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O. Introduction 

This paper is an illustration of a technique for analyzing time series data that allows for 

processes that are integrated of order 2. The theory is presently being developed, see 

Johansen (1991b) and has been illustrated by Johansen (1991c) and Juselius (1991). The 

paper contains 3 sections. In section 1 we discuss cointegration in particular in connection 

with the autoregressive model. Section 2 is a brief explanation of the statistical technique 

centered around reduced rank regression, as developed by Anderson (1951), and later 

applied to time series by Ahn and Reinsel (1988) and Johansen (1988). The last section 

contains an application of the methods to an analysis of the purchasing power parity 

between Australia and the United States. We have chosen a data set that consist of log 

prices and interest rates in Australia and United States as well as the exchange rate. We 

are interested in the purchasing power parity relation that says that p AU - PUS - exch is 

a stationary relation. It is found that the PPP relation is not stationary by itself, but if we 

include interest rates we can achieve a stationary relation. The analysis presented focuses 

on the determination of the cointegrating ranks and the long-run relations, and no attempt 

is made to formulate a final econometric model. 

1. The auto regressive models 

Autoregressive models are useful tools for describing the statistical variation of systems of 

economic time series. This section contains a discussion of some of the properties of 

autoregresssive processes and models, with special emphasis on the order of integration and 

the concept of cointegration. It turns out that in an analysis of a system of economic time 

series many of the parameters of the autoregressive model can be given a meaningful 

interpretation which helps explain or at least describe the complicated interdependence in 

the economy. 

We make a distinction between the properties of a particular process with specified 

parameter values and the properties of a model as specified by a set of parameters. Thus 
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we discuss cointegration for a multivariate process and define two classes of models, the 

I(1) models and the I(2) models. 

We formulate the I(1) models as parameter restrictions of the general autoregressive 

model and the I(2) models as further parameter restrictions. 

A p-dimensional autoregressive process is generated by the equations 

(1.1) t = 1,.",T 

where the Et are independent Gaussian p-dimensional with mean zero and variance D, and 

Dt are seasonal dummies. 

The V AR model is defined by letting the parameters 

be unrestricted. There are two different reparameterizations that are convenient 

representations of the same model. The first one is defined by the equations 

k-1 
(1.3) .6.Xt = IlXt_1 +. ~ r i.6.Xt_i + j}, + WDt + Et 

1=1 

where Il = ~k1Il. - I, and r. = - ~~+1Il., i = 1, ... ,k-1, such that the parameters 
1 1 1 J 

(Il, r 1, .. ·,r k-1' j)" W, D) 

are unrestricted. 

The next is defined by 

2 k-2 2 
(1.4) .6. Xt = r .6.Xt_1 + IlXt_2 + . ~ <Pi.6. Xt- i + j}, + WDt + Et 

1=1 
where r = ~k1-1r. - I + Il, <P. = - ~~+11r., i = 1, ... ,k-2, such that the parameters 

1 1 1 J 

(Il, r, <P1'''''<Pk_ 2, j)" W, D) 

are unrestricted. 

The properties of a process generated by any of the above equations depend on the 

parameter values, and to discuss this it is convenient to introduce the characteristic 

polynomial 

(1.5) 

It is then well known that if the roots of the equation det(A(z)) = 0 have modulus greater 
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than one, then the process described by any of the above equations is stationary. Since we 

are interested in non-stationary processes we will allow for unit roots: z = 1. This gives 

rise to a class of non-stationary processes with the property that they become stationary 

by differencing. A non-stationary process with stationary differences is called an 1(1) 

process. Similarly we call a process 1(2) if it is non-stationary and its difference is 1(1), 

that is b. 2Xt is stationary. 

1.1 Cointegration of [(1) processes and the definition of [(1) models 

As an example of an 1(1) process consider 

t 
(1.6) Xt = C E E· + C(L)Et , 

. 1 1 1= 

where C is a pxp matrix and C(z) = Eocii The process Xt is composed of a random 

walk representing the permanent shocks to the system or the common trends and a 

stationary process. Thus Xt is clearly non-stationary and since b.Xt is stationary the 

process is 1(1). 

