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Summary 

This paper outlines a unified approach to analysis of var~ance and design 

of experiments in the orthogonal case, based on unambigouos mathematical 

definitions of elementary statistical concepts that are frequently left 

undefined or vaguely defined in the existing litterature. Particular em­

phasis is put on variance component models (mixed models) and the appli­

cation of group theory to the construction of orthogonal designs (fractional 

replicates of complete factorial designs, single replicate designs with 

blockings). 
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O. Introduction. 

From a certain point of view, the contents of the phrase 'analysis of 
variance' (ANOVA) can be explained quite briefly as follows. The basic 
concept is the normal linear model, assuming that the observed data 
vector Y = (Yi) E Rn is the outcome of a random variable from a mul­
tivariate normal distribution with mean vector f-l in a prescribed linear 
subspace of Rn and covariance matrix of the form 0"21. The theory of es­
timation and hypothesis testing in the class of such models is wellknown 
and easy to expose in terms of concepts related to Euclidean geometry 
on Rn and linear algebra. ANOVA covers the theory of such models, 
mainly those for which the structure of the subspace of means can be de­
scribed in terms factors, i.e. the partitionings of data into groups given 
by treatments, blocks etc. To this can be added the variance component 
models (or mixed models), which are models of the above mentioned 
type for which the effects of some of the factors are regarded as random. 
One may also include models with other distributional assumptions than 
normality, but such models are usually handled exactly as the normal 
models, with the reservation that distributions of test statistics and es­
timates are only approximate. 

The phrase 'analysis of variance' has also a classical, more vague, mean­
ing as a technique for decomposition of the total square sum I:(Yi _ y)2 
into components which can be ascribed to different sources of varia­
tion, like 'variation within groups', 'variation between rows', 'interaction 
between rows and columns' etc. This decomposition, which is usually 
summarized in an analysis of variance table, can be regarded as a purely 
descriptive tool. 

However, both of the above attempts to define ANOVA are incomplete 
and not particularly exciting in themselves. What really blows life into 
the topic is the interplay between these two points of view. The intu­
itive interpretation of the square sums in the analysis of variance table 
finds its final justification in the way these square sums enter in ex­
pressions for F-test statistics in normal linear models and estimates for 
variance components in 'balanced' variance component models. Con­
versely, the analysis of linear models and variance component models is 
considerably simplified in the situations where all possible F-tests for 
model reductions can be computed from a single ANOVA-table. Very 
often, the most reasonable description of data among those in a large 
tree of possible models can be found almost immediately by a look at 
the AN OVA-table. 

While the general theory of normal linear models is well explained in 
textbooks, ANOVA-tables and their relation to linear model theory are 
usually explained by examples, without any clear definition of what an 
ANOVA-table really is and when it can be constructed. It is the aim 
of the present paper to give an equally precise exposition of the latter 



aspect of the topic. Obviously, this requires that seemingly trivial con­
cepts like 'a factor', 'a two-way table' etc. are treated with the same 
mathematical care as usually given to concepts like 'a linear subspace', 
'a matrix' etc. 

What comes out of this is first of all (section 2) a characterization of 
the exclusive, but still very important, class of designs for which an 
ANOVA-table is defined, together with an unambigouos set of rules for 
how the ANOVA-table should be constructed and (section 3) how F­
test statistics etc. in linear models should be computed from it. To this 
comes (section 4) a similar - but more complicated - set of rules for how 
to handle variance component models in these 'balanced' situations. Fi­
nally (section 5) a brief overview is given of the most important method 
for construction of such 'orthogonal designs', apart from the balanced 
k-way tables. 

None of what is said in this paper is new, in any strict sense. Sections 1-
4 are essentially contained in Tjur (1984), which, in turn, was a further 
development of other expositions, in particular Jensen (1979, a similar 
treatment for balanced k-way tables) and Nelder (1965). Section 5 sum­
marizes a joint work with Christoffersen (1987), adapted to the general 
approach taken in Tjur (1984), but otherwise considerably overlapping 
with many other authors' works on group generated designs. 

1. Mathematical tools: Factors and designs. 

In the following, the vector of observations is denoted y = (Yi) = (Yi I 
i E I), so that RI is our observation space. The finite set I indexing the 
observations is referred to as the set of experimental units. A factor is 
formally defined as a mapping 

'PF:I-+F 

from I to another finite set F of factor levels or labels. For convenience, 
we refer to a factor by the name assigned to its set of levels, e.g. 'the fac­
tor SEX = {Male, Female}' rather than 'the factor 'PSEX: I -+ SEX = 
{Male, Female}'. The representation of a factor as an assignment of 
levels to experimental units corresponds to the way factors are usually 
represented in a computer program. But for the statistical analysis, the 
essential property of a factor is given by the way it partitions experi­
mental units into classes 'Ppl(J), f E F. Factors that differ only by the 
labelling of these classes should usually not be distinguished, and levels 
that are not taken by at least one experimental unit can be ignored. In 
particular, this is subsumed when we write IFI for the number of levels. 

Factors are (partially) ordered in an obvious way by 'nestedness'. For 
example, in an experiment involving measurements on patients, the fac­
tor PATIENT (holding e.g. patient numbers) is finer than (or nested in) 

2 



the factor SEX (holding the sex of patients), or SEX is coarser than or 
marginal to PATIENT. We write 

SEX:::; PATIENT 

to indicate this relationship between the two factors. The general idea 
is that F :::; G (F coarser than G) means that any G-class is contained 
in an F-class. 

Two factors play a special role: The trivial factor 0, corresponding to a 
partitioning of I into a single class (or a constant mapping if'o: I -t 0, 
where 0 is some one-point set); and the units factor I, corresponding to 
the partitioning of I into single units (or the identity if'I: I -t I). These 
are the two extremes in the ordering, in the sense that for any other 
factor F we have 

O:::;F:::;I. 

For any two factors F and G, we can form their product F X G, the 
cross classification by the two factors. Formally, this is again a factor, 
namely the mapping if'FxG which to an experimental unit i E I assigns 
the level if' FXG( i) = (if' F( i), if'G( i)) E F X G. In terms of the ordering of 
factors, F X G can be characterized as the coarsest factor which is finer 
than both F and G. In this sense, we could write F x G = sup{F, G} 
or F x G = FV G. 
An equally important - but usually less emphasized - concept comes 
out of the last characterization of the product F x G by reversal of the 
ordering. The infimum or minimum F 1\ G of two factors F and G is 
defined as the finest factor which is coarser than both F and G. The 
classes in the partitioning corresponding to this factor are the minimal 
non-empty subsets of I which can be written as unions of classes both 
with respect to F and G. 

EXAMPLE (the balanced k-way table). Suppose that I is given as a 
Cartesian product 1= Fl X ... X Fk, and let if'Fj : I -t Fj, j = 1, ... , k, 
be the canonical projections. From the factors F1 , ... ,Fk (e.g. row and 
column factors for k = 2) we can form products like Fl X F2 , Fl X F3 X F4 
etc. There is a simple rule for the formation of infima of such factors, 
namely that the infimum is the product of the factors occurring in both 
operands, e.g. 

(Fl X F3 X F4) 1\ (F2 X F3 X F4) = F3 X F4. 

In fact, this rule applies to k-way tables whether they are balanced or 
not, provided that all cell counts n hh-oofk (= the number of observations 
on level fIfz ... fk of Fl X F2 X ... X Fk) are positive. If some ofthese cell 
counts are zero, things may become more complicated. In a two-way 
table, for example, the rows factor R and the colwnns factor C may 
have the infimum R 1\ C = 0 in agreement with the rule above, in which 
case the two-way table is said to be connected. But in a table with many 
empty cells, R 1\ C may be a factor with more than a single level. 
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The next topic to be studied is the linear structure on RI imposed by 
one or several factors. We shall use the following notation. Vectors 
Y = (Yi), x = (Xi), ... in RI will be regarded as column vectors or 
I x l-matrices. The inner product of two vectors x and y is 

(xly) = x*y = :L XiYi 
iEJ 

and the (Euclidean) norm of x is 

II x ll = v(xlx) = v:L XI· 

A factor F determines in a wellknown way an IFI-dimensional subspace 
of RI, consisting of the vectors which are constant on F-classes. This 
is the space of mean vectors in the standard one-way ANOVA model 
determined by F. This subspace is denoted Lp. By 

we denote the standard parameterization of this subspace. As an I x F­
matrix, Xp is the design matrix determined by F, with elements 

( ) { 
1 if <p p( i) = f 

Xp. = 
zf 0 otherwise. 

By 

we denote the orthogonal projection onto Lp. From estimation in a 
one-way ANOVA model it is wellknown that orthogonal projection of 
a vector y onto this subspace amounts to averaging over the F -classes. 
Thus, as an I x I-matrix, Pp has elements 

if 'Pp(id = <PP(i2) = f 
if 'Pp(iI) =1= <pP(i2) 

where, as usual, n f denotes the number of experimental units on level 
f of F. 

