hp p-1,O cH 11=H 1 p-, p-

Note that the model HO is the model that allows for r cointegrating relations and r,p-r 

no 1(2) variables. A multivariate test of this model is given in Corollary 9 . 

The mathematical analysis of these models is given in Johansen (1990c) and can be 

briefly summarized as follows. Let 

( ) k i ( )2 () 2 k-2 ( )2 i A z = 1 - El ITiz = 1-z 1 - 1-z r - ITz - El r i 1-z z 

denote the characteristic polynomial of the autoregressive process (1.2). It is well known that 

the properties of this polynomial determines the properties of the process Xt defined by (1.2). 

In the probability analysis below we assume throughout that the roots of the characteristic 
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polynomial satisfy the relation 

(1.6) detA(z) = 0 implies that I z I > 1 or that z = 1. 

Thus we allow only unit roots, and exclude thereby both seasonal roots (on the unit 

circle) and explosive roots (inside the unit circle). We then formulate three theorems that 

describe the properties of the process Xt in the various models. 

The first result is the well known condition for stationarity of the process and describes 

most of the processes in the 1(0) model. 

THEOREM 1. If X t satisfies (1.2) for all t and if IT has full rank then the process X t is 

stationary. 

Thus condition (1.6) excludes unit roots and shows that most of the V AR' s, which satisfy 

condition (1.6), represent stationary processes, since the autoregressive representation (1.2) is 

invertible. In the next theorem which is a version of Granger' s representation theorem, see 

Engle and Granger (1987), we allow for unit roots, but in order to make sure that we only 

allow for non stationarity that can be removed by differencing we need another condition. 

THEOREM 2. If X t satisfies (1.2) for all t, and if 

IT = a{3' 

has reduced rank rand 

(t.7) a'r{3 
1. 1. 

has full rank, then the process X t is non stationary, l::,.Xt is stationary and finally {3' X t is 

stationary. 

This result shows that in the 1(1) model the processes which satisfy (1.7) are in fact 1(1). 

This formulation of Granger's result and the proof of Theorem 2 is given in Johansen (1990c). 

In view of Theorem 2 is looks natural to see what happens if the matrix in (1. 7) has reduced 

rank. The next theorem shows that if this is the case and some further condition (1.11) is 

satisfied then we have 1(2) processes. 
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In the following we apply the notation ABC = (B'B)-1B'AC(C/C)-1 for matrices 

A,B and C of matching dimensions. The idea is of course that if in particular B' = (1,0) and 

C, = (1,0) and A is decomposed in block matrices A = {Aij, i,j = 1,2} then ABC = All' We 

need the matrix 

(1.8) ~ k-2 8=r,ua/r+I-r-E1 r i 

for the formulation of the next result. 

THEOREM 3. 

{l.g} 

has rank r and if 

{1.10} 

If Xt satisfies {1.2} for all t} and if 

IT = af31 

has rank s} where I{J and 'T/ are {p-r}xs, and iffurther 

{1.11} {a}aJ.I{J}~8{f3,f3J. 'T/}J. 

has full rank, then the process Xt is non stationary and ll2Xt is stationary. If we define f31 = 

f3J. 'T/, a1 = aJ.I{J, f32 = {f3,f31}J.' and a2 = (a,a1}J. then it holds that f3jllXt and f31 Xt + 

a/r731l2llXt are stationary. 

Further Xt has the representation 

{1.12} t s t 
X t = Ct? lE lfi + C/] lfi + Yt + Xo - Yo' 

A simple consequence is that 

(1.13) 

which will be used below. It is a consequence of (1.12) that for instance f3IXt is 1(1) since 

f3' C2 = O. Similarly we find from (1.13) and (1.12) that apart from a stationary process 

a,X - a,c "t - r 0-1 -/,,t 
,u t -,u 1 L/1 fi - - af32'C1 a2f32 a2L/1 fi' 

and since f32,C 2 = f32,7328~~f32 a2, = 8~~f32 a2, it follows that 
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a ' r7J2{i2 llXt = r~{i2 e~~{i2 a2~i f i , 
which gives the result that {i' Xt + a'r7J2{i2llXt is stationary. Thus under conditions 

(1.9,1.10,1.11) the process itself is 1(2), and the restrictions (1.9) and (1.10) describe the 1(2) 

model HO . The linear combinations {i and {i1 reduce the order from 2 to 1. The vectors in {i r,s 

have the further property that the 1(1) variable {iIXt cointegrate with {i2/llXt. Thus the 

vectors in f3 and {i2 capture the notion of multi cointegration or polynomial cointegration see 

Engle and Yoo (1989), Granger and Lee (1988), and Johansen (1988b). 

The illustrative example in section 4 needs a more complicated model involving 

seasonal dummies, constant term and strictly exogenous variables. We here treat in detail the 

model without these complications and later mention how the results have to be modified. 

Before proceeding to the statistical analysis of the 1(2) models we need one more result 

that is crucial for the asymptotic analysis and also for the understanding of the role of the 

coefficients {i. It follows from the above that the vectors {i do not necessarily reduce the order 

from 2 to 0, but there is another process derived from Xt for which {i has this property. In 

order to see this define 

RtT = Xt - [~i XtllXf][~ i llXt llXf]-lllXt , 

that is the levels corrected for the differences over the interval1, ... ,T. 