Now assume that C is singular, and that the matrix v is such that Vi C = 0. By 

multiplying (1.6) by Vi we find that v'Xt is stationary, since the term involving the 

random walk vanishes. Thus the common trends El Ei are eliminated by taking suitable 

linear combinations of the process. This phenomenon is called cointegration by Granger 

(1981) and was investigated systematically by Engle and Granger (1987), and later by 

many other authors. The intuition behind this is that the common trends or driving forces 

drive the economic variables in a non-stationary way, whereas the combinations v'Xt are 

stationary. The relations v'X = ° represent the "stable" economic laws, and v'Xt 

measures the disequilibrium error. Note that in particular that if v = (1,0, ... ,0) is a 

cointegrating vector then Vi Xt , the first coordinate of Xt is stationary. Thus stationarity 

of the individual components is a special case of cointegration. If in particular C = 0, then 

any vector v is a cointegrating vector, or in other words the process is stationary. 
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The above example (1.6) provides a simple example of the notion of cointegration, 

but it is more convenient from a statistical point of view to apply the autoregressive 

representation (1.3) of the process and express integration and cointegration in terms of the 

parameters of the autoregressive model. The reason for this is of course that the 

autoregressive parameters are easily estimated by regression techniques. Thus we 

formulate the 1(1) models as a condition on the parameters of the model (1.3). 

DEFINITION 1. The 1(1) models Hr' r = O), ... ,p are defined by equation (1.3) together 

with the reduced rank condition 

(1.1) II = afJ' 

where a and fJ are px r matrices. 

Note that the definition of the 1(1) models implies that we have a set of nested models 

HO ( ... ( Hr ( ... ( Hp' 

The interpretation of HO is that II = 0 and hence that (1.3) is a V AR model for the 

differences b.Xt , where as Hp is the full VAR model for the process in levels. In general Hr 

allows for at most r cointegrating vectors. 

The motivation for this definition can be found in Grangerts Theorem, see Engle 

and Granger (1987). It states that under a suitable extra condition, see Johansen (1990a), 

the process described by equation (1.3) with the restriction (1. 7) for a and fJ of full rank is 

1(1) and given by the a representation of the form (1.6), with a matrix C of the form C = 

fJ a', for a suitable choice of p x (p-r) matrices a and fJ of full rank, such that a' a = 
.l.l .l .l L 

fJt fJ = O. The parameters fJ are the long-run parameters or the cointegrating vectors, 
.l 

since fJl Xt is stationary. The space spanned by fJ.l is called the attract or set, since the 

process tends through the equations to be driven back towards the attractor set. The 

parameter a, Le. the coefficient to the disequilibrium error fJIXt_1, is interpreted as the 

force of adjustment of the process to the attractor set. 
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The variable a~Xt can be interpreted as the common trends driving the economy, 

since by multiplying (1.3) by a' one finds that the variables evolve without adjusting to 
.1 

the disequilibrium error, since the term a~ a,8'Xt_l = o. 

Thus the common trends a~ Xt represent the driving forces in the economy that 

move the variables in a non-stationary way around the attractor set spanned by ,8. The 
.1 

agents react to the disequilibrium error ,8' Xt through the adjustment coefficients a in order 

to re-establish the equilibrium. 

The constant term j.l in equation (1.3) has a double role to play. From Granger I s 

representation theorem we find that the process Xt has a linear trend given by Cj.lt = 

,8 a' j.lt. The coefficient j.l also enters into the levels of the stationary process ,8' Xt . The 
.L .1 

* process has no trend if a' j.l = 0. We formulate the hypothesis H of no trend as the 
.1 r 

restriction a' j.l = 0 . 
.1 

Thus the parameters of the cointegration model Hr in the autoregressive 

formulation admits a meaningful interpretation which facilitates the formulation of 

economic questions of relevance in terms of the statistical parameters of the model. 

1.2 Co integration of I(2) processes and definition of I(2) models. 

Consider the example of an 1(2) process of the same form as (1.6) 

t j t 
(1.8) Xt = C2 E E E· + Cl E E· + C(L)Et, t = 1, ... ,T. 

. l' 1 1 . 1 1 J= 1= 1= 

For 1(2) processes the notion of cointegration is not so simple. To see this consider first the 

case where C2 has reduced rank, and where v' C2 = 0. Clearly v' Xt is no longer 1(2) but 

only 1(1), since the first term of (1.8) vanishes. If also v' Cl = 0, or Cl = 0, then the 

process v' Xt is stationary and v reduces the order from 2 to 0, but there is one more 

situation that can occur and which is of interest for the applications. 

