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Abstract. It is shown how the tables in Johansen and Juselius (1990) can be applied to 

make inference on the cointegration rank. The reason that inference is difficult is that 

the limit distribution of the proposed likelihood ratio test statistic depend on which 

parameter is considered under the null. It is shown how a recent procedure for unit 

root testing suggested by Pantula (1989) solves the problem. The procedure is illustra­

ted by some published econometric examples. 

1This paper was written while the author was visiting Department of 
Statistics, University of Helsinki. The visit was supported by the 
Danish Social Sciences Research Council acc. nr. 14-5793 
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1. INTRODUCTION 

Consider the vector autoregressive model with Gaussian errors 

k Xt = }i1 IliXt_i + WDt + J.t + ft, (t = 1, ... ,T). (1.1) 

where Dt are the seasonal dummies orthogonalized to the constant term, and f1, ... ,ET 

are independent Gaussian variables in p dimensions Np(O,O). The initial values 

X_k+1, ... ,XO are kept fixed. The hypothesis of at most r cointegrating relations is 

formulated as 

Hr: I - III - ... - Ilk = o.fJ' 

where a and fJ are pxr matrices. We denote by HO = H \ H 1 the model where the r r r-

rank of a and fJ is r, that is, when there are exactly r cointegrating relations. Thus the 

hypotheses Hr are nested, Hr C Hr+ l' and Hr is the union of the non nested models 

H~, ... ,H~. We work under the additional assumption that the variables are 1(1) such 

that Xt is non stationary and LlXt is stationary. Grangers result, see Engle and 

Granger (1987), then states that fJ' Xt is stationary. The presence of the constant term 

J.t implies that in general the process Xt will have a linear trend, see Johansen (1990) 

for a discussion of this. Here we need the result that the linear trend is absent if a' J.t = 
.L 

0, and we use this to define the model 

* Hr: I - III - ... - Ilk = afJ' and o.~J.t = 0. (1.2) 

The problem that we will discuss in this paper is how to determine jointly 

both the cointegrating rank r, and whether or not there is a linear trend in the model. 

* That is, which value of r should one use, and if Hr or Hr is a better description of the 

data. 
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n. THE STATISTICAL ANALYSIS 

The analysis of the model Hr is performed by a combination of regression and reduced 

rank regression, see Johansen (1988) or Reinsel and Ahn (1990), and a detailed analysis 

of some examples is given in Johansen and Juselius (1990). The analysis will only be 

discussed very briefly here. 

It is convenient to rewrite the equation (1.1) in an error correction form 

A k-1 ( ) uXt = ITXt_ 1 + El r i l1Xt_ i + WDt + J1 + Et· 2.1 

The relation between the parameters (IT,r 1, ... ,r k-1) and (ITl' ... ,ITk) is found by 

identifying coefficients of the lagged levels in the two expressions (1.1) and (2.1). 

In model Hr the matrix IT is restricted as IT = a/3', but the parameters 

(a,/3,r 1,· .. ,r k-1) vary independently. Hence the parameters r 1,· .. ,r k-1 can be elimi­

nated by regressing I1Xt and Xt- 1 on I1Xt_1, ... ,I1Xt_k+1,Dt and 1. This gives 

residuals ROt and Rlt, and residual product moment matrices 

-1 T S .. = T El R.tR·t', (i,j = 0,1). IJ 1 J 

The remaining analysis of the model Hr can be performed from the equations 

ROt = a/3'Rlt + Et· 

The estimate of /3 is determined by reduced rank regression, see Anderson (1951) or 

Ahn and Reinsel (1988), and is found by solving the eigenvalue problem 

I AS U - S10S06S01 1 = 0, (2.2) 
~ ~ 

for eigenvalues A1 > ... > Ap and eigenvectors V = (v1, ... ,vp)' The maximum likeli-

hood estimators are given by 
A A A 

/3 = (vl'''''vr), a = S01/3, and 0 = SOO - aa'. 

Finally the maximized likelihood function is found from 
-2fT _ A _ r A 

Lmax - 10 1 - ISoo IIT1(1-\)· 

From this it follows that if one wants to test Hr with rank :::; r in Hp with 

rank S p, i.e. in the unrestricted VAR model, the likelihood ratio test becomes 



4 

-21nQ(Hr I Hp) = -TEi+1ln(1-~i). (2.3) 

The asymptotic distribution of the test statistic (2.3) under model H~ and in 

the presence of a linear trend is given in Johansen (1990) as a functional of Brownian 

motion that can be expressed as 

(2.4) 

Here B is a Brownian motion of dimension p-r on the unit interval, and the p-r di­

mensional process F has the first p-r-1 components equal to Bi(u) - f6Bi(u)du, and 

the last component equal to t - 1/2. The dimension p-r is called the degrees of free­

dom for the test statistic. The distribution is tabulated in Johansen and Juselius 

(1990) as Table Al. 

