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Abstract. 

We investigate vector autoregressive processes and find the condition 

under which the processes are 1(2). A representation theorem for such 

processes is proved and the interpretation of the AR model as an error 

correction model is discussed. 

1. Introduction 

The basic papers by Granger (1983) and Engle and Granger (1987) have 

started an intense research in the topic of cointegration and its 

connections with error correction models as originally formulated by 

Sargan (1964). Most of the work has been connected with processes 

integrated of order 1, where certain linear combinations are stationary, 

the so-called cointegrating relations. There are, however, indications 

that certain economic series are integrated of order 2. and the theory of 

higher order cointegration has been treated in Yoo (1986), Johansen 

(1988), Davidson (1988), Engle and Yoo (1989) and Granger and Lee (1988). 
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It is well-known that a process Xt E RP is called integrated of order 

d if AdX 
t is a stationary invertible process, i.e an 1(0) process, and 

that Xt is co integrated if for some A E RP the process A'Xt is integrated 

of a lower order than ~. For 1(2) processes one can thus be looking for 

linear combinations that are stationary, but there is clearly also the 

possibility that some linear combinations are reduced only to 1(1) 

processes. In this case it may occur that these 1(1) processes 

co integrate with the differences of the process, which is also an 1(1) 

process. An example is given by Granger and Lee (1988), and examples are 

also given in Johansen (1988). 

Just to fix ideas consider two price variables PI and P2' There is 

evidence that such series could be 1(2) and one could imagine that P1-P2 

would be more stable, say 1(1). The process AP1 is also 1(1), and if 

P1-P2 -cAP1 is stationary, we have an example of what Yoo (1986) calls 

polynomial cointegration, that is the coefficient of the variables are 

polynomials in the lag operator. 

The present paper poses and solves the following problem: Given an 

autoregressive multivariate process Xt' under what conditions on the 

coefficients is the process 1(2) and how does one calculate the 

cointegration vectors, and when does one have polynomial cointegration, 

and what kind of error correction model can be formulated which allow for 

adjustment to the various equilibrium relations. Part of these problems 

are apparent already for a real valued process given by 

(1.1) 

where et are 2 i.i.d. Gaussian variables with mean zero and variance a . 

It is well-known that the process is stationary, if 
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If 

the process is non-stationary, but only if also P2 > -1 is the process Xt 

an 1(1) process. If instead P2 = -1, then Pi = 2 and the process is an 

1(2) process. Thus in order to test whether the process Xt is an 1(2) 

process or an 1(1) process one must have precise conditions on the 

coefficients of the AR process, in order to derive the likelihood ratio 

test for the null of I(2)-ness. What is presented in this paper is the 

neccessary mathematical background for the understanding of the 

properties of the process Xt under the various hypotheses. 

Consider therefore the vector autoregressive model with Gaussian 

errors in p dimensions 

A(L)Xt = c t , t = 1 ..... T. 

k 
i where A(z) = ~ A.z Define IT=A(l). 1/1 = - dA(z)/dzl 1 ' and <1> = 

i=O 1 
Z = 

2 2/ ~d A(z)/dz z = 1· By expanding the polynomial A(z) around z = 1, the 

model can be written as 

(1.2) 

where A3 (L) is defined by the equation 

(1.3) 2 3 
A(z) = IT + l/1(l-z) + <1>(l-z) + A3 (z)(1-z) . 

ASSUMPTION 1. The roots of /A(z)/ = 0 are either outside the unit disc 

or equaL to 1. 

It is well-known that under this assumption a necessary and sufficient 

conditon for Xt to be stationary is that there are no unit roots: 
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THEOREM 1. Under Assumption 1 a necessary and sufficient condition 

for Xt to be stationary is that 

(1.4 ) IT has fuLL rank. 

In this case Xt has the representation 

(1.5) 

where the matrix vaLued function CO(z) has exponentiaLLy decreasing 

coefficients. 