Consider vectors v1 and v2' such that Vi C2 = 0, and 'Vi Cl + v2C2 

simple calculation shows that Vi Xt + V2L1Xt is stationary. 

0, then a 
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This phenomenon, which is called polynomial cointegration, has been studied by 

Granger and Lee (1989), Engle and Yoo (1989) and Gregoire and Laroque (1991), see also 

Johansen (1988). Thus for 1(2) processes the notion of "equilibrium" or '.'stable" relation 

may involve not only the levels but also the differences. There are as well common 1(2) 

trends as common 1(1) trends and the formulation of these concepts in terms of the 

autoregressive parameters is given below. 

In order to define the 1(2) models we need some notation. For any pxr matrix a of 

full rank r we define a as a px(p-r) matrix of full rank such that a' a = O. We also 
~ ~ 

define a = a( a' a)-l, such that ala = I and P = aa' is the projection onto the space a 

spanned by the columns of a. 

DEFINITION 2. The 1(2) models H J s = O}i.,,}.p-r} r = 01 ... JP are defined 
f}S 

by equation (i.4) together with the conditions 

{i. 9) 

(i.iO) 

IT = a{J'1 

a' f{J = CP7J' . 
~ ~ 

Here a and {J are pxr matrices of rank rand cP and 71 are of dimension {p-r)xs. 

Again we have the inclusions 

H Oc ... CH c ... H . r, r,s r,p-r 

Note that H leaves a' f (J unrestricted, but still assumes that there are exactly r r,p-r ~ ~ 

cointegrating relations, thus Hr,p-r C Hr. A process satisfying conditions (1.9) and (1.10) 

with cP and 71 of full rank has a representation of the form (1.8), see Johansen (1990b) 

provided an extra condition is satisfied. Thus under these conditions Xt is 1(2). 

With the autoregressive parameterization (1.9) and (1.10) one can express the 

various cointegrating properties based on the above mentioned result in the following way: 

The cointegrating vectors that reduce the order of the process from 2 to 1 are given by the 

r+s vectors ({J,{J 71)· The p-r-s vectors (J2 = 7J 71 show which variables are 1(2). The 
~ ~ ~ ~ 
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coefficients f3 have the further property that {3' Xt cointegrates with the differences ~Xt 

with coefficients given by a' r l such that 

(1.11) 

is stationary. Since ({3,{31. "'), ~Xt is already stationary, we also get that 

(1.12) (3I X t + a'r73~{3~' ~Xt 
is stationary. In equation (1.12) there are r relations. They involve p-r-s I(l) variables 

{32 , ~Xt. If p-r-s < r then these can be eliminated by choosing e such that e' a' r {32 = O. 1. 1. 

In this case we define {3stat = {3e, and (1.12) then implies that {3~tatXt is stationary. 

The coefficients (a,a cp) have the interpretation as adjustment coefficients to the 1. 

various disequilibrium errors defined by (1.12) and ",'73~ ~Xt' see (2.8). The common 1(2) 

trends can be defined as a2 = a cp , since the linear combinations a 2 ' Xt evolve without 1. 1. 1. 1. 

adjusting to any disequilibrium term. The expression for the matrices Cl and C2 is rather 

involved, but some of the structure is apparent from the formula C2 = (32a 2 '. The precise 
.1 1. 

formulation of the above results can be found in Johansen (1990b). 

2. Statistical analysis of the /(1) and the /(2) model 

The Gaussian errors in the models imply that likelihood analysis is feasible. For 1(1) 

models this leads to reduced rank regression of differences on levels corrected for lagged 

differences and deterministic terms. Likelihood analysis of 1(2) models is not so simple, 

and will not be given here. Instead we show by analyzing the equations defining the model, 

that by first making the above reduced rank regression in order to estimate r,a and {3, and 

then analyzing the common trends by reduced rank regression of ;~ ~ 2Xt on (3~ ~Xt-l 

suitably corrected, we can make inferences in 1(2) models. The details are given in 

Johansen (1991b), and illustrated in Johansen (1991c) and Juselius (1991). 