A factor F is called balanced if the counts n f are equal. In this case 
we use the notation np = n f (= Ill/IF!) for the common size of the 
F-classes. For a balanced factor F, we have the particularly simple 
expressIOn 

1 * Pp = -XpXp 
np 

for the orthogonal projection Pp in terms of the design matrix Xp. 
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For two factors F and G, we have the rule 

which can be regarded as an alternative characterization of the infimum. 
This rule links the concept of an infimum to concepts like partial con­
founding, partial aliasing, overparameterization etc. 

Orthogonality between two factors can be defined as follows. Two linear 
subpaces Ll and L2 of RI are said to be geometrically orthogonal if 
any two vectors VI E L1 n (Ll n L2).l.. and V2 E L2 n (Ll n L2).l.. are 
orthogonal (i.e. (vllv2) = 0). Intuitively, this concept is wellknown from 
3-dimensional geometry where two planes may be orthogonal in exactly 
this sense. An equivalent condition is that the corresponding orthogonal 
projections commute. Two factors F and G are said to be orthogonal if 
L F and LG are geometrically orthogonal, i.e. 

In terms of the cell counts of the corresponding F X G two-way table, 
this turns out to be equivalent to the condition that 

whenever f E F and g E G are levels such that the corresponding classes 
'Ppl(J) and 'Pc/(g) are contained in the same F /\ G-class 'Pp~G(h). 
Notice that for F /\G = 0, this is the usual condition of 'proportional cell 
counts', i.e. proportional rows (or columns) in the two-way table of cell 
counts. For IF /\GI > 1, the condition means that such a proportionality 
should hold in each of the subtables determined by the levels of F /\ G. 

A design can now be defined as a set 1) of selected factors. The idea is 
that 1) should consist of all factors of potential interest for the model 
building. For example, if data are arranged in an R x C two-way table, 
the factors R, C and R x C should be included in 1). To this should 
usually be added the factor 0 (corresponding to constant terms in mod­
els) and always the factor I (provided that I =1= R x C, i.e. at least one 
n rc > 1). 

2. The ANOVA table. 

We are now in the position to characterize a large class of designs for 
which an ANOVA table can be defined, i.e. a decomposition of the to­
tal square sum, holding the information required for hypothesis testing 
within the entire class of linear models that can be stated in terms of fac­
tors from the design. The crucial concepts turn out to be orthogonality 
and infima of factors. 
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DEFINITION. An orthogonal design is a set V of factors, satisfying the 
following three conditions. 

(V1) lE 1). 

(1)2) Any two factors in 1) are orthogonal. 
(1)3) 1) is closed under the formation of infima. 

The justification of the name 'orthogonal' for a design satisfying these 
conditions is that (1)2) is the essential assumption here. If (1)2) is sat­
isfied, the satisfaction of (1)1) and (1)3) is just a matter of adding I and 
the missing infima (which will not destroy the orthogonality). 

The mathematical result behind the construction of the ANOVA table 
can now be stated as follows. 

PROPOSITION 2.1. Let 1) be an orthogonal design. Then there exists a 
unique decomposition 

RI = EB VG 
GE'D 

of the observation space as a direct sum of orthogonal components, one 
for each factor of the design, such that for each F E 1) 

LF = EB VG. 
GE'D,G5,.F 

The proof will not be given here, see Tjur (1984). 

Now, let QG denote the orthogonal projection onto VG. By the ANOVA 
table we mean the table 

Effect dJ. SSD 

G dim VG 

which for each factor of the design gives the square sum of deviations 
SSDG = IIQGyll2 and its degrees of freedom dG = dimVG . The proposi­
tion gives not only the definition of the ANOVA table, but also a simple 
scheme for computation of SSD's and their degrees of freedom from the 
basic square sums 

SSF = liP FyI1 2 = L nfYJ 
fEF 
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(where fj f is the average of the observations on level f) and the numbers 
of levels 

dimLp = IFI· 
This can be done by solution of the equations 

SSp= L SSDa 
aE1J,a-:5:.p 

and 

IFI= da 
aE1J,a-:5:.p 

which are imm.ediate consequences of proposition 2.1. Even in compli­
cated situations where many factors are involved, it is usually easy to 
solve these equations re cursively by means of a factor structure diagram, 
showing the ordering of factors in 1). We illustrate this by two examples. 

EXAMPLE 2.1. Consider a two-way table with, say, IRI = 4 rows, 
ICI = 5 columns and 2 observations per cell, i.e. III = 5 x 4 x 2 = 40 
units. As our design we take 

1) = {l,R x C,R,C,O}. 

The factor structure diagram (with coarser factors to the right, finer 
factors to the left, arrows indicating the canonical mappings between 
sets of factor levels) is 

R4 
I.40 R C20~ 3 ~01 

20 --..,.) X 12 ~ Cl ..--"" l' 

The numbers occurring here as superscripts and subscripts indicate an 
easy way of performing the computations, illustrated here by compu­
tation of degrees of freedom da from numbers IFI of factor levels, but 
equally applicable to computation of square sums of deviations SSDa 
from 'simple square sums' SSp. The superscripts, which should be filled 
in first, are numbers of levels for each factor. The subscripts are the 
degrees of freedom da, to be filled in recursively from right to left, ac­
cording to the rule that each IFI should be the sum of all da for factors 
G at or 'in front of' the factor F. In this case, the resulting ANOVA 
table is 

Effect -t- d.f. SSD 

0 1 SSo 
R I 3 SSR - SSo 
C i 4 SSc - SSo 

RxC I 12 SSRxC - SSR - SSc + SSo 
1 20 SS] - SSRxC 

I 
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EXAMPLE 2.2 (design by Skovgaard and Kristensen, modified). In a field 
trial for comparison of three fungicides (F = {!I,h,h}), six blocks of 
three plots of two subplots were treated as follows. The three fungicides 
were allocated to the three whole plots of each block. Two additional 
factors, nitrogen (N = {nl,n2}) and variety (V = {Vl,V2}) on two 
levels were allocated to subplots in a cross-over arrangement, so that 
the combinations nl VI and n2v2 occurred on half of the blocks, while 
the opposite combinations occurred on the other half. Thus, apart from 
randomization, the design might be like this: 

!InIVI 
Blocks 1, 2 and 3 !I n2v2 

!I n1V2 
Blocks 4, 5 and 6 !I n2vI 

The factors to be taken into account are 

o 
I 
F = {!I,h,h} 
N = {nl,nd 
V = {VI,V2} 
FxN 
FxV 
NxV 
FxNxV 
B = {I, ... , 6} 
P = {I, ... , 18} 

(block) 
(plot) 

hnl VI hnlVl 
h n2V2 h n2V2 

h nIV2 h nIV2 
h n2VI h n2VI 

It is a matter of straightforward hard work to check that these factors are 
orthogonal and to identify their infima. Orthogonality is present in all 
cases (in fact, this is a triviality, since the design is group generated, efr. 
section 5), but some of the infima are related to an additional factor, 
which we may call S for 'superblock'. It is the factor on two levels, 
classifying observations according to the 'kind of block' they occur on, 
efr. the cross-over arrangement. This factor must be included since it 
is the infimum of N x V and B. Also the factor F X S on six levels 
must be included, since it is the infimum of F x N x V and P. After 
the addition ofthese two factors, the design satisfies (VI )-(V3). Notice 
that the role of such 'pseudofactors' is purely formal. A main effect of 
S makes no sense in itself, but the structure of the design is such that 
a main effect of S can not be distinguished from an interaction between 
N and V. Similarly, an interaction between F and S turns out to be 
an alias for three factor interaction between F, Nand V. This is easily 
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seen by comparison of the AN OVA table with the table one gets in the 
simpler design where the 'blocking factors' Band P are not included 
(which is merely a complete F x N x V -table with three observations 
per cell). 

The factor structure diagram (with degrees of freedom) looks like this: 

ll~ ~ Pi B ) Bf 

~ ~Fxs0Si 
FxNxVo12 ~FXN~~Ft~ oi 

~FXV26><Nl~ 
N x 11;4 -) V;2 

From this, the ANOVA table is eaily constructed. However, we postpone 
the construction to section 4, to add some features related to the analysis 
of a variance component model with random effects of the factors Band 
P. 

Notice that two degrees of freedom (dNXV and dpxNXv) are zero. Of 
course, the corresponding square sums will also be zero, and these two 
lines of the ANOVA table can be omitted, if desired. The square sums 
that really measure N x V -interaction and three factor interaction be­
tween F, N and V occur elsewhere in the table, as indicated above. 

3. The linear model. 

Let V be an orthogonal design. By a model formula we mean, simply, 
a subset T of V. Following (to some extent) GENSTAT's conventions, 
we write the elements of T separated by plusses, so that, for example, 
R + C means the subset {R, C} of (say) V = {l, R x C, R, C, O}. 