THEOREM 4: Under the assumptions of Theorem 3 it holds that {i' Xt regressed on llXt, 

t = 1} ... } T} converges weakly to a stationary process} i. e. 

w 
{i' RtT -I {i' Xt + a ' r7Jfi32llXt} T -I CD 

which is stationary by Theorem 3. 

The proof ofthis result is given in section 3. 

2. The statistical analysis 

The likelihood based analysis of the 1(0) model reduces to ordinary least squares regression 

and will not be discussed here. The analysis of the 1(1) model Hr is performed by a 
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combination of regression and reduced rank regression, see Anderson 81951) or Johansen 

(1988a). In order to introduce the notation for the subsequent analysis of H , we give some r,s 

details here. 

In model H the matrix IT is restricted as IT = a(3' but the parameters r 

(a,(3,r,r 1,· .. ,r k-2) vary independently. Hence the parameters r l' ... ,r k-2 can be eliminated 

by regressing L12Xt , L1Xt_1 and Xt_2 on L12Xt_1"" ,.6. 2Xt_k+ 2. This gives residuals 

ROt,RH and R2t , and residual product moment matrices 

( ) -1 T 2.1 M .. = T E 1R. tR.t', IJ 1 J 
i,j = 0,1,2. 

The remaining analysis of both the 1(1) and the 1(2) models can be performed from the 

equations 

(2.2) 

The analysis of the 1(1) model is given by first eliminating the unrestricted parameters r by 

regression and forming the residual product moment matrices 

-1 
M .. 1 = M .. - M· 1M11M1·, IJ. IJ 1 J 

i,j = 0,2, 

and residuals 

-1 
Ri.H = Rit - MU MU RH' i = 0,2. 

Next solve the eigenvalue problem 

(2.3) I AM22.1 - M20.1M05.1M02.11 = 0, 

for eigenvalues Al > ... > Ap and eigenvectors V = (v1, ... ,vp)' The maximum likelihood 

estimators are then given by 
n n 

(2.4) (3 = (v1,· .. ,vr), a = M02.1(3, 0 = MOO.l - aa'. 

Finally the maximized likelihood function is found from 
-2/T _ n _ r n 

Lmax - 101 - IMOO.IIITl(l-\). 

From this it follows that if one wants to test the 1(1) model Hr with rank ~ r in the 

1(1) model with rank ~ p, Hp' i.e. in the unrestricted VAR model, the likelihood ratio test 

becomes 

(2.5) T = -2InQ(H I H ) = -TEP+l1n(1-~.), (r = O, ... ,p-l). r r p r 1 

The asymptotic properties of the estimators and test statistics were given in Johansen 

(1988a), under the assumptions of Theorem 2, i.e. when the process is 1(1). There it was also 
n 

shown that the limit distribution of T(f3-(3) is mixed Gaussian, and hence asymptotic 
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inference on hypotheses on fJ can be conducted using the X2 distribution. The asymptotic 

distribution of the test statistic (2.5) is given under the assumptions of Theorem 2 as a 

functional of Brownian motion that can be expressed as 

(2.6) 

Here B is a Brownian motion of dimension p-r on the unit interval. The dimension p-r is 

called the degrees of freedom for the test statistic. 

Some applications of these methods are given in Johansen and Juselius (1990,1991). 

With the above notation we can now describe the statistical analysis of the 1(2) model 

H . The model is defined by the reduced rank conditions (1.4) and (1.5) on IT and f, but r,s 

since the last condition depends on the reduced rank of the first condition it is rather involved 

to estimate the parameters simultaneously, see Johansen (1990b) for an algorithm. Instead 

we give here a method that is very easy since it only involves regression and reduced rank 

regression. 

The first step is to determine (r,a,fJ) from the 1(1) model, that is estimate (1.2) or 

equivalently (2.2) with f unrestricted, giving the estimates (2.4). Next assume that these 

parameters are known and fixed and continue the analysis of (2.2) as follows. Multiply by a' 
and a' in (2.2) to obtain 

.L 

(2.7) a'ROt 

(2.8) a~ROt = a~fRlt + a~ Et· 

Define w = a' Oa (a' Oa )-1, and subtract w times (2.8) from (2.7) to get 
.L .L .L 

(2.9) alROt = wa~ROt + (a/f - wa~f)Rlt + fJIR2t + (al-Wa~)Et· 

Note that the errors in (2.8) and (2.9) are independent, and that the coefficients in (2.8) are 

variation independent of those in (2.9) even under the restriction (1.10), which only restricts 

the coefficients of (2.8). The equations can therefore be analysed independently, and the 

analysis of (2.9) is just a regression of (aIROt-fJ'R2t) on a~ROt and Rlt . 

