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Abstract 

It is shown how one can estimate cointegration relations in a partially modelled system by 

the method of maximum likelihood. The estimator is compared with the estimator based 

on the full system, and it is shown that the two estimators are identical if the conditioning 

variables are weakly exogenous for the cointegrating relations and their adjustment 

coefficients. Suggestions are made for analysing the partial system, when there is no weak 

exogeneity. 
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O. Introduction 

The general V AR model is often used to describe the statistical variation of economic time 

series. Economic systems, however, often have so many potentially useful variables that 

the system gets very large and it is tempting to consider partially specified systems, where 

only some of the variables are treated as endogenous, and model these conditionally on the 

remaining variables. If we are interested in the cointegrating relations and their 

adjustment coefficients, this will in general imply a loss of efficiency, and the purpose of 

this paper is to discuss this problem in a quantitative manner. 

The results are close to those of Phillips (1990) who considered a slightly different 

model. The present paper is an attempt to apply similar ideas within the framework of the 

V AR model. Since the full details of the analysis of the likelihood function are rather 

tedious we here only state the neccesary results and refer the reader to the papers by 

Johansen (1990) and Johansen and Juselius (1990) where the full system has been treated 

in detail. 

The paper starts with a discussion of weak exogeneity and we show that if the 

equations which have not been modelled, have no cointegration then the partial estimator 

is equal to the full maximum likelihood estimators and in this sense efficient. 

In section 2 we show that if the partial system has more equations than 

cointegrating relations, then a suitable eigenvalue problem solves the estimation problem, 

and if there are fewer equations in the partial system than cointegrating relations, then the 

cointegrating relations can be determined by regression. Finally we givein section 3, 

"vithout proof, the asymptotic distributions following Johansen (1990) and apply these to 

discuss the efficiency in section 4. Section 3 also contains some suggestions for analysing 

partial systems. 
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1. Partial models and weak exogeneity 

The V AR model for cointegration can be written in the form 

k-1 
(1.1) L}.Xt =. b fiL}.Xt_i + o;,B'Xt_k + ~Dt + jl + ft, t = 1, ... ,T 

1=1 

where X_k+1, ... ,XO are fixed and f1, ... ,fT are independent p-dimensional Gaussian 

variables with mean zero and variance matrix A. The vector Dt denotes seasonal dummies, 

centered at zero. The parameters in the model are composed by the short-run effects 

f 1 , ... ,fk- 1, the seasonal coefficients ~, the constant term jl, the covariance matrix A and 

the pxr matrices 0; (the adjustment coefficients) and ,B (the cointegrating relations) all of 

which vary unrestrictedly. 

The maximum likelihood estimation has been treated in Johansen (1988), for the 

model without a constant term, and by Johansen (1990) and Johansen and Juselius (1990) 

for the above model. 

A different method for estimation of a long-run steady state relation is to consider 

the first equation, say, given the other equations and in this partial model to estimate the 

parameters by regression analysis. We shall call such an analysis a single equation analysis. 

The estimate of ,B is called "the static long-run solution" of the autoregressive model, see 

Hendry (1989). It is clear that if there are more than one cointegration relation we shall by 

this analysis only determine a suitable combination of the cointegrating relations. It is also 

clear that even if there is only one cointegration relation the conditional analysis will in 

general be inefficient. In order to be able to discuss this problem in more detail we derive 

expressions for the asymptotic conditional covariance matrices of the estimable parameters 

such that the question of efficiency can be discussed quantitatively. 

Let therefore a be a known pxm matrix of rank m and let b = a be a (px(p-m)) 
..L 

full rank matrix of vectors orthogonal to a. It is not difficult to show that 

(1.2) 



and that 

(1.3) Var(a',6.Xt Ib',6.Xt,,6.Xt_1,···,,6.Xt_k+1,Xt_k) = 

-1 
Aaa - AabAbbAba = Aaa.b· 

where we have applied the notation Aaa = a'Aa, Aab = a'Ab etc. 