It turns out, however, that if there is no linear trend, that is, if a' J1 = 0, then 
.L 

the limit distribution of (2.3) is different and given by (2.4) with F defined by B -

f6B(u)du. This distribution is tabulated by simulation in Johansen and Juselius 

(1990) as Table A2. If in fact the number of cointegrating relations is smaller than r, 

then the distribution of the likelihood ratio test statistic is different. Thus for instance 

if there are r-1 cointegrating relations the asymptotic distribution of (2.3) is given as 

the sum of the p-r smallest eigenvectors of the matrix in (2.4) but with Band F of 

dimension p-r+l. Thus there are many different distributions of the test statistic 

under the null Hr' and it is this phenomenon that makes the testing procedure some­

what complicated. This problem is discussed in the next section. 

* The analysis of the model Hr is almost the same as above, using the following 

trick. If a~J1 = 0, then J1 = a(30 for some (30 (r xl). We then note that 

* * a(3' X t _ 1 + J1 = a(3' X t _ 1 + a(30 = a(3 'Xt _ 1, 

* * where Xt = (Xt ,1) 1 and (3 = ((3' ,(30) I. Thus by appending 1 to the levels we can 

* eliminate the parameters f 1, ... ,fk_1, and W by regressing ~Xt and Xt - 1 on 

* ~Xt-l, ... ,~Xt-k+1' and Dt · This gives residuals Rit' i = 0,1, and product moment 

* * matrices S ... The solution for (3 is then to solve the eigenvalue problem (2.2) with S .. 1J IJ 
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* * A replacing S. '. The test statistic for H in H is given by (2.3) with the eigenvalues A. 
~ r p 1 

* replaced by \. 

The limit distribution of this statistic is given in Johansen (1990) and is shown 

to be of the form (2.4) but with F of dimension p-r+1, where F is just B with 1 appen­

ded as the last coordinate. This distribution is tabulated by simulation in Johansen 

and Juselius (1990) as Table A.3. Thus the different choices of F reflect the statistical 

calculations as well as the probabilistic properties of the process. 

Ill. THE TESTING PROCEDURE 

In the previous section various results about the limit behaviour of the test statistics 

were derived. It was shown that the limit distribution depends on the choice of para­

meter value in the null, either because the linear trend may be absent, or because the 

number of cointegrating relations is smaller than r. 

In calculating the p-values one then has to maximize the probability of ex­

treme deviations of the statistic under the null, and this leads sometimes to unrea-

sonably large p-values. 

Recently Pantula (1989) has made an important contribution towards for­

mulating and solving this type of problem in a discussion of unit root testing. The 

problem has also been treated by Berger and Sinclair (1982) in the context of the 

Gaussian distribution where the null was a union of linear subspaces. The idea is that 

instead of calculating just one statistic for the null, a range of statistics is calculated, 

one for each of the sub hypotheses, that give rise to a different distribution. The null 

is rejected only if all of them are rejected. 

To present this formally consider linearly ordered parameters spaces 

BO ( ... ( Bp' 

corresponding to a nested system of hypotheses. One can easily extend this to 
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partially ordered systems, as will be illustrated below, but for notational convenience 

we formulate the results for linearly ordered systems. Typically 8 r is a very small 

subset of 8 r+ l' We can test er against e p by a likelihood ratio test, T r say, and we 

assume that the limit distibution of Tr depends on which value of 0 we consider in 8 r. 

We assume, as is the case in the cointegration models, that the limit distribution of Tr 

is the same for all 0 E er \ er-I' This allows the determination of a quantile cr( a) 

such that 

(0 E 8 \ 8 ). r r-1 

We also assume that the power is reasonable, in the sense that 

(3.1) 

where the limit is taken as the number of observations tends to infinity. The im­

mediate solution to solving the problem of different limit distributions under the null is 

to consider a quantile c( a) such that 

maxO limP O{Tr ~ c( a)} = a, 

and use {Tr ~ c( a)} as the critical set. In the applications here, that would often mean 

that we should evaluate the probabilities under the smallest set 8 0 thereby emph­

asizing a very small part of the null hypothesis Hr and increasing the quantile conside­

rably. The idea proposed by the above mentioned authors is to consider a critical set 

of the form 

Cr = {TO ~ cO( a), ... ,Tr ~ c/ a)}, (r = 0,1, ... ,p-1). 

That is, to reject Hr only if all previous hypotheses have been rejected starting with 

8 0, 

The properties of this procedure are easily derived: It is clear that for 0 E 8 r 

we must have BE 8. \ 8. 1 for some i = O, ... ,r. Hence 
1 1-

P O(Cr) ~ p O{Ti ~ ci(a)} -+ a, (0 E e i \ e i - 1), 

shows that the asymptotic size is always ~ a. 