A model formula determines a normal linear model in an obvious way. 
For example, the formula R + C represents the usual additive model in 
a two-way table 

Yi = a r + f3c + aUi, 

where the Ui, i E l, are i.i.d. N(O,l). The general idea is that T ~ V 
represents a model of the form 

Yi = L aT +aUi· 

TET 

In such expressions we subsume, of course, that the factor levels on the 
right correspond to the unit i on the left, i.e. t = 'PT( i). 
In vector notation, we can say the same thing as follows. y is (the 
outcome of) an Ill-dimensional multivariate normal random variable 
with covariance matrix a 2 I and mean 

f-l = L XTaT 

TET 
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in the subspace 

L= L LT. 
TET 

Notice that different model formulas may correspond to different pa­
rameterizations of the same model. For example, the above mentioned 
additive model in a two-way table V = {I, Rx C, R, C, O} can be written 
either as R + C or as 0 + R + C, since the addition of a constant term 
'Y to the expression G r + fie merely creates some (further) overparame­
terization. Minimization of the number of such redundant terms and 
ties on specific parameters to obtain one-to-one parameterizations are 
of interest when the parameters are to be estimated. But since we are 
only going to discuss hypothesis testing ( and estimation of the variance), 
no restrictions will be imposed on the degree of overparameterization or 
partial aliasing that may occur in a model formula. On the contrary, it 
turns out to be convenient to represent the model given by T ~ V by 
its maximal model formula 

T* = {F E V I F ~ T for some T E T}. 

This can be regarded as the model formula with the maximal amount 
of overparameterization. The advantage of this representation is that it 
gives the following simple rules for how to form residual sums of squares 
and F -test statistics from the ANOVA -table: 

For a given model T, the residual sum of squares is 

SSDres(T) = L SSDG, 
Gfl-T* 

and the degrees of freedom for the residual square sum is 

dres(T) = L dG . 

Gfl-T* 

The usual (restricted maximum likelihood, or maximum likelihood cor­
rected for bias) estimate of the variance is 

A 2 SSDres(T) a - ---,--'--,--'--
- dres(T) . 

In words, the residual sum of squares is computed by summation of 
all SSD's corresponding to factors that are not in the maximal model 
formula. 

For a submodel, given by a model formula To such that 70* ~ T*, The 
F-test for this simplification of mean structure can be written as 
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where 
SSDdif = I: SSDG 

GET*\To* 

and, similarly, 

ddif = L dG . 

GET*\To* 

Again, this is a wellknown rule, in particular for situations where T* \ 70* 
consists of a single factor. But these general rules are usually not stated 
explicitly in textbooks - and obviously they cannot be, without an 
unambigous definition of the ANOVA table. 

Rules for estimability of simple contrasts of the form aT, - a'f" will not be 
discussed in details here (see Tjur 1984). We shall confine ourselves to 
the remark that if such a contrast is estimable, the maximum-likelihood 
or least squares estimate of it equals the corresponding difference Ye -Yt" 
between averages over the classes determined by the two levels of T. 

4. The variance component model. 

Variance component models, or mixed models, can be regarded as or­
dinary linear models like those considered in section 3, in which some 
of the terms in the expression for the mean are regarded as random, in 
the sense that the set of level parameters for the corresponding factor is 
thought of as a random sample from a normal population. 

EXAMPLE 4.1 (Paulev et al. 1981, slightly simplyfied). Blood samples 
from 12 patients are taken. Each sample is divided into 14 portions. 
These portions are sent to 7 laboratories, each laboratory recieving 2 
portions from each patient. The laboratories perform (among other 
things) a measurement of the concentration of CO2 in the blood, and 
these concentrations (or rather their logarithms) constitute our data 
vector Y = (Yi). The structure of the design is shown here (with P = 
{I, ... , 12} (patient), L = {a, b, . .. ,g} (laboratory)): 

I}68 
84 ----~)P X L~t 

~PN~ 
--- 7. O~ ~L7~ 

6 

This is obviously an orthogonal design (a balanced 12 X 7 table with two 
observations per cell), but the relevant model is not a linear model. In 
fact, the application of standard linear model theory in situations like 
this will typically end almost before it started, at the model P X L spec­
ifying a separate mean for each combination of patient and laboratory, 
which is not of much help to anyone. The purpose of the experiment 
was to detect and quantify the sources of variation, and a model for this 
purpose can be stated as follows: 

Yi = a p + bVl + WWpl + aUi, 
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where VI (l EL), Wpl ((p,l) E P X L) and Ui (i E I) are independent 
normalized normal variables. The intiutive idea is that a p is the true 
concentration of CO2 in the blood sample from person p; 5Vl is the 
'baseline error', present at laboratory 1 (on that day); the term (YUi 

represents the measurement-to-measurement variation present on any 
laboratory; and the 'random interaction' WWpl represents any sort of 
error which is specific to the laboratory and the given blood sample 
(e.g. confusion of CO2 with other components) but common to the two 
measurements. In this model the variance on a single observation is 

and the parameters 52, w 2 and (Y2 are, accordingly, called the variance 
components. 

More generally, a variance component model in a design D can be spec­
ified on the form 

Yi = L aT + L (YBuf 

TET BEB 

where T (the fixed effects, or the 'treatment stucture') and B (the ran­
dom effects, or the 'block structure') are selected subsets of D. In the 
example, T = {P} and B = {L, P x L, I}. For convenience, we shall 
represent variance component models by single model formulas, with 
the elements of B in brackets, so that e.g. the model of example 4.1 is 
written 

P + [L + P xL + I]. 

This general definition of a variance component model does not require 
any further conditions, like orthogonality of factors etc. Conceptually, 
variance component models are not hard to understand, provided that 
certain obvious conditions are satisfied. One of these conditions is that 
I should be an element of B, i.e. a 'unit-to-unit variation' should be 
present in the model. Another condition, which is required for the esti­
mation of the variance components, is that none of the random factors 
B E B should be such that LB is contained in the mean space ~ LT, 
since this would obviously imply that random variation due to this fac­
tor would be indistinguishable from the fixed effects. However, even 
under such assumptions, the solution of the general 'unbalanced' vari­
ance component model is a complicated affair, involving either numerical 
maximization of likelihood functions or approximate solutions, approx­
imations to distributions of estimators and test statistics, etc. 

There is, however, an exclusive class of variance component models, 
usually referred to as the 'balanced models', for which an algebraically 
simple treatment can be given. For these models, the analysis can be 
broken into components called error strata. There is one stratum for 
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each variance component, and each stratum corresponds to a compo­
nent of the data vector according to a decomposition of RI as a direct 
sum of orthogonal subspaces. These components are stochastically in­
dependent and described by models which are, essentially, linear models 
of the kind discussed in section 3. This solution relies on an alterna­
tive parameterization of the covariance, which is only available in the 
'balanced' case. We shall refer to this parameterization as the eigen­
value parameterization, because the essential parameters are simply the 
eigenvalues of the covariance matrix. 

The presence of this solution has, more than anything else, contributed 
to the present confusion around the topic. Some textbooks present 
the variance component models directly in terms of the eigenvalues (or 
closely related parameters) in order to simplify the mathematics. Conse­
quently, it is a widespread misunderstanding that there are two 'kinds' of 
variance component models, those with and those without 'constraints' 
on the random effects. It is hoped that the following pages will con­
tribute to the clarification of these matters. 

First of all, notice that the variance component model can be regarded 
as a multivariate normal model specified by the mean 

f-L = E(y) = L XTaT 

TET 

and the covariance matrix 

~ = cov(y) = L a1XBX'B. 
BEB 

The covariance matrix is linear in the parameters a1, and the essential 
property of the class of models considered in the following is that the 
spectral decomposition of RI as the direct sum of eigenspaces for the 
covariance matrix is independent of the variance components a1. 
We shall make the following assumptions. As in the case of linear models, 
we assume that 1) is an orthogonal design, and no further conditions are 
put on the set T ~ 1) of fixed effects. But the set B ~ 1) of random 
effects is assumed to satisfy the following four conditions: 

(B1) lE B. 
(B2) Any factor B E B is balanced. 
(B3) B is closed under the formation of infima. 
(B4) The matrices XBX'B are linearly independent. 

Comments. 

Condition (81) has already been commented on. 

Condition (82) is restrictive, of course, but necessary for a simple solu­
tion. It is wellknown that even the simple model 0 + [G + I] (a one-way 
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ANOVA model with random variation between groups) becomes a lot 
more complicated when the groups are of unequal sizes. The mathe­
matical reason for this is that the simple solution relies heavily on the 
equation XBX:B = nBPB, which is valid only for balanced factors, and 
which enables us to write the covariance matrix as a linear combination 
of the projections P B. 

Condition (B3) is restrictive too, but also essential for the simple so­
lution. This condition implies that the set B of 'random factors' is an 
orthogonal design in the sense of section 2. Accordingly, it induces a 
decomposition of RI as a direct sum of orthogonal subspaces, which, as 
we shall see, are the eigenspaces for the covariance matrix. Situations 
where (B3) is not satisfied can, to some extent, be handled by formal 
extension of B by the missing minima. 

Condition (B4) is obviously necessary for estimability of the variance 
components. Situations where this condition is not satisfied are rarely 
met in practice. 