The model 

k-1 
(1.4) a',6.Xt = (a-bAbtAba)'C b f i,6.Xt_ i + a,8'Xt_k + ~Dt + fJ) 

1=1 

+ AabAbtb',6.Xt + Ut' t = 1, ... ,T. 

3 

Here Ut are independent Gaussian variables with mean zero and variance matrix Aaa.b will 

be called a partial VAR model or a conditional model for a',6.Xt given b',6.Xt and past 

information. 

If in particular a' = (1,0, ... ,0) we get a model for ,6.Xlt given ,6.X2t , ... ,,6.Xpt and for 

a' = (Imxm'O) we get a model for ,6.Xlt ,···,,6.Xmt given ,6.Xm+ It, ... ,,6.Xpt ' We show in 

section 2 that for m ~ r all cointegration vectors can be estimated, but for m < r only 

certain linear combinations of the cointegration vectors. By formulating partial models in 

this way we are considering them as derived from a general fully specified V AR model. 

Thus even though only the partial model is analysed in detail for its cointegrating 

relations, the properties of the conditioning variables are given by the full model (1.1). 

In general the marginal distribution of b' ,6.Xt given the past contains information 

on the cointegrating relations, since they enter in the form 

b' a,8'Xt_k. 

Thus in order to get efficient estimation one will have to analyse both the marginal and the 

conditional model, i.e. the full model. There is one situation, however, where the 

conditional model has full information on the cointegrating relations, namely if b' ,6.Xt is 

weakly exogenous for (01,,8). 

The basic result on weak exogeneity is given in 
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THEOREM 1.1: If b'O! = 0) then b'i1Xt is weakly exogenous for the parameter (aJ3). 

Hence the maximum likelihood estimator for (aJ3) in the full model (i.i) is the same as the 

maximum partial likelihood estimator in the partial model (1..4). 

Proof: The proof is a consequence of Corollary 6.2 in Johansen and Juselius (1990), but 

will be given in detail here. If b' a = 0, then (a,(3) does not appear in the model for b'i1Xt 

given the past and hence the parameters of this distribution are 

(1.5) 

whereas the conditional model of a'i1Xt given b'i1Xt (and the past) contains the 

parameters 

(1.6) 

It is a well-known property of the multivariate Gaussian distribution that the parameters 

(1.7) {Abb, AabAb~' Aaa.b} 

are variation free. In order to prove that (1.5) and (1.6) are variation free we must check 

that any choice of the quantities (1.5) and (1.6), compatible with the obvious restriction 

that variance matrices are symmetric and positive definite, makes it possible to reconstruct 

the parameters of the original model {ri' i = 1, ... ,k-1, O!, /3, A, ~,It}. 

That A can be reconstructed is clear from (1.7), and (3 can be found directly since it 

enters into (1.6). Since b' O! = ° we have that m ~ r, which implies that O! can be found 

from a' a. Finally b'r. is given, and aIr. can be found from the first component in (1.6), 
1 1 

which shows that also r., i = 1, ... ,k-1, can be found. The argument for ~ and It is similar. 
1 

Thus the parameters in (1.5) and (1.6) are variation free, and since the joint density of 

a'i1Xt and b'i1Xt given the past factorizes into the product of the conditional and the 

marginal density it follows that b'Xt is weakly exogenous for (0!,(3) if b' O! = 0, i.e. if the 

equations we condition on do not contain cointegration. The weak exogeneity of b'i1Xt 

with respect to (a,(3) implies that the maximum likelihood estimator in the full system 

(1.1) is identical to the (partial) maximum likelihood estimator derived from the partial 
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system, since the likelihood function only depends on the parameter (O!,(J) through the 

partial likelihood function. 