2.1 Statistical inference in the /(1) model 

Equation (1.3) with the restriction (1.7) can be written as 
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(2.1) 

where all parameters are varying freely. This is clearly a linear regression model except for 

the reduced rank matrix a/3'. The analysis of Hr consists of a preliminary regression of Xt 

and .6.Xt on lagged differences, constant and seasonal dummies Dt . This gives residuals 

ROt and RH and the next step is a reduced rank regression of ROt on Rlt . To describe this 

in more detail define 

(2.2) -1 T S .. = T ~ 1 R.tR~t, i,j = 0,1 D 1 J, 

and solve the eigenvalue problem 

(2.3) 

for eigenvalues 1 > A1 > ... > Ap > 0 and
A 

eigenvectors V = (vl' ... ,vp) norm~lized b: 
V'SnV = 1. The estimate of /3 is given by /3 = (vl""'vr), the estimate of ais a = S01/3 

and finally the estimate of n is n = SOO - aa'. The maximized likelihood function is 

apart from a constant given by 

-2fT _ A _ r 
L - 1nl - ISool IT (l-A.). max '11 1= 

(2.4) 

This procedure solves the problem for all values of r and the test of Hr in Hp is given by 

p 
(2.5) Q = - T ~ 1 n(l-A.). 

r . +1 1 l=r 

The asymptotic distribution of Q under the assumption of precisely r cointegrating 
r 

relations depends on the number of non-stationary components, p-r, and on the presence 

of the linear trend, but does not involve any of the other parameters of the model, see 

Johansen (1990a). It is non-standard and tabulated by simulation in Johansen and 

Juselius (1990). If we describe data by a model allowing for a linear trend, that is a I" i 0, 
J. 

then Table A.1 in Johansen and Juselius (1990) gives the quantiles cp_r' say. The value of 

r is then estimated by the procedure 
A 

(2.6) {r = r} = { QO > cp, .. ·,Qr-1 > cp-r+l' Qr < cp_r}' 

* The analysis of H which restricts the constant term by a'l" = 0 is similar and r J. 

performed by a reduced rank regression of .6.Xt on (Xi_1,1)' corrected for lagged 
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differences and seasonal dummies. 

2.2 The statistical analysis of the [(2) model 

The likelihood analysis of the I(2) model is much more complicated due to the two reduced 

rank conditions (1.9) and (1.10), see Johansen (1990c). We here apply a different analysis 

which consists of two reduced rank regressions of the type described for the I(l) model, see 

Johansen (1991b). The first analysis is the analysis of the I(l) model, that is without the 

restriction on the matrix r as given by (1.10). This determines r, a and (3. The next step 

is an analysis of the 1(2) model for fixed values of r, a and (3. 

To see why this works assume for a moment that r, a and (3 were known, and 

consider the equation (1.4). Note that the levels only enter through the term a(3'Xt_2, 

such that if we multiply the equation by a', the term involving the levels vanishes, and we 
.1. 

obtain the equation in differences 

(2.7) a~~2Xt = a~r~Xt_1 + }Jf-2a~<I>i~2Xt_i + a~tL + a~'lIDt + a~€t· 
Now apply the identity 

p + P = {ffJ' + (3 13' = I (3 (3 .1..1.' 
.1. 

to introduce the variables 13' ~Xt-1 and 7J~ ~Xt-l through the expression 

(2.8) a' r ~X = a' r( (.[T-J, + (3 7-J, )~X 
.1. t-1 .l fJfJ .l.fJ.l t-1 

= a~r(3(7J' ~Xt-1) + cprJ'(7J~ ~Xt-1)' 
Here we have used condition (1.10) to replace the coefficient matrix a' r (3 by <pr!, 1 thus 

.1. .l 

allowing these to enter directly into the equations. By combining (2.7) and (2.8), it is seen 

that the analysis for fixed r, a and f3 consists of a reduced rank regression of the variables 

a~ ~ 2Xt on 7J~ ~Xt-1' corrected for lagged second differences, 13' ~Xt-l together with 

constant and seasonal dummies. 

In view of the fact that the constant term in (2.7) gives rise to a linear trend in the 

differences, and a quadratic trend in the levels of the process it seems reasonable to restrict 
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the constant by assuming that rp' a' fJ = O. The analysis of this model is accomplished by a 
.L .L 

reduced rank regression of a~Ll2Xt on ((,B~LlXt_1)',1)' corrected for ,B'LlXt _ 1, lagged 

second differences and seasonal dummies. 