Now, let 

RI = Ef1 VB 
BEB 

be the decomposition induced by B according to proposition 2.1. Not 
surprisingly, this decomposition is coarser than the decomposition in­
duced by the whole design 1), in the sense that any of the subspaces 
VB can be written as the direct sum of some of the subspaces VG in the 
decomposition induced by 1). Hence, the 'block structure' B induces a 
classification of the original factors G E 1), reflecting the way subspaces 
VG should be collapsed to form the subspaces VB. These classes 1)B, 

B E B - or the subspaces VB' or the corresponding orthogonal compo­
nents of the data vector - are what is vaguely referred to as the error 
strata. The exact rule for allocation of factors to strata is as follows. 

PROPOSITION 4.1. Let 1)B be the set of G E 1) such that B is the 
coarsest factor in B which is finer than (or equal to) G. Then 

Accordingly, if Q'B denotes the orthogonal projection onto VB' then 

The mathematical result that defines the eigenvalue parameterization 
can now be stated as follows. 

PROPOSITION 4.2. The linear space of I x I -matrices spanned by the 
matrices XBX:B) B E B, equals the linear space spanned by the matrices 
Q'B, BE B. 
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This follows from proposition 2.1 and the relation XBX'B = nBPB for 
balanced factors. 

An immediate consequence of this is that the covariance matrix ~ has 
a unique representation on the form 

Since the matrices Q~ are the projections on components of an orthog­
onal decomposition, this is the spectral decomposition of the covari­
ance matrix and the parameters AB are its eigenvalues. Their relation 
to the variance components (which can be derived from the relation 

PB = ~B'EB B'<B QE', cfr. proposition 2.1) is , -

B'EB,B'?B 

2 nB,aB" 

Notice that we always have AI = a;, i.e. the eigenvalue parameter for 
I-stratum or 'units-stratum' equals the measurement-to--measurement 
variance. But for other factors B there is no such simple relation be­
tween a1 and AB, and usually no easy interpretation of the eigenvalue 
parameter AB. An essential assumption about the variance components 
is that they are independent of the design, so that for example the addi­
tion of more laboratories to the design of example 4.1 would not change 
the variance components. The eigenvalues are not design-independent 
in this sense. But from a mathematical point of view, the eigenvalue pa­
rameterization is the nice one, which enables us to reduce the analysis 
to seperate analyses of linear models in strata. 

EXAMPLE 4.2. In example 4.1, the covariance matrix can be rewritten 
as follows: 

~ = 82 XLX'L + W 2 XPXLX PXL + a 21 

= 2482P L + 2w2 P PxL + a 21 

= (2482 + 2w2 + a 2 )PL + (2w 2 + a 2 )(PpXL - PL) + a 2 (1 - PpxL) 

where, obviously, P L = QL P PxL - P L = Q~XL and 1 - P PxL = 

Q1 are the orthogonal projections in the decomposition induced by B. 
Accordingly, the relation between the two parameterizations is given by 

AL = 2482 + 2w2 + a 2 , 

APxL = 2w2 + a 2 , 

AI = a 2 , 
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in agreement with the general formula above. 

Negative variance components. A problem with the eigenvalue parame­
terization, clearly illustrated by the above example, is that the canonical 
domain of variation for the eigenvalue parameters {AB> O} (given by 
the condition that the covariance matrix should be positive definite) 
represents an extension of the domain of variation subsumed in the orig­
inal parameterization, given by the obvious condition that the variance 
components should be positive. The easy way of solving this problem is 
to ignore it, just estimating the eigenvalue parameters in their canoni­
cal domain of variation. This implies that the backwards calculation of 
estimates for the variance components from estimated eigenvalues may 
result in negative estimates for some of the variance components. But 
this is not as bad as it sounds, for two reasons. First of all, in a proper 
variance component model, like that of example 4.1 or any other case 
where one should really expect the variance components to be positive, 
a negative value of an estimate can very often be taken as a wellcome 
opportunity to set that component to zero, thus removing this source 
of variation from the model. Of course, a significantly negative estimate 
of a parameter, which is only meaningful as a non-negative parameter, 
will always be a problem; but such a lack of fit to the assumptions can 
obviously not be prevented by formal manipulations with the domain. 
Secondly, there are situations where 'negative variance components' are 
meaningful. A classical example is the field trial, where a negative cor­
relation between yields from plots on the same block (i.e. a 'negative 
variance component' for the random effect of the blocks factors) may 
be due to competition between plants on neighbouring plots or vaguely 
defined borders between plots. Obviously, the 'variance components' 
can not be interpreted as proper population variances here (most cer­
tainly not when they are negative), but it is nice to have this possibility 
included in our models. And since the mathematics becomes a lot eas­
ier in this way, we shall consider the extended model given by AB > 0 
throughout the paper. 

The formal solution of the variance component model now goes as fol­
lows. Consider the 'data components' 

YB = Q~y, BEE, 

i.e. the orthogonal projections of the data vector on the strata subspaces. 
It is easy to show that these components are stochastically independent, 
and that the (normal) distribution of YB on the subspace V~ is given 
by the mean EYB = /-lB = Q~/-l and the covariance matrix COV(YB) = 
ABQ~. Estimation in one of these 'strata models' is straightforward, 
because the model is essentially a linear model of the kind considered in 
section 3, with V~ taking the role of RI, the subspace 
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V~ n (2: LT) = V~ n (ffi VG) 
TET GET* 

taking the role of the mean space L = 2:TET LT, Q~ taking the role 
of the unit matrix I and AB taking the role of the variance (J'2. Thus, 
estimating as usual in a linear model, the mean vector !-lB is estimated 
by the projection 

!-lB = L QGY = Q~ (L QG) y. 
GET*nVB GET* 

Combining these estimates of mean components from the strata, we 
obtain the estimate 

(2: Q~) (L QG) Y = ( L QG) y, 
BEB GET* GET* 

which coincides with the estimate for the mean in a linear model with the 
same mean structure T. Thus, treatment contrasts should be estimated 
exactly as in a linear model, i.e. by the corresponding differences between 
averages. The expressions for variances on these contrast estimates are, 
of course, more complicated, but this will not be discussed in details 
here (see Tjur 1984). 

Notice that an essential condition for the above argument to hold is that 
the mapping !-l -t (!-lB I B E B), which splits the mean into its strata 
components, is one-to-one, due to the geometric orhogonality of the 
mean space L = 2:TET LT to the strata subspaces Vjj. Models that do 
not satisfy this condition, i.e. models with a similarly simple covariance 
structure but with an arbitrary mean structure (involving e.g. covariates 
in more or less arbitrary directions or non-orthogonal factors), can be 
handled in essentially the same way stratum by stratum. But the re­
combination of strata estimates is more complicated in this case, because 
one obtains estimates of the same parameters from different strata. 'Re­
covery of interblock information' in an incomplete block design is the 
classical example of this. 

Estimation of the covariance structure is performed similarly, by recom­
bination of the strata estimates. From B-stratum, we have the estimate 

~B = SSD;!s 
dB ' 

res 

where 
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=" L QGyl12 = 'I: SSDG 

and, similarly, 

d!s = 'I: dG · 

GE'DB \T* 

Notice that the computation of the residual sum of squares and its de­
grees of freedom from the ANOVA table goes exactly as for the linear 
model, except that only factors in the stratum should be taken into ac­
count. From the estimates )..B of the eigenvalue parameters, estimates 
3-1 of the variance components can be computed by solution of the equa­
tions connecting the two parameterizations. 

Hypothesis testing: mean structure. Removal of one or more terms from 
T can be handled in a similar 'stratum-wise' manner. Let To be a 
model formula such that 70* c T*. For the linear model in B-stratum, 
the consequence of this reduction is that the mean space 

EB VG 
GET*n'DB 

is replaced with 

Accordingly, we obtain an F-test for this reduction of the form 

where 
SSDeEf = SSDG 

and 

deEf = L dG · 

GE'DBn(T*\To*) 

Again, the rules for which SSD's to include in nominator and denomina­
tor are exactly as for the linear model, with omission of factors that are 
not in B-stratum. In this way we obtain for each stratum an F-test for 
the hypothesis considered. In most cases, all but one of these F-tests 
are trivial, in the sence that no reduction of mean structure takes place 
('DB n T* = 'DB n 70*). In particular, this is so if 70* is obtained from 
T* by removal of a single factor. In more complex designs, the F-test 
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may be non-trivial in two or more strata, and in such cases some kind 
of weighted test statistic, summarizing the results of these F-tests, may 
be considered. This typically happens when the initial construction of 
the orthogonal design required addition of one or more 'pseudofactors', 
so that removal of a single factor T from T may imply the removal of T 
and one or more pseudofactors from T*. 