We now focus on the analysis of (2.8), which we write using I = llfJ' + II fJ' as 
.L .L 

= a ' f(llfJ' + II fJl)R + a' E 
.L .L.L It .L 

or 

(2.10) 

From this it is seen that the analysis consists in eliminating the parameters a' fll by 
.L 
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regression of a~ ROt and ,8~ Rlt on ,8' Rlt, and then solve a reduced rank problem 

(2.11) 'pM - M "M -1"M I = o. ,8 ,8 .,8 ,8 a.p a a.p a,8.,8 .L .L .L.L .L.L .L .L 

We here use the rather compact notation 

M,8 ,8 .,8 = ,8~(M11 - M11,8(,8'M11,8)-1,8'M11 ).B.L l 

.L .L 

M,8 a .,8 = ,8~(M10 - M11,8(,8'M11,8)-l,8'MlO)a.L' 
.L .L 

and 

Note that here,8 and,8 transforms the differences, which are 1(1) variables, and a the .L .L 

second differences which are stationary under the assumptions of Theorem 3. The notation 

indicates how the matrices are transformed and how they are conditioned. The solution of 
A A 

(2.11) gives eigenvalues P1 > .. , > Pp- r and eigenvectors W = (wl' ... ,wp_r)' and the 

maximum likelihood estimators (for fixed known r,a and ,8) are then 
A A 

'f/ = (wl'''''ws), ep = Ma ,8 .,8'f/, °a a = Ma a .,8 - epep' . 
.L .L .L .L .L .L 

Finally the factor of the likelihood function that comes from equation (2.10) is given by 

Lm~~T = 'a~ a.L ,-1, Ma a .,8' II~(1-;J 
.L .L 

This shows that, still for known values of r,a, and ,8, the likelihood ratio test of the model 

with reduced rank S s, H ,in the model H = HO is given by r,s r,p-r r 

(2.12) T = -2lnQ(H 'HO) = -TBP+1rln(1-;.), r,s r,s r s 1 

since the factor that comes from equation (2.9) is the same with and without restriction (1.5). 

In summary the procedure that we propose here is first to solve the estimation problem 

for the 1(1) model for all values of r by solving (2.3). Next consider for each value of r, the 
A A A A 

estimates of a, ,8, a , and,8 and form the differences of the common trends a'Xt , which .L .L .L 
A 

satisfy the equation (2.10) which does not contain terms involving the levels. Since,8 = ,8 is 

assumed known at this stage, the process ,8' ~Xt_1 is a known stationary process and since its 

coefficients are unrestricted by condition (1.5) they can be eliminated together with the 

coefficients of the lagged second differences ~ 2Xt_ p ~ 2Xt_k+2' What remains is a 

reduced rank regression problem for the variables in differences. 
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The cointegration ranks rand s are determined by testing the hypotheses HO' H1, ... 
~ 

using the test statistics T r' and let r be the index of the first non rejected hypothesis. Next 

we test for r = r the hypotheses H 0' H 1"" using the test statistics T ,and let s be the r, r, r,s 

the index of the first non rejected hypothesis. In particular if H is rejected for all s, we r,s 

accept the hypothesis that there are r cointegrating relations and no 1(2) variables. 

We give now some results which demonstrate the properties of the suggested procedure 

THEOREM 5: Under the conditions of Theorem 3, i.e. under model IfJ the asymptotic r,s 
distribution of the likelihood ratio test statistic T (2.12) of H versus IfJ derived for r,CL r,s r,s r 

and f3 known, is given by (2.6) with p-r-s degrees of freedom. Further the asymptotic 

distribution of the maximum likelihood estimators of the coefficients 17, see (2.10), is mixed 

Gaussian, such that usual inference can be conducted for testing hypotheses about 17, if r, CL and 

f3 are known. 

This result is of course not so interesting since in general r, CL and f3 have to be estimated. We 
~ ~ 

therefore analyse how the estimators CL and f3 from (2.4) behave, if infact there are 1(2) 

variables in the model, that is, if model HO holds. r,s 

In order to describe the asymptotic distributions let Wt be a Brownian motion with 

covariance 0 defined by 

T-h,[Tt] w W 
LlO Ei -I t 

and define 

V CL = (CLtO-1CL)-lCLtO-1W. 

We also need to define two more processes: 

(2.13) 

and 

(2.14) 

These processes are derived from the Brownian motion and the integrated Brownian motion 

respectively by correcting for the CL2 components of the Brownian motion CL2 Wt. Finally we 

let F I = (F i ,F 2)' The dimension of F 1 is s and that of F 2 is p-r-s. 
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We also define a Brownian motion B'= (B1,B2) with covariance matrix I such that 

B1 is s dimensional and B2 is p-r-s dimensional, and processes G' = (G1,G2) defined in 

analogy with F 

Glt = Blt - [J6B1B2du][J6B2B2du]-lB2t' (2.15) 

(2.16) G2t = f~B2udu - [J6f~B2sdSB2du][f6B2B2du]-lB2t· 

~ A 

THEOREM 6. Under the assumptions of Theorem 3 the estimators a and {J given by (2.4) are 

consistent and the asymptotic distribution of {J is given by 

{T/3' ({J-{J)I T2rJ2{{J-{J)) 
w 
-I (f~FF' du}-l f~F{dV ), 

where F, given by {2.13} and {2.14}1 is independent of V . 
a 

~ 

The asymptotic distribution of a is given by 

~ w 1 
T{a - a} -I N {Oln ® {{J'E 221{J}- }. pxr . 

The asymptotic distribution of the likelihood ratio test statistic {2.5} is given by 

w 
-2lnQ{Hr ' H~ -I tr{J~{dB)dG' !f~GG' duT 1 f~G{dB)'} 

where G is given by {2.15} and {2.16}. 