The procedure suggested is to analyze the data using the 1(1) analysis with J1, 

unrestricted to determine estimates of r, a and ,B and then analyze equation (2.7) by 

reduced rank regression for the estimated values of r, a, and ,B with the constant term 

restricted using (2.8). The properties of this procedure are given in Johansen (1991b), 

where the most important result is that the asymptotic distribution of the test statistic for 

* H in H is distributed as that of H in H only with p-r-s degrees of freedom. Thus r,s r,p-r r p 

the same tables can be used for the 1(1) analysis as for the 1(2) analysis. It is also proved 

that likelihood inference concerning the parameters can be made using the X2 distribution, 

since the parameters are either asymptotically Gaussian or mixed Gaussian. 

3. Purchasing power parity between Australia and the United States as an illustration of 

the /(2) analysis. 

The data are quarterly series from 1972:1 to 1991:1 taken from the data base DX (Time 

Series Data Express v2.1). They consist of the consumer price index for Australia, p AU' 

and the United States, PUS' the exchange rate, exch, measured as the log of the prices of 

Australian dollars in US dollars, and the 5 year treasury bond rate in both countries, i A U 

and iUS' 

The price series are seasonally adjusted. Since there was no series for Australia that 

covered the whole period, p AU is spliced from two series giving the weighted average for 6, 

respectively 8, state capital cities. Where the series overlap the difference was + /- 0.1. 

the data are plotted in levels and differences in the Appendix. It is clear that the series are 

non-stationary, and that a linear trend is needed to describe the price series. It is not so 

obvious if the differences are non-stationary, which would require an 1(2) analysis. What 

we can safely assume, however, is that the processes are not 1(3), which is the basic 
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assumption for the I(2) analysis to be valid. Questions about the order of integration of 

the individual variables are then formulated inside the model as restrictions on the 

parameters. 

3.1 The jitting of an autoregressive model with 2 lags 

A V AR(2) model was fitted to the data, and some summary statistics are given in 

Table 1. 

PAU 

PUS 

exch 

zAU 

zus 

TABLE 1 

The autocorrelations and diagnostic statistics for the 

residuals after jitting an AR(2} model. 

B-P(18) Arch(2) Skew. Ex.Kurt 

14.8 1.54 .70 1.097 

23.4 1.66 .20 .406 

16.5 .21 2.95 1.090 

13.9 3.30 2.54 .757 

8.6 20.28 .27 1.707 

The test statistics are the Box-Pierce statistic TE~8rf which should be 

compared with the quantiles ofaX2(16} distribution, the ARCH statistic 

which is approximately distributed as X2 (2}) and jinally the skewness and 

excess kurtosis normalized to be asymptotically distributed as X2(1}. 

It is seen that there is no auto correlation left in the residuals, but that the US interest 

rate has a large ARCH statistic. The asymptotic theory underlying the ~imit results 

certainly allows for distributions other than the Gaussian. The main requirement is 

that their cumulative sums converge to Brownian motions. I do not know how the 
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ARCH effects influence the results, and the first thing that will be investigated below 

is whether the data allows a parameter restriction that implies that we can analyze the 

series conditional on the US interest rate. 

3.2 The determination of the co integration ranks rand s 

The I(l) analysis as described in section 2.1 gives the eigenvalues, eigenvectors and 

adjustment coefficients in Table 2 calculated from (2.3), normalized by the coefficient 

to PAU' 

PAU 

PUS 

ex ch 

TABLE 2 

The eigenvalues, eigenvectors, and their adjustment coefficients 

from the 1(1) analysis 

Eigenvalues 

.484 .262 .215 .074 .058 

Lonrrrun coefficients f3 

1.00 1.00 1.00 1.00 1.00 

-.95 -1.98 -1.12 -1.65 -1.01 

.38 .76 -.81 .14 -.35 

-11.75 2.77 4.16 .42 -.98 

9.34 3.88 2.03 3.28 -1.39 

Adjustment coefficients a 

-.030 -.013 -.007 .012 -.018 

.004 -.034 -.001 .028 .008 

-.035 -.124 .159 .043 -.064 

.028 -.043 .005 -.007 -.009 

-.008 -.052 -.000 -.027 .018 
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The test statistics Q for testing the hypothesis H in H are calculated from (2.5) and for r r p 

each value of r and the corresponding estimates of a and {3 given in the first r columns of 

Table 2, we analyze (2.7) by reduced rank regression and restricted constant term, and 

* * * calculate the statistics Q s equivalent to (2.5) for testing the hypothesis H in H . 
r, f,S f,p-r 

The results are given in Table 3. 