Next we want to see what condition is needed on the parameters of the 

process in order that the process be an r(l) process. Clearly IT has to 

be singular, but that is not enough, and the results can be formulated as 

Grangers representation theorem: 

THEOREM 2. Under Assumption 1 a necessary and sufficient condition for 

Xt to be I(l) is that there exist matrices a and ~ (pxr), r < p, of fuLL 

rank such that 

(1.6) 

(1.7) 

IT = aW 

a~~~~ has fuLL rank. 

Here a~ and ~~ are px(p-r) matrices of fuLL rank such that 

o. In this case Xt has the representation 

(1.8) 
-1 t 

Xt = ~~(a~w~~) a~i:lci + C1 (L)c t 

Note that ~'Xt is stationary, and that AX t is stationary. 

function C1(z) has exponentiaLLy decreasing coefficients. 

a'a = ~'~ = 
~ 1. 

The matrix 
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The proof of this is given in Johansen (1990) and can be briefly 

described as follows: Define ~- = ~(~,~)-1 such that ~'~ = I, and ~~' 

= p~, the projection onto the space spanned by ~. Next define 

(1.9) Yt = ~'Xt 

and 

(1.10) Ut = ~~AXt' 

so that 

+ ~-A-1U (1.11) Xt = ~-Yt 
1. t 

The transformation from eR R )'X /-,,/-,1. t 

polynomial 

(1.12) 

with determinant 

p-r A . 

t 
= ~ Yt +~ .2:U .. 

1.. 1 1 1= 

to is given by the matrix 

Thus no extra roots inside or outside the unit disc are introduced by 

this transformation. It turns out that the condition (1.7) guarantees 

that the AR model for (Yt,Ut ) is invertible, and that Theorem 1 can be 

applied to the process (Yt,Ut ). 

The condition (1.7) is needed, but one can of course alternatively 

assume that the process is 1(1). It seems reasonable, however, to 

formulate the condition in terms of the coefficients of the polyniomial 

A(z), since these are readily estimated, and since the condition (1.7) 

suggests a test for I(l)-ness, namely that the matrix a~w~1. has full 

rank. We then need the properties of the processes under the null of 

reduced rank, and hence we shall investigate in the next section what 

happens when (1.7) fails. For the process Xt given by (1.1) it is well 
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known that the condition for non-stationarity is that PI + P2 = 1. and by 

formulating this explicitly in terms of the coefficients, one is lead to 

the usual Dickey-Fuller test. To understand this test one then needs the 

properties of Xt under the null of non-stationarity. Similarly if one 

wanted to test that the process is 1(1) one could formulate the null 

hypothesis that PI + P2 = 1 and P2 = -1, and under this null the process 

would be 1(2). 

2. The representation of I(2) processes 

In order to formulate the results we need some notation. We define 

(2.1) 

where M,a, and b are matrices of matching dimensions. This means that M 

has the representation 

M = (Pa + Pa)M(P{3 + P(3) = aM {3{3' + a M {3{3' + aM {3 {3~ + a~Ma {3 (3~. 
~ ~ a ~ a~ a ~ ~ ~ 

If we are interested in 1(2) processes, then the matrix given in (1.7) 

has to have reduced rank, and we assume, see (2.9), that W {3 = ~~ 
a~ ~ 

for some (p-r)xs matrices ~ and ~ of full rank. This gives rise to the 

following natural coordinate system: Let a 1 = a~~ and {31 = {3~~ and 

supplement = 

well as ({3,{31,{32) are orthogonal and span RP. 

Note that 

and similarly one gets 

(2.2) 
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It is illustrative to rewrite the model (1.2) in the coordinates 

given by (a,a1 ,a2 ) and (P,P1,P2 ), that is by multiplying the matrices by 

(a-,a~,a;)' and (P-,P~,P;). We then find the first three matrices to be 

It turns out that the matrix 

(2.3) 

. plays an important role in the formulation of the results, and it is 

convenient to have a special notation for it. 