~ 

It is an important consequence of Theorem 6 that the estimator {J, derived as if there are no 

I(2) variables, still has a mixed Gaussian distribution, since it means that the tests on 

restrictions derived as if there are no I(2) variables, remain valid under H . It is also seen r,s 

that the limit distribution of T , if there are I(2) variables, is not given by (2.6). Simulations r 

of the distribution given in Theorem 6 indicate that the tails are fatter than those derived 

from (2.6), indicating that the size of the tests used to determine the cointegration rank is too 

large. We shall show below how one can modify the test procedure to get tests with 

rea.sonable properties: 

Combining the results of Theorem 5 with the asymptotic behaviour of the estimators 

in Theorem 6 we can then prove 
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THEOREM 7. The results of Theorem 5 remain valid if a and (J are replaced by the estimates 

given in {2.4}. 

This result shows that in evaluating the distribution of T under the hypothesis HO s' with a r,s r, 

and (J estimated, we need only apply the limit distributions already derived for I(1) variables. 

The procedure of estimating rand s is investigated in the next theorem, and there the 

price for not calculating the maximum likelihood estimator in model H and the likelihood r,s 

ratio test against Hp is apparent in (2.17). 

THEOREM 8. Under the assumption of Theorem 3, that is if JfJ holds then 
A A r,s 

limP{ {r, s} = {i,j}} = 0 if i < r or i = rand j < s 
A A 

{2.11} limP{{r,s} = {r,s}} = P{Tr~ c/a},Trs ~ crla}} ~ 1-2a. , } 

Finally we get the correct size for the test if we test for no I(2) variables: 

COROLLARY 9. The test that accepts r co integrating relations and no 1{2} variables if 

and 

T . ~ c .{a}, i = O, ... ,p-r-1, 
r,'L r,'L 

has asymptotic size a and asymptotic power 1. Here T., T . . are given by {2.5} and {2.12} 
'L 'L,J 

respectively, and the quantiles are calculated from the di.Qtribution {2.6} tabulated by simulation 

see lohansen {1988a}. 

The proof of these results will be given in the next section. 

3. Asymptotic analysis 

We first give some technical results about the behaviour of the process, the residuals and the 

product moment matrices. These will not be proved since they follow easily from the 



13 

representation (1.12). Note that the normalization below ensures that the initial values will 

loose their importance in the limit. 

LEMMA 1. Under the assumptions of Theorem 3, and for T -100 1 it holds that 

T-3/2(3~[Ttj~ (32C21 bWudu1 

-t W 
T !J.X[Ttj -I C2 Wt, 

1 W 
T-"2 ((3,(31J' X[Ttj-l ((3,(31)' Cl Wt, 

W 

T- 21] f ((3,(31)' Xt!J.Xi -I ((31(31)' C11 Wt Wi dtC2' 

W 

T-21] f!J. Xt!J. Xi -I C21WtWidtC2' 

such that 

(3.1) 

Here Wt is Brownian motion with variance n defined from the innovations Et. Notice the 

meaning of the different directions; in the direction (32 the process is of the order 2, in the 

directions ((3,(31) the order is only 1, hence the different normalization. Note that (3.1) 

establishes the proof of Theorem 4. 

LEMMA 2. Under the assumptions of Theorem 3 and for T -I 00 it holds that 

W 

such that 

(3' R2.1t -I stationary process 

1 W 
T-"2(31R2.1t -I Flt 

-3/2 W 
T (3~2.1t -I F 2t 

T- 11]fEtR 2.111-1 1~(dW)Fl 
T- 21] fE tR 2.112 -I 1~(dW)F2 

p p p 

(3' M22.1(3 -I (3'1]22.1(3, (3' M20.1 -I (3'1]20.1' MOO.l -I 1]00.1 

M11 ((3,(31)' (3' M22.1(31 E Op(1) 

(3~11(32' (3' M22.1(32 E Op(T) 
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This follows by considering the definition of the residuals and noting the different order of 

magnitude of the process in the directions ({J,{Jl,/32). Note that {J'R2.lt is treated as a 

stationary process. We have here used the notation 

222 
.EOO.l = Var(i1 Xt I L1Xt_1,i1 Xt_1,···,i1 Xt- k+ 2), 

{J'.E20.1 = Cov({J'Xt _2,i12Xt I i1Xt_l,L12Xt_l1 ... ,i12Xt_k+2)' 

{J'.E22.1{J = Var({J'Xt_ 2 ' i1Xt_l,i12Xt_l,···,i12Xt_k+2). 

Proof of Theorem 5. 

We assume that r,Q' and {J are known, and that Q' and {J have rank r. The result follows then 

by the methods given in Johansen (1988a), since under the assumptions of Theorem 5 the 

process Yt = L1Xt is an 1(1) process. The problem of determining the reduced rank of the 

coefficient matrix to {J~Yt-l from the p-r equations given for Q'~ i12Xt = Q'~ L1 Yt in (2.10) is 

then exactly the problem solved in Johansen (1988a) except for the fact that on the right 

hand side we have the extra stationary variables {J'Yt- 1 = {J'i1Xt_1 which are eliminated 

together with the short term dynamics as expressed by the coefficients ri' i = 1, ... ,k-2, see 

(1.2). Thus (2.10) with known Q' and {J corresponds to the situation considered in Johansen 

and Juselius (1991) where some cointegration vectors are assumed known. This establishes 

that the asymptotic distribution of the likelihood ratio test is as stated and also that the 

asymptotic distribution of the maximum likelihood estimators of the coefficients 'TJ is mixed 

Gaussian, whereas the remaining ones are asymptotically Gaussian. This completes the proof 

of Theorem 5. 