Hypothesis testing: Covariance structure. The hypotheses of interest 
here are those of the form (J'§ = 0, stating that a given variance compo­
nent is zero. In the present framework, a hypothesis like this can only 
be tested if the resulting covariance structure 8 0 = 8 \ {B} satisfies our 
conditions (81)-(84). For example, the hypothesis a} = ° is strictly 
forbidden. Apart from this, the only condition that does not carry over 
automatically from 8 to 8 0 is the requirement that the new set of ran­
dom factors should be closed under the formation of infima. This is 
easily seen to be the case for 8 0 if and only if the factor 

Ba = inf B' 
B' EB,B<5,B' 

(= the infimum of all factors in 8 which are strictly finer than the one 
to be removed) is distinct from the factor B to be removed. Under this 
condition, it follows from the relation between the two parameterizations 
that 

AB = L nB'(J'§, = nB(J'§ + L nB'(J'§, = nB(J'§ + ABo, 

B''2;.B B''2;.Bo 

which means that our hypothesis (J'§ = 0 is equivalent to the hypothesis 
that the two eigenvalues AB and ABo are equal. Since we have indepen­
dent, X2-distributed estimates ~B and ~Bo of these two parameters, the 
obvious test for this is a two-sided evaluation of the F -statistic 

Large values of this test statistic indicate that (J'§ > 0, small values that 
(J'§ < O. If the hypothesis is accepted, Ba-stratum of the new model is 
formed by collapse of the two strata in the old model. 

EXAMPLE 4.3. Consider the design of example 2.2. Since the treatment 
factors here are confounded in a non-trivial manner with the factors 
B (block) and P (plot), all treatment effects can not be estimated in 
a simple linear model unless the factors Band P are ignored. This is 
obviously not satisfactory, and a more reasonable idea is to consider the 
model with random effects of Band P, 

F x N x V + [B + P + JJ, 
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I.e. 

Yi = Gfnv + WWb + DVp + aUi. 

The partitioning of D into strata is seen to be as follows (cfr. the factor 
structure diagram and proposition 4.1): 

DB = {B, S, O}, 
Dp = {P,F x S,F}, 

DJ = {I,F x N x V,F x N,F x V,N x V,N, V}. 

Accordingly, the ANOVA-table, with its lines arranged according to 
the classification by strata (as one should always do, for convenience) 
becomes 

Stratum G da SSDa 
-'".~,-

I I B B I 4 I SSB - SSs 
S 1 I SSs - SSo 
0 1 I SSo 

P P 8 1 sSp - SSB - SSFxS + sSs 
FxS 2 SSFxS - SSs - SSF + SSo 

F 2 I SSF - SSo I 
I I 12 

I FxNxV 0 
FxN 2 

I FxV 2 
NxV 0 

I N 

I 
1 

V 1 I 

(we have omitted formulas for SSD's in I-stratum because some ofthem 
are too long for the table, and too complicated to be informative). 

The first thing to be tried here would probably be removal ofthe three­
factor interaction from the model, i.e. reduction to 

F x N + F x V + N x V + [B + P + IJ. 

The maximal model formula for the mean structure of this model is 

70* = {F x N,F x V,N x V,S,F,N, V,O}. 
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Thus, 70* is obtained from T* by removal of the two factors F x Sand 
F x N x V. But since SSDpxNxV = 0, there is only one F-test to be 
performed, namely a test in P-stratum 

F(2 8) = SSDpxs/2 
, SSDp/8 . 

If this hypothesis is accepted we may proceed with removal of two-factor 
interactions. Removal of F X N or F x V from the model corresponds 
to removal of the same factors from the maximal model formula, and 
are thus tested for in I -stratum. Removal of N x V corresponds to 
removal of both N x V and S from the maximal model formula, and 
since SSD NxV = 0 we obtain the test in B-stratum given by 

(SSs - SSo)/l 
F(1,4) = (SSB _ SSs)/4· 

This test is seen to be equivalent to a test for total homogeniety in a one­
way analysis of a data set consisting of the six block averages, grouped 
according to the factor S ('superblock', or cross-over pattern). This is 
in accordance with the fact noticed earlier, that a main effect of the 
pseudo-factor S can not be distinguished from an N x V -interaction. 
In more conventional terms, N x V -interaction is fully confounded with 
blocks. A similar, more complicated, interpretation can be given to the 
test for three-factor interaction. There, the same F -statistic occurs in 
the test for 'group-independence of the column effect' in an additive 
model for the 6 X 3 table of plot averages, with rows classified in two 
groups according to the factor S. 

Depending on our success in removal of two-factor interactions, we may 
finally test for main effects. The test for F -effect takes place in P­
stratum, the two other tests in I -stratum. This is intuitively obvious 
from the beginning, since fungicides have been allocated to whole plots 
while main effects of the two other factors obviously have to do with 
differences between yields on subplots of the same plot. This is also 
reflected by the expressions for variances on estimated contrasts, which 
we have not given here. The variance on an estimated F -contrast is a 
linear combination of O"~ and 0"1, while the variances on estimated N­
and V -contrasts are just proportional to O"}. 
Simplification of the covariance structure is usually of limited interest in 
situations like this. However, for completeness, the 'allowed' hypotheses 
are 

and 
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Since the formulas for the F-statistics depend on the mean structure 
assumed, there is nothing to be added here to the general theory. 

To illustrate the way pseudo-factors take care of the correct allocation 
to strata in more complex designs, we give a last example. 

EXAMPLE 4.4 ('Twin cross-over' design, Aa. V plund and E. Sprensen, 
Novo Nordisk). 40 mice were divided at random into 4 groups of 10 mice. 
The experiment took place over two days, each mouse occuring twice in 
the experiment in a test on each day. A 'test' here means injection of 
a certain dose of a certain type of insulin, followed by a measurement 
(after a given time) of glucose concentration in the blood. Two types of 
insulin in two different doses were used, and these treatments were given 
according to the following table, where t (test) and s (standard) denote 
the two types of insulin while l (low) and h (high) denote the two doses. 

Group day 1 day 2 
1 tl sh 
2 th sl 
3 sl th 
4 sh tl 

The treatment factors of immediate interest are 

D = {l, h} (dose) 

T = {s, t} (type of insulin) 

To this must be added 

N = {1, 2} (number of day) 

because there may be a difference between the two days, e.g. an after­
effect on day 2 of the test given on day 1. To this we add all possible 
products of these three factors, the trivial factor 0 and the 'units' factor 
I. This design is just an ordinary 2 x 2 x 2 table with 10 observations 
per cell. To this comes now the 'blocking' factor 

]1/[ = {1, ... ,40} (mouse) 

which groups the 80 observations of the table in pairs in such a way that 
the two observations of a pair always occur in opposite corners of the 
cubic table. Obviously, we shall consider a model with random effect of 
this factor ]\11, and the advantage of this complicated blocking is that 
the main effects of D, T (and N) are estimated with maximal accuracy, 
in the sense that these factors end up in I-stratum. 
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All factors included until now are easily seen to be orthogonal, but the 
following pseudo factors must be added to obtain closedness under in­
fima: 

DTN = l'lll\ (D x T x N) on 4 levels 

DT = lvI 1\ (D x T) on 2 levels 

D N = M 1\ (D x N) on 2 levels 

T N = M 1\ (T x N) on 2 levels 

Notice that DT N is just the classification according to 'group of mice'. 
The three other pseudofactors are formed from this by pairwise collapse 
of these groups, in a structure similar to the 2 x 2 latin square. 

The factor structure diagram follows here: 

The allocation of factors to strata in the model with B = {M, I} is 
easily seen to be as indicated by the following ANOVA-table (where 
zero SSD's and formulas for SSD's are omitted): 

=~ - -

Stratum Factor d.f. SSD 

I I 36 
DxTxN 1 

D 1 
T 1 
N 1 

M M 36 
DT 1 
DN 1 
TN 1 

0 1 

Notice that the SSD's in this table are exactly the same as one would get 
for the 2 x 2 x 2 complete factorial design without the blocking factor 
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M, except that the residual SSD is split in two (SSDI and SSDM). 
For example, SSD DT is the usual square sum for interaction between 
D and T. Accordingly, the tests for two-factor interactions take place 
in M -stratum, while the tests for three-factor interaction and - most 
importantly - the tests for main effects take place in 1 -stratum. 

5. Group generated designs. 

Apart from the designs derived from complete balanced k-way tables, 
the most important class of orthogonal designs is the class of group 
generated designs. This class includes the designs known as fractional 
factorials, and (more or less as a byproduct) complete single-replicate 
designs with blockings that confound some of the main effects and/or 
interactions. 

Such designs have been known for a long time (Yates 1935, Fisher 1942, 
Finney 1945, Bose 1947), and so has their relation to the theory of 
A belian groups (see e.g. Fisher 1942). Recently, fractional factorials 
have received new attention due to their role in Taguchi's methods for 
industrial statistics and quality control. Also quite recently, several au­
thors have studied the possibility of a more efficient use of group theory 
to the construction of such designs. The present section summarizes a 
joint work with Christoffersen (1987), which can be regarded as an at­
tempt to put the classical constructions of fractional factorials etc. into 
a more modern framework. Almost all results presented here can be 
found in earlier papers by El Mossadeq et al. (1985), Kobilinsky (1985) 
and, in particular, Bailey (1985). 