TABLE 3 

Test statistics for the determination of the co integration ranks rand s 

in the [(2) model 

* r Qrs Qr p-r c , p-r 

0 261.50 157 . 44 95.96 45.89 10.91 101.38 5 68.91 
s=o s=l s=2 s=3 s=4 

1 178.48 84.48 32.61 9.18 51.78 4 47.18 
s=o s=l s=2 s=3 

2 86.26 28.10 4.21 28.43 3 29.51 
s=o s=l s=2 

3 28.82 10.04 10.24 2 15.20 
s=o s=1 

4 8.84 4.45 1 3.96 
s=o 

p-r-s 5 4 3 2 1 

* c s 75.33 p-r- 53.35 35.07 20.17 9.09 

Table 3 contains information on the cointegrating ranks rand s and should be read as 

follows: First we determine the rank r. The test statistics Q for testing H in H , the 
r r p 

unrestricted V AR model are listed in column 7 next to the degrees of freedom, p-r, and the 

last column has the 95% quantiles taken from Table A.1 in Johansen and Juselius (1990) 

which is the relevant one to use if the model allows for an unrestricted constant term, and 

the linear trend is present. It is seen that the formal procedure for determining r at the 5% 

level gives r = 2, since QO > c5, Q1 > c4, but Q2 < c3. The long-run coefficients given in 
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Table 2, show that the third eigenvector has roughly the coefficients we are looking for, for 

the two prices and the exchange rate. The third eigenvalue is a borderline case, and since 

the asymptotic tables are at best giving the order of magnitude of the actual quantiles, we 

should be careful not to make too strong decisions based upon the formal test alone. Let 

us, however, for the moment assume that the best value of r is 2, but keep in mind that r 

= 3 could be just as good. 

* * * * Next we investigate the hypotheses HO 2' H1 2' and H22· The test statistics Q20 
'" 1 * * Q2 1 and Q2 2' are calculated from formula (2.5) based on reduced rank analysis of , , 

equation (2.7) with restricted constant term. The values are giv~n in the row 

corresponding to r = 2 in Table 3. The quantiles are taken from Table A.3 in Johansen 

* and Juselius (1990). It is seen that s = 0 is strongly rejected since the test statistic Q2 0 = 
* ' 

86.26 is much greater than the quantile 35.07. Similarly Q2 1 = 28.10 is larger than the 

* '* quantile 20.17, but Q22 = 4.21 is less than the 95 % quantile given as 9.09. If H2 2 is , , 
rejected then the matrix in condition (1.10) is found to have full rank, and the process is 

* integrated of order 1. Thus the statistic Q2 2 displays the information about 1(2)-ness in 

* ' the data, and H2 2 is clearly accepted. , 
We continue the analysis under the assumption that r = 2, s = 2 and p-r-2 = 1, 

which leaves 1 common 1(2) trend in the data. Note that of r = 3 were chosen then the 

* * * * test statistics Q3 0 = 28.82 and Q3 1 = 10.04 would reject H3 0 and H3 1 showing that , , " 
there are no 1(2) trends in the data. We feel that the analysis based upon all of Table 3, 

rather than just Q , helps pick up the correct value not only of s but also of r, by pointing 
r 

out where the singularity of the matrix in (1.10) is most pronounced. 

3.3 Determination of parameter estimates 

It is one of the results of Johansen (1991b) that even though the process has 1(2) 

components it still holds that the tests carried out on a and f3 in the 1(1) analysis will be 

asymptotically distributed as x2 due to the fact that the estimator ~ derived from the 1(1) 
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analysis is asymptotically mixed Gaussian and that of a is asymptotically Gaussian. Thus 

we can test hypotheses on a and /3, using the procedures described in Johansen and Juselius 

(1991). 

The hypothesis we want to check is that the last row of a is zero. The reason for 

this is that in this case the conditional model given iUS will yield the estimate of a and /3. 

It is hoped that the conditional model would be slightly better fitted by an autoregressive 

model since the problematic variable, iUS' is kept fixed. 