Finally introduce the variables 

(2.4) 

(2.5) 

(2.6) 

such that 

(2.7) 

Ut = PiAXt' 

Vt = P!i2Xt' 

- -1 - -2 - -1 
Xt = P Yt + P1A Ut + P2 A Vt - P ~aP2A Vt 

The idea in the following is to show that (Yt,Ut,Vt ) is a stationary 

process under suitable restrictions on the parameters, and the 

representation (2.7) then determines the order of integration of the 

process Xt in the various directions (P,P1 ,P2 ). Thus if M E RP, then 

M'Xt is 1(2) unless M E sp(P,P1 ), i.e. orthogonal to P2 · If M E sp(P,P1 ) 

then M'Xt is 1(1), unless M is orthogonal to the vectors in P ~ R' in 
a/-'2 

which case the process M'Xt is stationary, see Corollary 4. 
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THEOREM 3. Under Assumption 1, a necessary and sufficient condition that 

Xt be 1(2) is that there exist matrices a,~ (pxr) , r < p, and ~,~ 

(p-r)xs, s < p-r, of fuLL rank such that 

(2.8) 

(2.9) 

and such that 

(2.10) 

has fuLL rank. 

IT = aW, 

I[! (3 = ~~' , 
a1. 1. 

In this case the variabLes (Yt,Ut,V t ) given by (2.4), (2.5) and (2.6) 

are aLL stationary and one finds the representations 

(2.11) Vt 
-1 

+ Cv(L)Ac t · = 8a2(32a2'ct 

(2.12) Ut 
-1 - -1 -

Cu(L)Ac t · = (I[! ~ a1 ' - 8 8 a ')c + 
a1 1 al~2 a2(32 2 t 

(2.13) Xt = 

I 

o 

o 

- -1 -
(~1I[!al(31al' 

+ 

o 

- -1 
~2(8a2(32a2 

AI[! n 
afJ2 

r 

s 

~-8 8 -1 a 
1 al~2 a2(32 2 

t s 
' 2: 2: c. + C (L) 
s=l i=l L 

v 

o p-r-s 

t - -1-
~ I[! (3 8 ~ a2 ') 2: c. 

a 2 a2 2 i=l L 

t 
2: c.) 

i=l L 
+ C2 (L)c t · 

AS A2 (p-r-s) with determinant il il which is only zero for L = 1. Thus no extra 

roots are induced either inside or outside the unit disc by this 

transformation. Hence the AR representation for the new variables has no 
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roots outside the unit disc. by Assumption 1. and we only have to check 

that there are now no roots for z = 1. We insert the expression for Xt 

(2.7) into the model (1.2). This gives a relation involving 

-2 -1 ° 11 .11 .11 .11 •.... We show that the choice of (Yt.Ut,Vt ) makes the 

coefficients of 11-2 and 11-1 vanish. 

The term 11-2Vt enters only in the expression for the levels of Xt , 

and the coefficient is 

a~'~;Vt = a~'~2(~2~2)-IVt = 0. 

The coefficient of 11-1 can be found to be 

The coefficient to Ut is a~'~1 = 0, and the coefficient to Vt is 

If we multiply by a' we get 

- a'~~2(~2~2)-1 + a'~~; = 0. 

And when we multiply by a~ we find 

by the construction of ~2' see (2.2). 

Finally we investigate the coefficient matrix to the levels 11°. We 

find 

aYt + ~(~~Ut - ~-~a~2Vt) + ~~;Vt 

Now multiply by the matrix (a-.a~,a;)· and obtain the coefficient matrix 
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I IJt (cf> {3 - IJt {31Jt (3 ) I IJt 8 
a{31 a 2 a a 2 a{31 a{32 

0 IJt 
a1{31 

(cf> - IJt IJt ) 
a1{32 a 1{3 a{32 = 0 IJt 

a 1{31 
8 

a 1{32 

0 0 (cf> - IJt IJt ) 
a2{32 a2{3 a{32 

0 0 8 
a2{32 

Under the assumptions of the Theorem this matrix is invertible and we 

find that the leading terms are 

and 

-1 -, -1 
Ut = lJta1{3~1 Et - 8a1{328a2{32a2'Et 

from which the representations (2.11), (2.12) and (2.13) follow from 

(2.7). 