2. Estimation of partial models 

The estimation of model (1.4) is most easily discussed if we first concentrate out the 

parameters (a - bAbtAba)lri, i = 1, ... ,k-1, (a - bAbtAba)l~, (a - bAbtAba)lft and 

AabAbt by regressing alL~.xt and Xt- k on bl~Xt,~Xt_1, ... ,~Xt_k+1,Dt,l. This gives 

residuals Ra.bt and Rk.bt respectively, and the model can be writtten as 

(2.1) Ra.bt = O!a(J1Rkbt + error, 

where 

(2.2) 

We define the product moment matrices: 

-1 T 
(2.3) S .. b = T ~ R. btR·/bt' 

1]. t=l 1. J. 

Vie can then prove 

i,j = a,k 

THEOREM 2.1. If m ~ r the co integrating relations are the rows of the matrix ITa = 

(a-bAb~Ab)lO!(Jl. This matrix is estimated by regression: ITa = Sak.bSki.b. 

Proof: If m ~ r, the matrix 

(2.4) ITa = O!a(Jl = (a- bAbtAb)lO!(Jl 

varies in the space of all mxr matrices, and hence ITa can be found by regression: 

(25) IT - S S-l . a - akb kkb' 

which completes the proof. 

Thus if m ~ r the maximum likelihood estimation in the partial model is just 

ordinary least squares. If in particular a1 = (1,0, ... ,0) and A and O! are partitioned 
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accordingly into 

A = [All A12], 01 = [ 011] , 

A21 A22 012 

then the 1xr matrix OIa is given by 

(a - bAb~Aba)'OI = [ __ ~ ] / [ 011] = 011 - A12A2~0I2' 
A22A21 012 

which shows how the adjustment coefficients in equations 2, ... ,p (012) are combined with 

the adjustment coefficients in the first equation (011) to define the linear combination of (3 

that is estimated. Note that even though one chooses equations without cointegration i.e. 

011 = 0, then conditioning on .6X2t brings back cointegration into the first equation, if the 

error terms are correlated. 

Another case of interest is to let m = r, in which case all cointegration vectors or 

rather the cointegration space sp((3) can be found by simple regression. We emphasize in 

particular 

COROLLARY 2.2: Single equation analysis is equivalent to maximum likelihood if the 

remaining equations contain no cointegration. 

Next consider the case m> r, 

A A 

THEOREM 2.3: Ifm> r) the co integration vectors are found as (3 = (vl)''')v~) where 
A 

(vJ!"')v~ are the eigenvectors in the eigenvalue problem 

(2.6) /ASkk.b - Ska.bS~~.bSak.b/ = 0) 

which has solutions 

Ai> ... > /\m> Am+l = ... = Ap = 0) 

The estimate of OIa = (a-bAb~Ab)' 01 is given by 
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(2.7) 

Proof: The proof is identical to the proof in Johansen (1988) and exploits reduced rank 

regression as solved by Anderson (1951). The p-m last eigenvalues are zero since the rank 

of SI bS- 1 bS k b is m. An economical way of using this fact is to solve the dual problem {a. aa. a. 

instead, which only involves an eigenvalue routine for mxm matrices: 

I ,,\Saa.b - SakbSk"t.bSka.b I = 0, 

which has the same positive eigenvalues and eigenvectors w1, ... ,wm' 

/\itSk"t.bSka.bwi' will be the eigenvectors of (2.6) normalized by u'Skkbu = 1. 

Then u· 
1 

One can then estimate the remaining parameters by ordinary least squares, keeping 

(J = (J a fixed, since, once the optimal (J is found, there only remains to solve a usual linear 

regression problem. 

Thus for m ~ r we can do with regression, and for m ~ r an eigenvalue routine is 

needed. For m = r the two methods coincide. Note that by conditioning on simultaneous 

values of b'6.Xt we reduce the dimensionality of the eigenvalue problem (2.6) by forcing 

p-m eigenvalues to be zero, thereby reducing the possible choice of the number of 

cointegrating relations from p to m. Note also that although the algebra of the solution is 

similar to that of maximum likelihood estimation in the full model (2.1) one only obtains 

these estimators if b',6.Xt is weakly exogenous, i.e. if b'Q! = O. 