The simplest example of a group generated design is the cyclic latin 
square. In the present context, a latin square of order k can be defined 
as a design of the form 

with its three factors R (row), C (column) and L (latin letter) balanced, 
IRI = ICI = ILl = k and III = k2 . It is wellknown how a latin square 
can be constructed for any k by a simple cyclic arrangement of the 
first k letters of the alphabet in a k x k square such that each letter 
occurs exactly once in each row and each column. Mathematically, this 
construction can also be explained as follows: Take 1 = Zk X Zk, where 
Zk denotes the cyclic group of order k (= the integers modulo k). Put 
R = C = L = Zk, and define the allocation of factor levels to units 
according to the scheme 
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A more com.plicated example is the split-plot design of example 2.2. 
Here, we can take 

F= Z3 

N = V = Z2 

S= Z2 

B = S X Z3 = Z2 X Z3 

P = B X F = Z2 X Z3 X Z3 

I = B X F X N = Z2 X Z3 X Z3 X Z2 

and define the factor levels for unit i = (s, j, j, n) E I by 

i.pF(s,j,j,n) = j 

i.pN(s,j,j,n) = n 

i.pv(s,j, j, n) = s + n 

i.pB(S,j,j, n) = (s,j) 

i.pp(s,j,j,n) = (s,j,j) 

The design of example 4.4 can be constructed in a similar way. 

Products oj designs. Before we proceed with group generated designs, a 
few general concepts are required. Suppose that we have two designs of 
the same 'shape', e.g. 

1)' : 

and 

1)" : 

We can then form a new design 1)' X 1)", again of the same 'shape', as 
follows. As the units set take I = I' X I", and define the sets of factor 
levels similarly as Cartesian products of the corresponding sets of factor 
levels in the two original designs: 
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V' X V" : I' X I" 
R' X R" 
~ 
~ O(=OxO) 

C' X C" ---

The mappings are defined in the obvious canonical way, e.g. 

( '/ ''') ( (.') (''')) 'PR'xR" Z ,z = 'PR' Z ,'PR" Z • 

Notice that the Cartesian products occurring here are 'exterior' - not 
to be confused with cross-classifications which are products of factors 
in the same design. Notice also that the design V' X V" is, strictly 
speaking, not unique when V' and V" are given, since it depends on the 
way we draw the factor structure diagram (in the example, we might 
turn one of the original diagrams upside down, and probably obtain 
something different). A part from this, the construction is a triviality, 
which deserves attention here only because we need it for the formulation 
of a fundamental result for group generated designs, stating that such a 
design can be decomposed as a product V = V 2 X V3 X V5 X V 7 X ... 

of 'prime components'. 

It is relatively easy to show that the formation of products of two or 
more designs preserves the most important properties of these designs, 
in the sense that 

(1) If the original designs V', V", . .. are closed under formation of in­
fima, so is the product V' X V" X ... (infima in a product design are given 
by the rule (F'xF"x ... )I\(G'xG"x ... ) = (F'I\G')x(F'I\G')x ... ). 

(2) A factor F' X F" X . •. in the product design is balanced if all corre­
sponding factors F', F", ... in the original designs are balanced. 

(3) A product of orthogonal designs is again an orthogonal design. 

By the dimensions of a design we mean a factor structure diagram which 
displays the numbers of levels of factors, rather than their names, like 

which shows the dimensions of a 5 X 5 latin square. The purpose of this 
definition is just to avoid names of factors when they are not needed. 
Most of what is said in the following has to do with existence of designs 
of given dimensions, without regard to what the factors stand for. 

Just to settle these concepts, consider the a simple example. For any 
non-negative integers rand c we have orthogonal designs of dimensions 
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and 

These designs are trivial in the sense that they contain only the units 
factor and the trivial factor (more than once, but this is allowed in the 
present context). The product of these two designs is obviously a two­
way table with one observation per cell, of dimensions 

If we form the product of this design with another trivial design of 
dimensions 

we obtain a design of dimensions 

which is nothing but an r X c table with n observations per cell. 

In the following, all factors in our designs will be balanced. Under this 
condition, it is roughly correct to say that the properties of an orthogonal 
design are determined by its dimensions. This is true as far as its formal 
statistical properties are concerned. It is not correct that designs of the 
same dimensions are isomorphic, in the sense that there is a one-to-one 
mapping between their units sets which preserves the entire structure 
up to relabelling of levels. For example, the two 4 x 4 latin squares 

A BeD 
BeD A 
C DAB 
DAB C 

and 

A B 
B A 
C D 
D C 

C D 
D C 
A B 
B A 

are not isomorphic in this sense. But their statistical properties are the 
same, formally. 

Group generated designs. Recall that an Abelian group is a set G with 
operations + and -, behaving according to the usual rules for addition 
and subtraction, and a selected element 0, which has the usual role of a 
zero. The simplest example is the cyclic group Zn, usually represented 
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as the integers 0,1,2, ... , n -1 with addition modulo n. According to a 
fundamental theorem in group theory, any Abelian group can be repre­
sented as a Cartesian product of such cyclic groups, with coordinatewise 
addition. 

For a given design 'D, suppose that the set I and all other sets F of 
factor levels are equipped with structures as Abelian groups, in such 
a way that the mappings rp F assigning factor levels to units are group 
homomorphisms (rpF(i 1 ± i2 ) = rpF(i 1 ) ± rpF(i2 )). The examples of 
designs given earlier in this section are all of this kind. In this case we 
say that the design is group generated. 

For a factor F in a group generated design, the partitioning of I induced 
by rp F consists of the kernel 

of the homomorphism rpF and its cosets i +KF, i E I. From elementary 
group theory, it is wellknown that these cosets are all of the same size, 
which means that the factor is balanced, provided that rp F is surjective. 
Moreover, a factor is characterized (up to relabelling of classes) by its 
kernel, because i1, i2 E I are on the same level of F if and only if 
i 1 - i2 E KF. This correpondence between factors rpF: I -+ F and 
subgroups KF of I is order-reversing, in the sense that 

and the formation of minima of factors corresponds to the operation 
'addition of subgroups', 

K FAG = KF + KG = {k' + k" I k' E K F, k" E KG}' 

Similarly, the formation of products of factors corresponds to intersec­
tion of their kernels, 

Most important, perhaps, is the fact that any two factors in a group 
generated design are orthogonal. This is a trivial consequence of the fact 
that the classes {i I rp F( i) = f, rpG( i) = g} for f and g on the same level 
of F 1\ G are all of the same size, since they are cosets of the subgroup 
KF n KG (= K FxG ). 

Let K be the set {KF I F E 'D} of kernels for factors in a given group 
generated design 'D. From what has been said above, it follows that 
this system K of subgroups of I determines the design uniquely, up 
to relabelling of factor levels. Moreover, it follows that an orthogonal 
design, in the sense of section 2, can be represented by such a set K 
of subgroups which is closed under addition of subgroups and contains 
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the trivial group {O}. Notice that the orders of these subgroups are 
complementary to numbers of levels of corresponding factors in the sense 

that IEFI = Ill/IFI· 
By duality, this representation of an orthogonal design can be translated 
to a representation by a set R of subgroups of the dual group l*, which is 
closed under intersections and has 1* as an element. This representation 
has the advantage that the size of a subgroup here is simply equal to 
the number of levels of the corresponding factor, and infima of factors 
correspond to intersections of subgroups. But since the dual group is a 
slightly abstract concept, we shall postpone this to the discussion of the 
special case I = Z;, p prime, where the dual group can be given a more 
concrete interpretation. 

The prime components of a group generated design. For a given (finite) 
Abelian group (G, +) and a given prime integer pEP = {2, 3, 5, 7, ... }, 
define 

G[p] = {g E G I png = 0 for some power pn of p}, 

where multiplication of a group element 9 by an integer m is defined in 
the obvious way by mg = g+" '+g (m terms). Then, G[p] is a subgroup 
of G, and it is not difficult to show that 

G = EB G[p] 
pEP 

i.e. any group element has a unique representation as a (finite) sum 
9 = g2 + g3 + g5 + g7 + ... , gp E G[p]. The order of (number of elements 
in) the subgroup G[p] is a power of p, namely the greatest such power 
that divides IGI. Moreover, any group homomorphism 'P: G ~ H into 
som other finite Abelian group H has the property that it maps the 
subgroup G[p] into the subgroup H[P]. For our group generated designs, 
the consequence of this is that any such design 'D can be decomposed as 
a product design 

'D = 'D2 X 'D3 X 'D5 X ... , 

where the numbers of levels for factors in 'Dp are powers of p. 