Proof of Theorem 6. 

The estimate of {J is found by solving equation (2.3). We multiply the matrix in the 

equation by ({J,T-t{Jl,T-3/ 2{J2)' and its transposed and then take the determinant. We can 

apply the results of Lemma 2 and find that for positive A the limiting equation is 
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I A [f31 E22.1f3 0]_ [f31 E20.1] E06.1[f31 E20.1] , I = o. 
o fFF/du 0 0 

This shows that the r largest estimated eigenvalues converge to the solutions of 

I Af3' E22 .1f3 - f3' E20.1 E06.1 E02 .1f31 = 0, 
A 

and that the space spanned by the r first eigenvectors sp(f3) converges to the space spanned by 
A A 

f3. In this sense f3 is consistent. From a = M02 .1f3 and the equation (2.2) we find the 

representation 
1 A 1 A A A -1 -1 _1 T 

(3.2) T2 (a - a) = T2(M02.1f3(f31 M22.1(3) - M02.1f3(f3 ' M22.1.B) ) + T 2E 1 EtR2~ lt f3· 
A 

The asymptotic stationarity of f3' R2.lt and the consistency of f3 implies that the first term 
A 

tend to zero, and the second tends to its expectation which is zero. This shows that a is 

consistent. 

We now find the asymptotic distributions. The estimate of a and f3 are found by first 

eliminating all parameters except a, f3 and the variance matrix O. In order not to overburden 

the notation we fix 0 and concentrate on a and .B in the following. Results for 0 are easily 

derived in the same way. Then we let g denote minus the log of the partially maximized 

likelihood function g( a,(3) = - logLmax( a,.B) and find the derivatives in the directions hand 

k, which are pxr matrices 

ga(h) = tr{O-l E'fEtR2.it{3h/} 

gP(h) = tr{O-l E'fEtR2.itha/} = tr{a'O-l E'fEtR2.ith} 

and second derivatives 

gaa(h,k) = tr{O-lhf3, E 'fR2.1tR2.1 ff31e } = Ttr{ a' 0-lhf3IM22.1{3k/}· 

gaf3(h,k) = tr{O-lhf3'E'fR2.ltR2.1fka/} = Ttr{aIO-lh.B'M22.1ka/} 

gf3P(h,k) ~ tr{O-lak/E'fR2.ltR2.1fha/} = Ttr{aIO-1akIM22.1h/}. 

By decomposing .B into the direction .B and f3 we see that 
.L 

A 

.B = f3b + .B c, 
.L 

such that 

(3.3) 
A 

which shows that by suitably normalizing f3, which does not change sp(f3), we need only 
A A 1 

consider the deviations f3 - f3 in the directions f3.L = (f31,f32)· Note that f3b - gives a 

maximum of the likelihood function. In the following we shall see that the behaviour of the 
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derivatives depend on which direction is considered. We therefore sometimes take k = ,81 up 

where ,81 is pxs and u1 is sxr, or k = ,82u2' where ,82 is px(p-r-s), and u2 is (p-r-s)xr. 

Finally we also use the notation ,80 = ,8uO' where Uo is the identity matrix of dimensions rxr. 

We then introduce these coordinates directly and find from Lemma 2 that the matrix of 

second derivatives satisfy that 

and 

garl,8·u.,,8.u.) E Op(Ti+j) i,j = 0,1,2, (i,j) f (0,0). 
1-'1-' 1 1 J J 

1 A A 

This implies that the proper normalization of the estimators is T2( a-a), T,8i ((3-,8), and 

T2,8:iP-,8) . 
A A 

By expanding the function (ga(h),g,8(h)) around a = a, and ,8 =,8, we find that a 

satisfies 
A 

gaa( a - a,h) = ga(h), for all h pxr. 

Similarly ,8 satisfies 
A 

(3.4) g,8rf,8 - ,8,h) = g,a(h), for h = ,81 u1 and h = ,82u2' 

The equations separate since the off diagonal elements of the second derivative are small 

compared to the diagonal elements. This really has the consequence that in making 

asymptotic inference about a we can assume that ,8 is fixed and vice versa. 

Solving (3.4) for ,8 we find the expression 

A (-1 )-1 -1 -1 T -1 
,8-,8= a'O a a'O T ElftR2.1fM22.1' 

or 

(/J-,8)'(T731,T2732) = (a' 0-1 a)-l a' 0-lx 

[
T-1,8'M ,8 T-2,8'M ,8 ]-1 

T-1ET f (R ',8 ,T-1R ',8) 1 22.1 1 1 22.1 2 
1 t 2.1t 1 2.1t 1 T-2a'M a T-3a'M a 

1-'2 22.11-'1 1-'2 22.11-'2 

We now apply the results of Lemma 2 to find that 

(T(/J - ,8) '731, T2(/J - ,8) '732) 

: (a' 0-1 a)-l a' 0-1 f(dW)F' (fFF f du)-l. 
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Thus the estimator /3 is still super consistent, that is, T consistent in the directions /31' where 

the process Xt is 1(1), and T2 consistent in the directions /32' where the process Xt is 1(2). 