3. The asymptotic distribution o/the estimators 

In order to derive the asymptotic properties of the estimators we first specify the properties 

of the process in terms of its characteristic polynomial: 

k-1 . 1 
A(z) = 1(1-z) - ~ r.(l-z)zl- Q!(J'z{. 

. 1 1 1= 
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vVe assume that it has all roots outside the unit circle or possibly at the point z = 1. This 

condition excludes explosive processes. Further we assume the condition that a' \]1(3 has 
1.. 1.. 

full rank, see Johansen (1990), which guarantees that Xt is integrated of order 1. Here - \]I 

denotes the derivative of A(z) at the point z = 1. We define C = (3 (a' \]1(3 )-1 a' , which 
1.. 1.. 1.. 1.. 

has an important role in the Granger representation of Xt , since the non-stationary part of 

t t 
Xt is given by C b Cs + CfJt = C b Cs + Tt. 

s=l s=o 

The limit 

l[Tt] w 
T-2 b Cs -1 W(t), 

s=l 

defines a Brownian motion W in p dimensions with covariance matrix A. We use this to 

describe the asymptotic properties of the estimators. The asymptotic distribution of Xt is 

different in the direction T, where the linear trend is dominating, and in the direction 1 

orthogonal to T and (3 such that ((3,1, T) spans RP. It follows from Grangers representation 

theorem that 

T-t 'X w 'CW(t) d T-1 'X P ,.-/. 1 [Tt] -1 1 an T [Tt] -1 T I ~ 

The parameter (3 is not identified, since ae and (3e,-l give the same value of IT and hence 

are observationaly equivalent. We can therefore normalize (3 as follows: Let c be any pxr 

matrix such that (3'c has full rank, and define (3c = (3( c'(3)-l and correspondingly ac = 

a((3'c) such that a(3' = ac(3~. For r = 1, one often chooses c' = (-1,0, ... ,0) such that (3c is 

the normalization by the coefficient to the first component of (3. Thus the normalization by 

c corresponding to " solving" the relation (3'X = ° for c'X. 

If r > 1 we can sometimes choose c = (-Irxr ' 0) so that we isolate certain variables 

Xlt, ... ,Xrt and express the stable relations in the form that Xlt, ... ,Xrt are linear functions 

of Xr+ 1,t'···,Xpt · This clearly requires that we can assume that the variables 

Xr+ 1,F··,Xpt are not cointegrated. If (3' = ((3£,(32) with (31 rxr then (3~ = (-I,B') with B 
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= -(32(3-;1. Thus if X = (Y l' Y 2) this corresponds to solving the relation (3'X = 0 as Y 1 = 

BY 2' This identifies the coefficients to Y 2 and below we give the asymptotic distribution 

of these coefficients. 

THEOREM 3.1: For m ~ r, and o;a and (3 of rank r the asymptotic distribution of 
~ ~ ~-1 

(3 c = (3 (c' (3) is given by 

(3.1) T(~c - (3j 3'1 (I-(3cc1b',)-1,(JG(u)G(u),du)-l JG(dV),(c'(3)-1! 

where 

(3.2) G(t) = (r',)-l,'C[W(t)-J W(u)du-(t-1/2)J W(u) (u-1/2)du/J (u-1/2)2du~ 

i. e. the Brownian motion corrected for a linear trend. 

Further! 

(3.3) V = (0;' (A -1 - bA bib')o;)-lo;' (A -1 - bA bib')lV. 

The asymptotic distribution of o;a normalized by c is given by 

1 ~ W . 1 
T2(0; -0; )-+N (D!A b 0 (c!(3)((3'1kkb(3)- ((3'c)). ac ac pxr aa. . 