EXAMPLE 5.1. Suppose that we want to construct a design of dimen­
SIons 

~ 6 ______ ., 
36 >- 3 <,. 1 

~3~ 
2 

(a 1/3 replicate of a 6 x 3 x 3 x 2 factorial). Existence of a group 
generated design of these dimensions is equivalent to existence of its 
prime components for p = 2,3, of dimensions 
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and 

respectively. The 2-component trivially exists, and so does the 3-
component which is just a (trivially extended) latin square of order 3. 
Hence, we can construct a design of the given dimensions as follows: 
Take I = Z3 X Z3 X Z2 X Z2, and define mappings (and sets of factor 
levels) as indicated by the scheme 

EXAMPLE 5.2. A group generated design of dimensions 

100 
~10~ 

:> 10 . ~ 1 

~10~ 
10 

does not exist, since the 2-componont of this would be of dimensions 

~2 
4 :> 2 

~2 
";'2 

which is obviously impossible, for the simple reason that calculation of 
degrees of freedom results in a negative value of dI . However, a graeco­
latin square of order 10 is known to exist. What we have shown is only 
that it can not be group generated. A smaller (probably the smallest, 
in some sense) set of design constants for which a design exists, but not 
a group generated one, is 

~2? 12~2 1 

~2 
2 

Zp-vectorspace designs. For group generated designs, the decomposition 
into prime components gives a considerable reduction of the amount of 
work required from the experimental designer. Essentially, we can now 
restrict our attention to designs for which the size of the units set and 
all sets of factor levels are powers of the same prime p. In practice, it is 
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possible to reduce the efforts a little further, by restriction to groups of 
the form Z;. This is so because the system of subgroups of Z; is richer 
than the system of subgroups in any other group of the same order. 
Unfortunately, this is not a result that we have been able to prove (or 
even state) in general, it is mainly a matter of experience. Nevertheless, 
in the following we shall restrict our attention to groups of this form. 

It is wellknown that Zp, the integers modulo a prime p, has the structure 
of a field under addition and multiplication modulo p (the usual rules 
for addition and multiplication hold, and division by non-zero elements 
is also allowed). The Abelian group Z; (and any of its subgroups) has 
the structure of a vectorspace over the field Zp, and any group homo­
morphism between such groups is also a linear mapping. In particular, 
any homomorphism !.p: z; -+ Z; can be represented by a k X n-matrix 
in the usual way, 

[ 
allzl + ... + aInzn] 

!.p(z) = !.p(ZI"" ,zn) = Az = : 
akIzl + ... + aknZn 

(subsuming here and in the following that elements Z = (ZI,' .. ,zn) E Z; 
are regarded as n X 1 columns whenever they occur in equations involving 
matrix operations). 

EXAMPLE 5.3. Consider a design of dimensions 

How many factors on p levels can be put into this? If each factor is a 
linear mapping 

from Z; to Zp, the question can be rephrased as follows: 

How many linear mappings !.pI, . .. ,!.pm can we find such that any two 
!.pj' and !.pjll among them have the property that 

is surjective? 

But since (!.pj', !.pj" ) is surjective if and only if the two rows of its matrix 
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are linearly independent, we can also state the question as follows: 

How many non-zero n-vectors (ajl,"" ajn), j = 1, ... , m, can we find 
such that no two of them are proportional? 

The answer to the last question is obviously 

m = (pn -l)/(p -1) = pn-l + pn-2 + ... + p + 1, 

since the equivalence relation 'proportionality' divides the pn - 1 non­
zero elements of Z; into classes of size p - 1 (lines through 0, excluding 
the point 0), and exactly one vector can be chosen from each. 

For example, a design of dimensions 

with 25 units, (25 - 5)/(5 - 1) = 6 factors on 5 levels, exists. In order 
to construct it, we must define the six factors by linear expressions with 
pairwise linearly independent coefficient sets, for example 

Dualizaiion. Example 5.3 above illustrates the following more general 
principle. Suppose that we want to investigate existence of a design 
of given dimensions. Assuming that all dimensions are powers of the 
same prime p, and restricting attention to Zp-vectorspace designs, the 
problem is then to construct a system of linear mappings between Zp­
vectorspaces of the given sizes, such that the formation of infima of 
factors (addition of the kernels) matches the structure of the given di­
agram. Let 1* denote the dual of I = Z;, i.e. the vectorspace of linear 
mappings I -7 Zp. It is natural to think of 1* as the n-dimensional 
space of 1 x n row matrices, so that the value of a E I* at i E I is sim­
ply the matrix product ai. For any factor <PF: Z; -7 Z;, let RF ~ 1* 
denote the subspace of linear mappings that can be written as functions 
of <pF(i); or, in matrix terms, the subspace of I* spanned by the rows of 
the matrix for <P F. This space RF determines the factor uniquely, up to 

32 



relabelling of classes. The relation to the representation of a factor by 
its kernel is given by 

RF = {a E I I ai = ° for i E f{F} 

and the relation between the order of RF and the number of levels for 
F is simply that IFI = IRFI. The assignment of a subspaces RF of 1* 
to factors F is order preserving, in the sense that 

and the formation of minima of factors corresponds to intersection of 
these subspaces, 

Hence, we have an alternative representation of orthogonal Zp-vector­
space designs by systems n = {RF IF E V} of subspaces of I* (~ Z;), 
which are closed under intersections and include I*. The problem to 
find a design of given dimensions reduces to the problem of finding such 
a system of subspaces of the desired sizes such that the formation of 
intersections matches with the structure of the diagram. 

EXAMPLE 5.4. Suppose that we want to construct a design of dimen­
SIOns 

i.e. a 1/3 replicate of a 35 factorial which fully allows for estimation 
and test of hypotheses involving interactions between the first three 
factors, provided that no other interactions are present. This is solved 
if we can find 5 subspaces RA, .. . , RE ~ Zj of dimension 1 such that 
RAxBxC = RA + RB + Rc is of dimension 3 and 

RD n RAxBxC = RE n RAxBxC = RD n RE = {O}. 

But this is easy, since we can just take 

RA = span{(l, 0, 0, On 

RB = span{(O, 1, 0, on 

Rc = span{(O, 0, 1, on 

RD = span{(O, 0, 0, In 

and, say, RE = span{(I, 1, 1, In 
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Accordingly, we can define the allocation of factor levels to units by 

'PA(i l ,i2,i3,i4 ) = i l , 

'PB(i l , i 2, i3, i4 ) = i2, 

'Pc(i l ,i2,i3,i4 ) = i3, 

'PD(i l ,i2,i3,i4 ) = i4 , 

'PE(i l ,i2,i3,i4 ) = i l +i2 +i3 +i4 . 

In fact, there is room for much more than two 'non-interacting' factors D 
and E in this design. Since anyone-dimensional subspace not contained 
in RAxBxc can be used for the construction of such a factor, it is possible 
to include up to (81 - 27)/(3 - 1) = 27. 

Maximal packings. The design of dimensions 

with (pn - 1) j (p - 1) factors on p levels is an example of a design for 
which calculation of degrees of freedom results in dI=O, i.e. 'zero degrees 
of freedom for the residual in the maximal model'. For the corresponding 
system R of row spaces RF ~ 1*, this means that it constitutes a max­
imal packing of 1* ~ Z;, in the sense that 1* \ {O} is the disjoint union 
of the sets RF \ {O}, FED, F i- I. Maximal packings are interesting 
because they represent designs with the maximal number of factors in­
cluded, such that all main effects can be estimated (but the introduction 
of any interaction will introduce non-trivial confoundedness-relations). 
Another example (a straightforward generalization of the last remarks 
of example 5.4) is a design with pn units, one factor on pk levels (k < n) 
and (pn - pk)j(p -1) factors on p levels. 

A less obvious result on existence of maximal packings is the following. 

PROPOSITION 5.1. For any prime p and non-negative integers nl and 
n2; nl 2:: n2; there exist subspaces Ra of dimension nl and RI, ... , Rpnl 
of dimension n2 of Z;l +n2 such that Rj' n Rjll = {O} for j' i- j". 

This is a maximal packing, since 

EXAMPLE 5.5. For p = 2, nl = 3 and n2 = 2, the proposition states 
that a design of dimensions 
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~8~ 
32 > 4 f 1 

~: 
4 

with one factor on 8 levels and 8 factors on 4 levels exists. 

Outline of proof. It can be shown that there exists a one-to-one linear 
mapping C: Z;l -+ Z;l with the property that any of the linear map­
pings Ckl - Ck2 is also one-to-one when kI - k2 is non-zero modulo 
pnl -1. This (an immediate consequence of the fact that the multiplica­
tive group in the Galois-field of order pnl is cyclic) will not be explained 
in details here. For an arbitrary injective linear mapping A: Z;2 -+ Z;l, 
define 

Ra = Z;l X {O} 

RI = {(CAz,z) I z E Z;2} 

R2 = {(C2Az,z) I z E Z;2} 

Rpnl-I = {(Cpnl _I Az,z) I z E Z;2} 

Rpnl = {O} X Z;2 

This system of subspaces is seen to satisfy the conditions. 

From maximal packings, other maximal packings can be constructed by 
further splitting of the factors. For example, if we replace the factor on 
8 levels in the design of example 5.5 with the factors in the maximal 
packing of dimensions 

we obtain a design of dimensions 
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with 9 factors on 4 levels and 4 factors on 2 levels. By this technique, 
possibly followed by removal of some of the factors, it is possible to 
construct a large number of designs. 