This result holds for /3 normalized as discussed in (3.3). Results for other normalizations can 

then be derived, see Johansen (1990a). The main conclusion is, however, that the limit 

distribution is mixed Gaussian and this clearly holds for the other normalizations as well. 
A 

The asymptotic distribution of a is found from (3.2) applying the super consistency of 

/3. We find 

Tt(~- a) = T-tEiftR2.lt/3(/3'M22.1f3)-1 + 0p(1), 

which is asymptotically Gaussian with mean zero and variance 0 ® (/3' E22.1f3)-1. 

Finally we find the asymptotic distribution of the likelihood ratio test statistics given 

in (2.5). The result follow by the same method as in J.ohansen (19SSa). We return again to 

the equation determining the eigenvalues (2.3), and find, letting A -I 0 such that AT = 7/J is 

constant, that for T -I CD, we get by multiplying the matrix in the expression by (/3,/31' T-1 /32) 

1[0 0]_ [/3'E20.1]EO~.1[/3IE20.1]' I = o. 
o 7/JfFF'du K K 

where K is the weak limit of (/31' T-1/32)' M20.1. Thus in the limit 7/J will satisfy the equation 

IpfFF'du - KNK' I = 0, 

where the matrix N is defined by 

-1 -1 ( -1 )-1 -1 
N = EOO.1 - EOO.1 E20/3 /3' E20.1 EOO.1 E02.1/3 /3' E20.1EOO.1 

= a (a'Oa )-la , 
.1 .1.1 .1' 

see Johansen (1990a) Lemma A.1. From (2.3) we then find that 

( -1) -1 T( -1) 
/3l'T /32 'M20.1 a.1 = T El /3l'T /32 'R2.lt ff a .1' 

This converges by Lemma 2 towards 

f6(Fi,F2)(dW), a.1' 

Collecting terms we find that the asymptotic distribution of the test statistic (2.5) is given by 

tr{[J01FF , du]-l f01F( dW)' a (a' Oa )-1 a' f01( dW)F'} . 
.1 .1.1 .1 

The processes F and a~W only depend on W through the p-r linear combinations B2 = 

02~a2W and B1 = 0iI.2(aiW - 01202~a2W), which have been normalized to have 

variance matrix 1 and to be independent. Here 0 22 = a20a2 and 0 11.2 = ai Oa1 -
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aiOa2(a20a2)-la20a1. Note that the expression for F2, see (2.14), is just 
-1 1 

F 2t = e a2fJ2 022G2t' 

and from (2.13) 

Flt = fJiC1(Wt - [J6WW/dua2][a2fWW/dua2]-la2Wt) 

= r a~fJ1a1(Wt - [/6WW/dua2][a2/WW/dua2]-la2Wt) 

-1 1 

= r a1fJ1 0il.2Glt' 

since Cl a = o. As the test statistics is invariant under linear transformation of F it is seen 

that the distribution does not depend on any parameters, and is given by the expression in 

Theorem 6. This completes the proof of Theorem 6. 

Proof of Theorem 7. 

The main idea of this proof is the well known result that if a sequence of random 

w p w 
variables converge in distribution Xn -I X, and if Y n -I c then Y nXn -I cX. The asymptotic 

A A 

distribution of 'T/ is found from the equation (2.11) with fJ replaced by fJ. Thus one can apply 

the above mentioned principle, except that the order of magnitude of the matrices is different 

in different directions. The eigenvalues are determined from the equation 

(3.5) IpMA A A_MA A ~A-l ~A A AI=O. 
fJ fJ ·fJ fJ a.p a a.p a fJ ·fJ 

.L .L .L.L .L.L .L .L 

We want to show that one can replace fJ and a by fJ and a without changing the limit 

distribution. Hence one has to go through the various cases. 

First ;.L !: a.L and MOO!: EOO implies that a~MOOa.L !: a~MOOa.L' and a~M01 -

a~ MOl!: 0, which means that we can replace one by the other in the limit argument. Next 

consider the difference 

(3.6) fJ' MnfJ - fJ' MnfJ 
,.,. A ..... 

= fJlMn (fJ-fJ) + (fJ-f3)I MnfJ + (fJ-fJ)/M11 (fJ-fJ). 

From Lemma 2 it follows that (fJ,fJ1)/Mll is 0p(l), whereas fJ2MllfJ2 is Op(T). The 
A A 

difference fJ-fJ is concentrated on sp(fJ) = sp(fJl'fJ2), and fJ-fJ tends to zero in probability. 

This takes care of the first two terms in (3.6). The third term is expanded as 
A A 

(fJ-fJ) I Mll (fJ-fJ) 
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A A 

= ((3-fJ)' Cf3fJ' + 71lfJi + 712fJ2)M11 ((ffJ' + fJl71i + fJ2712)((3-fJ)· 

Here all terms tend to zero in probability, even terms of the form 
A A 

(3.7) ((3-fJ) , 712fJ2M11fJ2712((3-fJ), 
A -2 

since ((3-fJ)' fJ2 E Op(T ). 
A A 

In order to discuss matrices of the form fJ'M1lfJ we need to choose fJ in a continuous 
~ ~ ~ 

fashion. The following representation is convenient p = fJ - fJ(P' fJ)-lp, fJ. This shows 
~ ~ ~ 

A 

that fJ - fJ is in the space spanned by fJ. Hence from 
~ ~ 

A A 

fJ~MnfJ~ - fJ~M11fJ~ 
.... A .... ,., 

= fJ~M11 (~fJ) + (fJ~ -fJ)'MnfJJ + (fJ~ -fJ)'M11 (fJ~ -fJ). 
A P 

one finds from the results in Lemma 2 that fJ~ M11fJ ~ - fJ~ M11fJ ~ -+ o. 