Now take 0 E 8 \ 8 l' which is the majority of the points in the null hypo­r r-
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thesis er' In this case e is outside e O, ... ,8r_1 and the power property (3.3) shows that 

Pe(Cr)-dimPe{Tr~ cr(a)} = a, eE er \ er-I' 

Thus for most parameter values in the null, the asymptotic size of the critical set is 

correct. Finally consider e (:. er' then the power property shows that 

P ,-Cr) ~ 1, 

such that the test has asymptotic power 1. 

We apply this to define the estimator r, by 

{; = O} = c~, 
~ 

{r = r} = Cr_1 \ Cr' (r = 1, ... ,p-1) 
~ 

{r = p} = Cp_ 1. 

This means that we test the hypotheses starting with eO' and take r to be the sub-

script of the first non rejected hypothesis. It follows that for e E e \ e l' r r-

P { ~ -'} [0, i = O,I, ... ,r-1 
er-l~. . 

I-a, 1 = r. 
A 

Thus when the true parameter space is er \ er-I' then in the limit the estimate r 

takes on the correct value with probablility I-a, and only takes larger values with 

positive probability. 

IV. ILLUSTRATIVE EXAMPLES 

In the first example we apply this set of ideas to make inference about the 

cointegration rank under the assumption that there is a linear trend in the data. 

We consider the UK data analysed in Johansen and Juselius (1991). The data consists 

of quarterly observations from 1972.1 to 1987.2 of the five variables PI (a UK whole­

sale price index), P2 (a trade weighted foreign wholesale price index), e12 (the UK 

effective exchange rate), i1 (the three months treasury bill rate in UK), and i2 (the 

three months Eurodollar interest rate). The detailed analysis in Johansen and Juselius 

(1991) involved fitting an autoregressive model to the logarithms with two lags, sea-
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sonal dummies and constant term. In addition current and lagged changes of the world 

oil price were included in the model as strictly exogenous variables. This model allows 

for a trend, as is reasonable from graphs of the data. 

We identify er with Hr' and denote all the parameters in the model by '19. The 

test statistic for Hr in Hp' as given by (2.3), has the limit distribution (2.4) if in fact 

the cointegrating rank is r, that is if HO = H \ H 1 is the true model. If HO 1 is r r r- r-

true, and this is part of the null hypothesis Hr being tested, the limit distribution of 

(2.3) is different, and this should be taken into account when evaluating the size of the 

test as discussed in Section Ill. 

The asymptotic distribution of Tr allowing for a linear trend is tabulated in 

Table A1 in Johansen and Juselius (1990). The test statistics for the UK data and the 

appropriate 95% quantiles are reported in Table 1. 

TABLE 1 
The results of a cointegration analysis of the UK data. The likeli­
hood ratio test statistic T r for the hypothesis Hr in Hp as well as 

the 95% quantiles c/5%) from table A1 in Johansen and Juselius 

(1990) 

p-r r Tr cr(5%) 

5 0 80.75 68.91 

4 1 49.42 47.18 

3 2 29.26 29.51 

2 3 11.67 15.20 

1 4 5.19 3.96 

The formal procedure is that one takes a level, 5%, say and starts at the top by rejec-
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ting HO' since TO is larger than the corresponding quantile. In the next row we also 

reject H1, since T 1 is larger than the corresponding quantile. Finally the third row 
A 

contains a statistic which can not be rejected, which defines r = 2. Thus the basic 

message is to start testing at the top. 

Next we consider an example from Johansen and Juselius (1990) on money 

demand in Finland. The data consists of quarterly observations from 1958.1 to 1984.3, 

and contains four variables, m1 (money), y (income), i m (the marginal rate of inte­

rest), and .6.p (the inflation rate). In this example we illustrate how the procedure 

needs to be changed if a linear trend might be needed to describe the data. In this case 

we have to consider jointly the general hypothesis Hr of at most r cointegrating rela-

* tions, and also the sub hypothesis H of at most r cointegrating relations but no linear 
r 

trend, see (1.2). The hypotheses in question are partially ordered as shown on Table 2: 

TABLE 2 

The relation between the hypotheses Hr and It:,. together with the 

test statistics for testing these against the unrestricted V AR model. 