Existence of 'main-effect' designs. We may now pose the following gen­
eral question. For a given prime p, for which sets n, nI, n2, ... ,nk of 
integers does a Zp-vectorspace design of dimensions 

exist? We can not give a definitive answer to this. However, it is easy to 
give two necessary conditions for such a design to exist, and these turn 
out to be sufficient also, for most practical purposes. The conditions are 

(1) The degrees-of-freedom book-keeping must not result in a negative 
value of dI ; i. e. we should have 

(2 ) No two dimensions must sum to more than n; i. e. we should have 

> f ·, --l '11 n _ nj' + nj" or J I J . 

For n :::; 4, it is not hard to show that these conditions will ensure 
that a design can actually be constructed by (possibly repeated) use of 
proposition 5.1. Christoffersen (1987) showed, by a detailed examination 
of cases, that the conditions are sufficient for existence of the design 
when k :::; 9. For k = 10 this is not true. In the case k = 10, n = 5, 
nl = n2 = ... = nlO = 2, it can be shown that no Z2-vectorspace design 
exists. 

Just to illustrate the consequences for the general problem of designing 
'main-effect fractional factorials', consider the following two proposi­
tions (which are immediate consequences of the above results). 

PROPOSITION 5.2. A group generated design of dimensions 

~a~ N . >- b 1 
~ c 

exists if and only if N is an integer multiple of any of the three numbers 
ab, ac and bc. 
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PROPOSITION 5.3. A group generated design of dimensions 

exists if and only if the following two conditions are satisfied. 

(i) N is an integer multiple of any of the six numbers ab, ac, ad, bc, bd 
and cd. 

(ii) If the four numbers a, b, c and d are all even, N must be a multiple 
of 8. 

The condition (ii) is obviously there to ensure existence of a 2-compo­
nent of the form 

which requires n ~ 3. The sequence of propositions is easy to continue. 
For designs with five factors, a new condition for existence of the 3-
component should be introduced, etc. For concrete purposes, however, 
it is usually easier to refer directly to the results for existence of the 
prime components. 

Fractional factorials with estimable interactions. The results for 'main­
effect designs' are trivially applicable also in situations where one or 
more interactions are to be included in the initial model, provided that 
these interactions involve disjoint sets of main effects. For example, 
existence of a design of dimensions 

trivially implies existence of a design of dimensions 

~4 >- 2 
____ ~2 

16 ---,:;;. 4 u ? 2 

~~2 
4 :> 2 
~2 

which we may think of as a 1/4 replicate of a 26 design with the property 
that the two-factor interactions A x B, ex D and Ex F can be included 
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in the initial model, with no further aliasing than already present in a 
complete 26 design (provided, of course, that all other interactions can 
be assumed vanishing). 

Designs for estimation of a more or less arbitrary pattern of main ef­
fects and interactions are more difficult to classify. At least, we can say 
nothing about them, beyond what has already been said about group 
generated designs in general. 

However, in the case of k factors on p levels (p prime), it is possible to say 
a little more, provided that the condition for estimability of interactions 
is symmetric in the k factors. By convention, a design of this form is 
said to be of resolution w if the design is a complete factorial in any 
w - 1 of the factors, when the remaining k - w + 1 factors are ignored. 
In this terminology, a 'main effect design' is a design of resolution 3. 
More generally, for w odd, it is easy to see that designs of resolution w 
are designs with the property that any set of interaction terms up to and 
including interactions between W;-l factors can be included in a model 
without introducing any further aliasing than present in the complete 
pk design. For w even, the interpretation is slightly more complicated. 
A design of resolution 4 is essentially a main effect design, since the 
condition only ensures that one two-factor interaction may be present. 
But since this interaction term may be chosen arbitrarily, the design has 
also the 'robustness property' that if any of the two-factor-interactions, 
initially assumed vanishing, happens to be present, then the damage is 
restricted to meaningless identification of the corresponding main effects. 
Estimates of other (welldefined) main effects do not become biased. 

From the experimental designers point of view, the important aspect 
of the concept of resolution is that once the dimensions of a design are 
settled, the design should usually be chosen with the maximal possible 
resolution. 

EXAMPLE 5.6. A design of dimensions 

can be constructed in many ways. Two of them are given here (subsum­
ing I = Z~ etc.): 
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For VI, an (unexpected) interaction between the first two factors would 
result in a false main effect of the fourth factor. This (or any similar 
phenomena) does not occur for V 2 , since this design is of resolution 4. 

EXAMPLE 5.7. Consider the dimensions 

2 

~2~ 
16 . ? 2 ---., ~ 1 
~2~ 
~ ~ 

2 

(a 1/2 replicate of a 25 design). Here it is possible to select a design of 
resolution 5, e.g. by 

This design has the obvious advantage that all two-factor interactions 
can be included (and tested for) in the initial model. 

As should be obvious from the definition (and also from the examples), 
the property that a pk fractional factorial is of resolution w is equivalent 
to the property of the k sets of coefficients (ajl, ... , ajn) E Z;, j = 
1, ... ,k, defining the k factors, that any w - 1 among them are linearly 
independent. Pairwise linear independent coefficient sets give resolution 
3 (main effect design), triplewise linear independent coefficient sets give a 
design of resolution 4, etc. Hence, we are left with the following problem: 

How many vectors ab" . ak E Z; can be selected such that any w - 1 
among them are linearly independent? 

The answer, kmax say, is the maximal number of factors on p levels that 
can be present in a design of resolution w with pn units. 

Only partial answers to this question are available. For w = 3, we 
already know that kmax = (pn - l)/(p - 1). For w = 4 and p = 2, 
Bose (1947) showed that kmax = 2n - l . This is obtained by selecting 
al, ... , ak as the 2n - 1 elements of Z~ with coordinate sum 1, which 
are easily seen to constitute a set of triple-wise linearly independent 
vectors. For fractional replicates of 2k designs, this has the important 
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consequence that whenever the number of factors is less than or equal 
to half the number of experimental units, a resolution 4 design can (and 
should) be selected, efr. example 5.6. For w > 3 and/or p > 2, things are 
more complicated, but in some cases the following result and its proof 
may help to bring the problem on a more concrete form. 

Call a subgroup G of Z; w-heavy, if it has the property that any of 
its non-zero elements g = (gl, ... , gk) E G has at least w non-zero 
coordinates. 

PROPOSITION 5.4 (Bailey 1985). A resolution w Zp-vectorspace design 
with k factors on p levels) pn units (p prime) k > n)) exists if and only 
if Z; has a w-heavy subgroup with pk-n elements. 

Proof. Suppose that a design with the given properties exists, and let 
aI, ... ,ak E J* ~ Z; be the sets of coefficients defining the factors. 

Let G ~ Z; be the set of (gl,'" ,gk) such that glal + ... + gkak = O. 
The condition that any w -1 among al, . .. ,ak are linearly independent 
obviously implies that any such k-tuple (gl, ... , gk) must either have all 
coordinates equal to zero or at least w coordinates non-zero. Thus, G 
is a w-heavy subgroup, and the dimension of G as a subspace of Z; is 
obviously k - n (or more, if aI, ... ,ak do not span J*, but this is even 
stronger). Conversely, if G is a w-heavy subspace of Z; of dimension 
k - n, a design with the desired properties can be constructed as follows. 
Take 

J = {i E Z; I g*i = 0 for any g E G} 

(g* denoting transpose to g), and define the factors by (restriction of) the 
k coordinate projections. This is easily shown to give a design with the 
desired properties. Intuitively, this is so because the constraints g*i = 0 
involve at least w coordinates of i and therefore can never introduce a 
tie on w - 1 of the coordinates. 

Single replicate designs with blocking. We shall say very little about 
this, because a few basic observations show that these designs and their 
properties are essentially special cases of what has been said about frac­
tional factorials. The only difference is that the design is now assumed 
to be a complete balanced k-way table (usually with one observation 
per cell) in some of the factors, namely those that are determined by 
the treatments. In addition to these treatment factors we have one or 
more factors determining the partitioning into blocks. The treatment 
effects that can be estimated in J -stratum in a model with random ef­
fect(s) of the block factor(s) are exactly those that can be estimated in 
a linear model with fixed effect(s) of the block factor(s). This applies 
also to interactions, with the reservation that a higher order interaction 
may appear in J -stratum, even when lower order interactions marginal 
to it do not (see example 4.3 and 4.4). However, this is usually not im­
portant for the design of an experiment, since the conditions of interest 
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there require that a given set of main effects and interaction terms in a 
maximal model formula should be in I -stratum. Thus, any treatment 
factor or product of treatment factors, that has a non-trivial infimum 
with a block factor, is essentially 'sacrificed' in the sense that the factor 
itself or some factor marginal to it will be put in some other stratum 
than I-stratum. 

For designs with more than one block factor, one may of course be 
interested in a more detailed analysis of the allocation of the factors 
that are not in I-stratum. This is obvious in example 4.3, where the 
allocation of the main effect of F to P-stratum may be acceptable, 
whereas a confounding of F with B would probably not be so. However, 
for hierarchical block structures this problem is easy to solve (in example 
4.3, just ignore the block factor P to analyse the allocation of factors 
to either B-stratum or the two more accurate strata). Crossed block 
structures may require further considerations, but we have no general 
remarks here that lead to more useful methods than the obvious 'trial 
and error' technique. 
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