The likelihood ratio test statistic for the hypothesis that a51 = a52 = 0 is 5.66 

which evaluated in a X2 distribution with 2 degrees of freedom corresponds to a p-value of 

6%. We continue the analysis under the assumption that as. = 0, in which case the new 

estimates of /3 and a are given in Table 4 

PAU 

PUS 

ex ch 

'tAU 

'tUS 

TABLE 4 

The estimates of a and /3 under the assumption that r = 2, and that as. = 0 

normalized by the coefficient to p A U 
A 

{3 a 

1.000 1.000 -.027 -.006 

-.806 -1.087 .006 -.001 

.323 -.885 -.030 .154 

-13.685 4.244 .027 -.005 

9.975 1.961 .000 .000 

Note that the second cointegration vector has approximately the coefficients (1,-1,-1,*,*) 

indicating that the PPP relation needs the interest rates to become stationary. The 

corresponding adjustment coefficients are very small except for the exchange rate equation 

indicating that the prices hardly adjust to a deviation from the PPP as measured by the 

second column of {3. 
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We now proceed to estimate the various vectors which describe the cointegration 

properties of the process under the assumption that r = 2, and s = 2, such that there is 

p-r-s = 1 common 1(2) trend, and s = 2 common 1(1) trends. We apply the estimates of a 

and fJ given in Table 4 from the 1(1) analysis. 

TABLE 5 

fJ1 = TJ 1. 1]1. a2 = a cp 
1. 1. 1. ,8stat 

1.742 -.057 1.000 

.872 -.064 -1.092 

.089 -.004 -.905 

-.326 -.047 4.089 

.340 -.061 1.829 

We have chosen to give only some of the estimates from the 1(2) analysis in Table 5 since 

they are the ones that are most easily interpreted. 

The first column is the vector which appears in the Granger representation theorem 

(1.8) since C2 is proportional to ,82a2'. Thus fJ2 shows which variables are actually 1(2). 
1. 1. 1. 

It points towards the price series, but we do not have information on the variances of the 

individual coefficients. 

Similarly a2 is interpreted as that linear combination that describes the common 
1. 

1(2) trend. It is seen to put equal weight on prices series and interest rates and the 

1(2)-ness can thus not be ascribed to anyone of the variables. 

The final column fJstat is found as that linear combination of the r = 2 relations 

(1.12) which eliminates the contribution from the term ,81' L\Xt . 

This then is the closest we can come to a stationary relation between the variables 

in the system under the assumption of an 1(2) model. It is seen that the prices and the 

exchange rates appear roughly with the coefficients (1,-1,-1) as would be expected from 
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the law of one price, but the PPP relation by itself is not stationary, but a relation 

involving the interest rates can be stationary. This is in accordance with the investigation 

in Johansen and Juselius (1990) of the Purchasing Power Parity between Denmark and 

Germany. 

6. Conclusion 

We have analyzed the five series using an 1(2) model. It should be pointed out that the 

analysis by means of a V AR model assumes constant parameters throughout the period and 

that the shocks can be described by the random Et s. The non-stationarity of the series is 

described as the cumulative effect of the shocks, that is, as 1(1) or 1(2) processes. An 

alternative description would be as a stationary process with a shift in level around 1980. 

A careful investigation of these assumptions is not made here. 

We find, under the 1(2) assumptions, that a linear combination (1,-1,-1,.*,*) is 

stationary and the Appendix contains a plot of the process .B~tatXt together with the PPP 

relation and the Australian prices. It is seen that the PPP relation is more stable than 

p AU but that the improvement from PPP to .Bst at , which involves the interest rates is 

only slight. 

One would perhaps expect that the interest rate differential would be stationary, 

but any test that we have performed indicates that this is not the case. It is seen from the 

plots that although they move together for the first half of the period, the US interest rate 

comes down again, whereas the Australian stay at the high level. Thus there is no 

comovement in the interest rates. It is seen that the PPP relation needs a lift in the end of 

the period to become more stable, and this is what the interest rates do. Since the 

Australian interest rate is best for this it has a higher coefficient than the US interest rate. 

Any statistical analysis rests on assumptions, not all of which have been checked in 

the present application. The point I want to make with this investigation is that the 1(2) 

analysis helps the understanding of the structure of the data and thus improves the chances 

of building effective economic models. 
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