Note that the representation (2.7) gives directly the leading term 

-2 
involving A Et' but 

partly from A-1Ut , 

the term 

partly 

involving A-lEt 

-1 
from A Vt , but 

comes from three sources, 

-2 
also from A Vt which would 

require the expression for the coefficient to AEt in the expression of 

Vt . This can clearly be derived by going into detail with the inversion 

of the stationary process for (Yt,Ut,Vt ), but we shall not give the 

result here, since whenever 

considered which lies in the 

a linear combination of the process Xt is 

-2 
space spanned by {32' then A Et is 

dominating, and whenever the linear combination is chosen orthogonal to 

t 
{32' then the leading term will be the coefficient to ~.E. in the first 

1 1 

term of (2.13). 
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COROLLARY 4. If the conditions of Theorem 3 hoLd and if further 

(2.14) 

where f (rxm) is of fuLL rank, m ( r, then f~~'Xt is stationary. 

PROOF: This follows from the stationarity of Yt by multiplying by f~. 

As W is rx(p-r-s) such a f can always be found if r > p-r-s. Thus 
a~2 

the linear combinations f~~Xt are the combinations of the 1(2) processes 

that are stationary. 

In the special case where W = 0 all 
a~2 

the combinations WX are 
t 

stationary. In this case the condition for the process to be 1(2) as 

given by (2.10) reduces to the condition that of full rank. 

This case is termed the balanced case in lohansen (1988), and is here 

seen to be a rather special, and perhaps not too interesting case. In 

the balanced case (2.7) shows that Xt can be decomposed into the 

directions (~'~1'~2) giving 1(0), 1(1) and 1(2) processess respectively. 

In general ~'Xt will be 1(1) and only by involving ~iAXt can we get a 

stationary process. Thus Xt is here cOintegrated with its differences. 

It is this phenomenon which is called multicointegration by Granger and 

Lee (1988) and polynomial cointegration by Yoo (1986). 

If we have the further condition that W = 0 we get another model 
al..~l.. 

that has been studied before: namely the model of multicointegration 

discussed by Yoo (1986), see also Engle and Yoo (1989). He found by 

application of the Smith-McMillan form for matrix polynomials. that the 

follOWing error correction model appeared in a natural way 

(2.15) 
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which is seen to satisfy the condition that ~ = 0, and any model with 
aJ.f3J. 

this property can be written in the form (2.15). 

Some of the results of Theorem 3 and Corollary 4 are related to 

Theorem 4.3 by Davidson (1988), but they are here given in a more 

explicit form, as conditions directly on the coefficients of the AR 

model. 

Note that from Theorem 3 one can easily find the asymptotic 

properties of the process Xt , thus for instance one finds that 

-3/2 w _ -1 _ t 

T X[TtJ ~ f328a2f32a2'~(u)dU 

as T ~ 00. 

3. The error correction model 

Consider first the case of 1(1) variables. The model (1.2) can, under 

the condition (1.6), be written in the form 

(3.1) 

which gives the interpretation of the model as an error correction model, 

where the current values of the changes react to the disequilibrium error 

= f3'Xt lagged one period, with adjustment coefficients a. Note that 

all terms in (3.1) are stationary. 