Combining the results we find that the equation (3.5) has the same limit as the 
A 

equation (2.11). This shows that the eigenvalues Pi from (3.5) have the same limit as those of 
A 

(2.11) thus proving consistency of'T/. Since the asymptotic distribution of T is based upon 
A r,s 

the normalized eigenvalues TPi' i = s+l, ... ,p-r one finds that even with estimated a and fJ 

the distribution of T is given by (2.6) with p-r-s degrees of freedom. r,s 

The likelihood equation of 'T/ gives the following representation for the estimate 

T(~'T/) = (T-lMp P .p)-l(Mp ; .p-Mp p .p'T/~,)n-l~(~,n~)-l 
~~ ~~ ~~ 

The above arguments show that we can replace in this expression the estimated quantities by 
A 

their limits without changing the limit distribution. Hence the limit law of T( r;-'T/) is the 

same as if the coefficients a and fJ were known, i.e mixed Gaussian. 

Note at this point that it was not enough that fJ was consistent. In order for the terms 

of the form (3.7) to be small we need that Tt(/J-fJ) !! o. The full maximum likelihood 

estimator in the model H , which we do not treat here, has this property. Hence the r,s 

analysis of the cointegrating rank and hypotheses on 'T/ seem to be equivalent to that based on 

the full likelihood methods. Inference for a and fJ, however, is expected to be less efficient in 

the approach suggested here. 



20 

Proof of Theorem 8 

We define the critical sets C = {T > c (an and C = {T > c (an. Then the 
A A r r - r r,s r,s- r,s 

definition of r ,s shows that 

P{(;,;) = (i,jn = p{n1i-1Ck n C~ n1j-1c. k n C~ .}, 
1 1, 1,J 

The probability is calculated in the model HO . For i < r, T. is the sum of p-i smallest r,s 1 

eigenvalues, and since even in the limit one of these is positive then the statistic T. is forced 
1 

to (I). This shows that the probability tends to zero if i < r. Now let i = r. The same 

argument holds for T . if j < s, which again shows that the probability tends to zero. Finally 
r,J 

let i = rand j = s, then by taking limits we obtain 

The last set has probability I-a, and the first set has a probability derived from the limit 

distribution in Theorem 6. Simulations show that the first set has a probability ~ I-a if in 

fact there are 1(2) variables present, hence we can evaluate the probability down by I-2a. 

Proof of Corollary 9. 

The proof follows by noting that if there are no 1(2) variables then all eigenvalues p. 
1 

from (2.11) will be positive in the limit, which shows that all statistics T will tend to (I), r,s 

hence the probability of accepting the hypothesis HO r,p-r 

P{Co n ... n C 1 n CC n con ... n C I} r- r r, r,p-r-

tends to 

P{C~} = P{Tr < c/ an 

which is just I-a when calculated under the hypothesis that there are no 1(2) variables. If we 

evaluate the probability under model HO+I . then since T -! (I) the acceptance probability 
r J r 

tends to zero and the power tends to 1. 

4. An example on the determination of the co integration ranks. 

In the previous section various results about the limit behaviour of the test statistics were 

derived. In this section we indicate how they are applied to make inference about the 
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cointegration ranks rand s. As an example we consider the UK data analysed in Johansen 

and Juselius (1991). The data consists of quarterly observations from 1972.1 to 1987.2 of the 

five variables Pl (a UK wholesale price index), P2 (a trade weighted foreign wholesale price 

index), e12 (the UK effective exchange rate), il (the three months treasury bill rate in UK), 

and i2 (the three months Eurodollar interest rate). The detailed analysis in Johansen and 

Juselius (1991) involved fitting an autoregressive model with two lags, seasonal dummies and 

constant term since the data clearly indicated linear trends. In addition current and lagged 

values of the changes in the world oil price were included as strictly exogenous variables. It 

was further assumed that the processes were not 1(2). This was justified by inspection of the 

graphs of the differences. 

Thus the model analysed was not (1.2) but rather 

2 k-2 2 
~ Xt = r~Xt_l + IIXt_2 + El ri~ Xt_i +WDt+It+1'o~Ot+'h~Ot-l+ ft, 

where Dt are the seasonal dummies and 0t the oil price. From the representation (1.12) one 

finds by inserting WDt + It + 1'O~Ot + 1'1 ~Ot-l + ft instead of ft that Xt has a quadratic 

trend with coefficients T2 E sP(,B2)' if we assume for simplicity that 0t is described by a linear 

trend plus an 1(1) process. In the space sP(,B2) the process is dominated by the 1(2) 

component except in the direction T2 where the quadratic trend is dominating. Similarly in 

sP(,Bl) there is a linear trend in a direction T1. Thus the process is dominated by the 1(1) 

component in sP(,Bl) except in the direction T l' where the linear trend takes over. In order to 

formulate the limit result we therefore choose 1'i in sP(,Bi) orthogonal to Ti' such that (Ti,1'i) 
A 

span sp(,BJ The limit result for ,B then has to be formulated as a result for the vector 
5/2 A 2 A 3/2 A A 

T T:if3-,B), T 1'2 (f3-,B) , T Ti (f3-,B) , T1'i (f3-,B). 