* * HO ( HO TO TO 
n 

* * H1 ( H1 T1 T1 
n 

n 
* * H ( H T T 
P P P P 

We determine a quantile cr( a), such that 

o * p O{Tr ~ cr(a)} -+ a, 0 € Hr \ Hr' 
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when there are r cointegration relations and a linear trend. This quantile is deter­

* mined from Table Al in Johansen and Juselius (1990). Similarly we determine cr ( a) 

such that 

* * * 0 p O{Tr ~ c/an -+ a, 0 f Hr n Hr' 

when there are r cointegration relations and no linear trend. This quantile is deter­

mined from Table A3 in Johansen and Juselius (1990). The critical regions are defined 

as 

* * * * C2r = {TO ~ cO(a), TO ~ cO(a), ... ,Tr ~ cr(a), Tr ~ c/an 

* * * * C2r- 1 = {TO ~ cO(a), TO ~ cO(a), ... ,Tr ~ cr(an 

The numbering of the critical regions corresponds to an ordering of the hypotheses 

from left to right and from top to bottom in Table 2. Then we test the hypotheses 

* starting with HO and stop the first time we do not reject. This defines the random 

variables rand L, which is 1 or 0, by the following definition 

A * * 
{r = r, L = I} = C2r- 2 n {Tr ~ c/a), Tr < cr(an = C2r- 1 \ C2r, 

A * * 
{r = r, L = O} = C2r- 2 n {Tr < cr(an = C2r- 2\ C2r- 1. 

Thus r denotes the estimate of the cointegration rank, and L the presence of a linear 

trend. It then holds that for 0 f H~ \ H;, that is if there are r cointegration relations 

and a linear trend, then 
A 

P O{r = i,L = I} ~ P O{Ti < ci(an -+ 0, (i = O,I, ... ,r-l) 

since the test statistic Ti contains the p-i smallest eigenvalues and if i < r then at 

least one of these is positive even in the limit, forcing Ti to 00, such that the set {Ti < 

ci( an tends to the empty set. We also find that 
A 

P O{r = i,L = I} -+ I-a, (i = r), 

* * since T., T., i = O,I, ... ,r-l, as well as T all tend to 00, and the set {T < c (an in the 
1 1 r r r 

limit has probability I-a. 

Finally one finds that 

A * * 
P O{r = r,L = O} = P O{C2r- 1 n {Tr < c/a)}} -+ 0, 
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* since the presence of the linear trend forces T r to m. 

Thus it is seen that the procedure is consistent in the sense that a level a test 

will give the correct value of rand L in the limit with a probabilty of 1-a. Note that 

Table 2 shows a partial order of the relevant hypotheses, and the whole idea is simply 

to reject a hypothesis only if all hypotheses coming before are also rejeted. 

TABLE 3 
The results of a cointegration analysis of the Finnish data. The 

* * likelihood ratio test statistics T and T for the hypotheses Hand r r r 

H in H as well as the 95% quantiles c* (5%) and c (5%) from r p r r 
table A3 and A1 in lohansen and luselius (1990) 

* * p-r r T crC5%) T cr(5%) r r 

4 0 103.11 53.35 76.14 47.18 

3 1 51.32 35.07 37.65 29.51 

2 2 21.87 20.17 11.01 15.20 

1 3 7.89 9.09 3.11 3.96 

* Reading from left to right and from top to bottem in Table 3 we find that HO and HO 

* * have to be rejected at the 5% level, as well as H1 and H1· The hypothesis H2 is also 

rejected, but H2 is not. Thus we can conclude that r = 2, and that there is a linear 

trend in the data (L = 1). 
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V. DISCUSSION 

The purpose of this paper is to demonstrate how to use the tables in Johansen and 

Juselius (1990) for conducting inference about the cointegrating rank. The reason that 

inference is difficult is that the asymptotic distribution under the null of the test 

statistic depends on which parameter value one considers under the null. Thus the test 

is not similar. In the case of a cointegration analysis the limit distribution depends on 

the actual (true) number of cointegrating relations and also on the presence of a linear 

trend. 

This problem is discussed in the statistical literature, see Pantula (1989) and 

Berger and Sinclair (1984). The solution proposed is to identify the sub hypotheses, 

which give different limit distributions, and construct a test statistic and a critical 

region for each of these sub hypotheses. The critical region for the test of the original 

null hypothesis is then the intersection of the critical regions constructed for each of 

the sub hypotheses or, in other words, the hypothesis in question is only rejected if all 

sub hypotheses are rejected. 

This procedure is applied to some published examples of the determination of 

the cointegration rank. 

One should point out that in practise the testing procedure is rarely so simple 

to formulate, but in order to discuss formal properties one has to formalize the proce­

dure. There is of course nothing canonical about the 5% level usually applied, and the 

determination of the cointegration rank should also be based on the interpretation of 

the estimated cointegrating relations. Thus in the analysiFinnish data in Johansen and 

Juselius (1990) we chose r = 3, since the third eigenvector had equal coefficients with 

opposite sign to m1 and y, and this allowed a very simple description of the data. 

It is probably a very good idea to check the conclusions reached in the analysis 

of a given data set by trying out different values of r, to see in what sense the choice is 
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critical for the conclusions. This procedure, however, is not so easy to formalize. 
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