The integral JG(u)G(u)'du is a (p-r)x(p-r) matrix of stochastic variables found as 

ordinary Riemann integrals of the continuous functions Gi(u)G/u), whereas the integral 

JG(dV)' is a matrix where the (i,j)'th element is given by a stochastic integral of the 

process Gi with respect to the process Vr Finally Aaa.b = a'Aa - a'Ab(b'Ab)-lb'Aa and 

bkk.b = bkk - bkob(b'bOob)-lb'bOk 

Proof. The proof of this is identical to the proof given in Johansen (1990) from which we 

get the expression for V 

V = (o;~A~!.bo;)-lo;~A~!.b(a-bAb~Aba)'W. 
From the identity 
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-1 [ [a']' ]-1 [a'] A = (a,b) b' A (a,b) b' = 

bAbtb' + (a-bAbtAba)A~~.b(a-bAbtAb)" 
the result follows. Note that in general V and G are dependent, which makes it difficult to 

conduct inference on the structure of fJ, see below. 

Of special interest is the case where b'Xt is weakly exogenous for fJ, or b' a = o. 

COROLLARY 3.2: If b' a = 0 then estimation of fJ from (1.4) is the maximum likelihood 

estimation in the full model (1.1) and its asymptotic distribution is for m 2. r given by 

by (3.1), (3.2) and (3.3) with 

(3.5) V = (a 'A -1a)-1a 'A -1 ~ 

which is stochasticaly independent of G. 
A 

A consistent estinwtor of the asymptotic conditional variance of T(fJ c -fJ d is given by 

(3.6) (1-(3 c~~~'(I-c(3')@ ((3'c)-1(iJ- 1-I)(c'(3)-1, c c 
A A A 

where v = (v r+l' ... ,vp)' see (2.6) 

The proof follows Johansen (1990). Thus under weak exogeneity of b'X for fJ the 

asymptotic distribution of fJ is mixed Gaussian and asymptotic inference concerning 

hypotheses on fJ can be performed by the X2 distribution see Johansen (1990), Phillips 

(1990) and Jeganathan (1989). 

If db = 0 , i.e. we have weak exogeneity, then estimation conditionally on b'X gives 

efficient estimation of fJ. If a'b is not zero, then the asymptotic distribution of fJ is a 

complicated distribution, since G and V are not independent. It seems therefore of interest 

to derive a test that the hypothesis a'b = 0 is actually satisfied. TIns is nothing but a 

linear restriction on a, and the test can be conducted as a likelihood ratio test in the full 

model (1.1) using the likelihood ratio test as given in Johansen and Juselius (1990). If m 2. 
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r and if we want to avoid the full model analysis, especially the eigenvalue routine for 

estimating /3 in the full model, we can estimate the cointegrating vectors from the partial 

system. The estimate /3 is superconsistent, and inserting it into the equations for b'~Xt, 

one can, for fixed /3 = /3, test the hypothesis that the coefficient to /3'Xt- k is zero by an 

approximate F-test. Thus the full analysis of the model (1.1) is replaced by: 

(3.7) 

(3.8) 

A cointegmtion analysis of the (small) partial model for a '~Xt 

given b '~Xt and the past. 

~ 

A regression analysis, for fixed /3, of the (large) marginal model 

for b '~Xt given the past, and a misspecification test to check 

the weak exogeneity. 

In order to illustrate the difficulties met in the case of no weak exogeneity we consider the 

situation where m ~ r, and a simple hypothesis on /3 : 

H: /3 = /30' 

A Taylors expansion of the likelihood function shows that when (3 = (30 it holds that 

as T -) 00, 

(3.9) w -1 1 
-21nQ ~ tr{Var(V) f(dV)G'[fGG'du]- fG(dV)'}, 

with G and V given by (3.2) and (3.3). 

It is clear that the limiting distribution (3.9) is invariant under multiplication of 

either V or G by non-singular matrices. This means that the limiting distribution only 

depends on the canonical correlations between the linear combinations of the process W 

given by (3.3) and 

G = ('Y''Y)-l'Y'CW, 

and hence on the solutions (pp ... ,Pr) of the equation 

IpVar(V) - Cov(V,G)Var(G)-lCov(G,V) I = 0, 
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or equivalently, after some reductions, 

(3.10) I pa~A~~.baa - a'bAb"tb'AC',C"/CAC',)-l,'CAbAb"tb' al = o. 
In principle the analysis of the partial system can thus be supplemented by the last step: 

(3.11) If weak exogeneity fails then estimate the canonical correlation 

from (3.10) and simulate the distributions involved in the 

asymptotic tests of hypotheses concerning (J. 