Again the limit distribution is mixed Gaussian. The limit distribution of the likelihood ratio 

test statistic is more involved and will not be discussed here, since it is not used. The main 

conclusion remains the same namely 

1) That a,,B are consistent and ,B super consistent, even if 1(2) variables are 

present. 

2) For fixed r,a, and ,B the analysis of (2.10) remains the same except that now 

there is a constant term in the equation. 
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3) For given r we can replace a and f3 by their estimates and analyse the equation 

(2.10), including a constant term, for cointegration and hence determine the cointegration 

rank s. 

The influence of a constant term in (2.10) on the limit distribution of (2.12) is 

discussed in detail in Johansen (1990) and illustrated in Johansen and Juselius (1990). 

We find under the assumption of the presence of a linear trend a limit distribution of 

the form 

( 4.1) 

where F is a p-r-s dimensional process, with components defined by Fi(t) = Bi(t) -

f01B.(u)du, i = 1, ... ,p-r-s-1 and the last component defined by F (t) = t - 1/2. This is 
1 p-r-s 

tabulated in Johansen and Juselius (1990) as Table AI. 

As an illustration of the above technique we determine below the cointegration ranks r 

and s for the UK data, and show that there are no 1(2) variables in the data. 

The test statistic for H s in HO is given by (2.12) and has the limit distribution (4.1) if r, r 

in fact the cointegrating rank is s, that is if HO is the true model and if condition (1.11), r,s 

which rules out 1(3) variables, holds. If H~ s-l is true, and this is part of the null hypothesis , 
H s being tested the limit distribution of (2.12) is different, and this should be taken into r, 

account when evaluating the size of the test. It is not difficult to show that under HO l' r,s-

say, the limit distribution of (2.12) is expressed as the p-r-s smallest eigenvalues of a matrix 

of the form (4.1), where B is a Brownian motion in p-r-s+1 dimensions. 

Similarly if the linear trend is absent, but the estimation has taken it into account, the 

distribution of the statistic is different and has broader tails, see Johansen and Juselius 

(1990). This particular point is not so relevant for this example since we have explicitly 

included the trending oil prices in the model. 

The approach taken here, and formulated in Theorem 8 and Corollary 9 is inspired by 

Pantula (1989) who made an important contribution towards formulating and solving this 

type of problem. The problem is also known in the statistical literature see Berger and 

Sinclair (1984). Briefly the idea can be described as follows: Consider a situation where a 

certain null hypothesis is being tested by the likelihood ratio test T, say. Sometimes it turns 

out that even asymptotically the distribution of the test statistic depends on the parameter in 
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the null hypothesis. Let us assume that the null can be decomposed into a finite set of 

hypotheses 8 i , i = 1, ... ,n, such that for f} E 8 i the (limit) distribution of the test statistic is 

the same Pi' say. The idea of applying the critical level c, such that maxli{T~c} = a, in 

general gives a test with a rather wide acceptance region, with poor power properties. Instead 

one can calculate the likelihood ratio test Ti for each sub hypothesis 8 i , and apply the critical 

region C = nn1{T.>c.}, where c. is determined from the (limit) distribution of T. under the 
1- 1 1 1 

hypothesis f} E 8 r See Johansen (1991) for detailed formulation of this idea and an 

application to the determination of the cointegrating rank for 1(1) variables. 

We apply this sets of ideas to an analysis of the UK data, and determine the 

cointegrating ranks rand s, where we assume that condition (1.11) holds to exclude 1(3) 

variables. 

Below we give the results of the calculation for the UK data. First the eigenvalue 

problem (2.3) is solved to determine for each r the test statistics Tr given by (2.5) and the 

estimate of a and f3 and hence a and f3 . For each value of r, and the appropriate estimated 
.L .L 

parameters we then eliminate f3IRlt from equation (2.10) and solve (2.11) and calculate the 

test statistic T given in (2.12). This gives the results in Table 2 r,s 

Table 2. 

The test statistics T and T for the hypotheses r r,s 

Hand H in the /(2) model for the UK data. 
r rls 

p-r r T r,s T cr{5%) r 
5 0 165.13 105.38 55.46 26.28 8.20 80.75 68.91 

4 1 108.42 39.18 28.89 7.70 49.42 47.18 

3 2 60.39 28.78 6.96 29.26 29.51 

4 3 35.27 9.72 11.67 15.20 

5 4 2.46 5.191 3.961 

cr(5%) 68.91 47.18 29.51 15.20 3.96 

p-r-s 5 4 3 2 1 0 
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The table is then read from top to bottom in the column for Tr. If we first assume that we do 

not have I(2) variables, then the last two columns give the test statistics, and the quantiles. 

The procedure then suggests starting at the top and reject p-r = 5 (or r = 0), similarly p-r = 

4 is rejected, but, at the chosen level, p-r = 3 is not rejected. This then defines r = 2. 

Now suppose that we want to check for I(2) variables in the data. Then we continue 

with r = 2, and investigate the test statistics TO s' s = 0,1,2. They are compared with the , 
corresponding quantiles given below the table. These quantiles are the same as are being 

applied for the test statistics Tr , by the result in Theorem 7. It is seen that, at the chosen 
A 

level, T2 0' T2 l' and T22 are all rejected, hence s = 3 = p-r is accepted, corresponding to 
" , 

no 1(2) components in the model. 
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