Next consider the case of 1(2) variables. In this situation the 

error correction model is a lot more complicated, since one can imagine 

that adjustment can occur to any of the many different stationary 
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relations we have found. Under condition (2.9) and (2.14) model (1.2) 

can be written as 

(3.2) 

This formulation gives the possibility to interprete the stationary 

processes 

and 

e 1 t = ((3f~) 'Xt , 

e2t = ((3f-)'Xt _1 + T'(3'AX 
2 t' 

as disequilibrium errors affecting the second difference of the process 

through the adjustment coefficients 

respectively. The vector ((3,(31) reduce the order of the process from 2 

to 1 and in this sense ((3,(31)'Xt represents a stable relation among the 

variables. The polynomial vector ((3f-,T'(32A) represents a polynomial 

cointegrating vector which reduces the process to 1(0), with adjustment 

coefficients af, and finally (3f~ are the linear combinations that reduce 

the process to stationarity, with adjustmnent coefficients af~. 

Note that the choice of lags in the representation (3.2) is not so 

important, since if for example we prefer (3'Xt _1+ Wa(3 (32AXt_1 instead 
2 

of 

(3'Xt _2+ Wa(3 (32AXt_1' the difference involves A(3'Xt _1 which can be 
2 

absorbed in the coefficient to (3'AXt _1 . 
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ExampLe 1. Consider the model for the two dimensional process Xt given 

by 

- [~ ; J X t + [~~+a J AX t + [_~ =~ J A 2X t = et' t = 0, 1 , ... T . 

The determinant of the characteristic polynomial is found to be 

2 
IA(z) I = (a + l-z - (l-z)z /4)(I-z), 

which is seen to have no roots inside the unit disc if either a = 0 or if 

a ~ 3, say. The matrix IT has reduced rank, and we can define a = P = 

(1,2)', so that we can choose aL= PL = (-2,1)'. It is easily seen that 

a~~PL = a, such that if a > 0 the process Xt is 1(1) and the 

cointegrating relation is found from the first row of the IT matrix 

P'Xl = Xlt + 2X2t · 

If a = 0 condition (2.9) is satisfied with ~ = ~ = 0, and in this case P2 

= a2 = PL = aL' One can check that the condition (2.10) is satisfied and 

hence that the process is 1(2) in this case. Thus any linear combination 

which is not orthogonal to -2Xlt + X2t is 1(2), and the combination POX 
t 

= Xlt + 2X2t is 1(1). There is cointegration between the levels and the 

differences, since 

is stationary, but no linear combination of levels is stationary. 

ExampLe 2 This model was proposed by Hendry and von Ungern-Sternberg 

(1981) and discussed by Johansen (1988). Let Xt = (ct,lt,zt) denote the 

logarithm of consumption, personal sector liquid assets and disposable 

income respectively. The model considered takes the form 
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ACt = ~Azt + ~ll(Zt-l-Ct-l) + ~12(Zt-l-lt-l) - tIt 

Al t = ~21(Zt-l-Ct-l) - t 2t · 

In order to get a full system and to illustrate the methods of this paper 

we add the following equation 

2 
A Zt = t 3t O 

We find 

IT = 

\]I = 

and 

One easily finds that 

, [~ 0 0 ] ' W a = 1 0 = 

such that a~ = (0,0,1) and 

[~11 ~12 -~11-~12 l-~21 0 -~21 

~~ = (1,1,1). In this case a~\]I~.1 = 0, such 

that a 1 = ~1 = (0,0,0) and a2 = a.1' and ~2 = ~.1' and the condition (2.10) 

is satisfied, since a21J! = 0 and a2~~2 = 1. Hence the process Xt is 1(2). 

Thus the linear combinations WX 
t 

has two components: + 

~12(Zt-lt) and ~21(Zt-Ct)' which are non-stationary 1(1) processes, but 

they co integrate with AXt , since \]Ia~2 = 3-1(1-~,1)' is non-zero. There 

is, however, a linear combination of ~'Xt that is stationary, since the 

vector (-1,1-~) annihilates IJ! R. This means that the combination 
a/-'2 
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is a stationary relation between the I(2) variables (ct,lt,Zt)' which in 

the error correction form (3.2) has adjustment coefficients 
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