We finally give some results on the estimation of IT 

THEOREM 

(3.12) 

(3.13) 

3.3: The asymptotic distribution of ITa = aa(J' = aac(J~ is given by 
1. A w -1 , 

T2 (ITa - IT~ -) Npxp(O,Aaa.b 0 (J((J'bkk.b(J) (J ') 

T(Jla - IT~, ~ a f (dV)G'[fGG'duT 1,', 

I A 

Note that the relation (3.12) is not very useful for linear combinations like T2 (ITa-IT), 

since it only implies that the limit is zero. A different normalization is needed in the 

direction ,. A similar remark holds for T3/2CITa -ITa)r. 

Proof. The proof follows for m ~ r from Theorem 3.1, and for m < r one can apply the 

same proof. 

The asymptotic distribution of ITa thus depends on which direction we are 

interested in, and this has consequences for hypothesis testing concerning (J. If we consider 

for instance linear restrictions K'(J = 0, then the test will involve K' (J, or possibly K'IT'. 

The first result (3.12) is not useful for this since the asymptotic distribution of such linear 

combinations is degenerate. This is where the second result comes in. The third result 

about r'(J would only be of interest if K happend to be proportional to r, which is unlikely, 

and the result is therefore not given. 
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4. Efficiency results 

When we analyse the conditional system for information on (3 and m ~ r, then at least we 

get superconsistency for (3, but the limit distribution is rather complicated and there seems 

to be
A 

no easy way to make inference on hypotheses on (3. If we nevertheless compare (3part 

and (3full we see that in both cases we get a limit distribution of the type (3.1) with the 

same function G, but with different V. From (3.3) we find 

V = (o:'(A -l-bA -1b') a)-l o:'(A -l-bA -lb1)W 
part bb bb 

V ( lA-l )-1 lA-1W full = a a a . 

It is easy to see that 

Var(V part) ~ Var(Vfull ) 

in the sense of positive definite matrices, and that equality only holds for a 1b = O. 

Hence we loose some efficiency by increasing the variation in the limiting 

distribution, and only when we have weak exogeneity do we get no loss of efficiency in this 

sense. In case of weak exogeneity we also get the possibility to make easy inference since 

the limit distribution is a mixture of Gaussian distributions, and asymptotic inference 

concerning (3 can be conducted via the X2 distribution, see Johansen (1990). 

If m < r the first sense in which we loose efficiency is that we can not estimate all 

the cointegrating vectors, only certain linear combinations of them. Since the estimation of 

(3 is really the estimation of the IT matrix the results are therefore given by Theorem 3.2. 

Now consider the estimation of a. By analysing a partial system we can only 

estimate 

aa = (a - AabAb~) 1 a 

i.e. some linear combinations of the a1s. This is not so important, since evidently the 

equations we are analysing are the interesting ones. 

The asymptotic distribution is Gaussian and has a limiting variance given by 

n - A ® ((31>'" (3)-1 part - aa. b ~kk. b 
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compared to the variance of the estimate of G!a we would obtain from the full system: 

f2full = Aaa.b 0 (,8';k8)-1 

It is seen that f2part ~ f2full ' since 

,8';k.b,8 = ,8'~kk,8 - ,8';ob(b'~oob)-lb'~Ok,8 ~ ,8';k,8· 

Now ,8';0 = ,8'~kk,8G!', such that equality only holds if bIG! = O. Hence in the case of weak 

exogeneity we loose no information in the analysis of the partial system as long as we are 

only interested in the coefficients in the partial system. 

The efficiency question can also be asked in relation to how much we loose in the 

estimation of IT and Theorem 3.2 shows that it can be answered by the above 

considerations concerning G! and ,8. 
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