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LATTICE-ORDERED CONDITIONAL INDEPENDENCE MODELS FOR 
MISSING DATA' 

steen A. Andersson2 and M ichae I D. Per Iman3 

ABSTRACT 

Statistical inference for the parameters of a mUltivariate normal 
distribution Np(Jl,~) based on a sample with missing observations is 

straightforward when the m issing data pattern is monotone (= nested), 
reducing to the analysis of several normal linear regression models by 
step-wise conditioning. When the missing data pattern is non-monotone, 
however, such analbjsis is impossible. It is shown here that every 
missing data pattern naturally determines a set of lattice-ordered 
conditional independence restrictions .which, when imposed upon the 
unknown covariance matrix ~, yields a factorization of the joint 
likelihood function as a product of (conditional) likelihood functions of 
normal linear regression models just as in the monotone case. From 
this factorization the maximum likelihood estimators of Jl and ~ (under 
the conditional independence restrictions) can be explicitlbj derived. 
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1, Introduct ion, 

Suppose that Xl ....• Xn represent a samp le of stochastica lly independent random 
vectors from a p-variate normal distribution N(J.l,~) with mean vector J.l and positive 
definite covariance matrix ~. both unknown. Each Xj and J.l are p-dimensional column 

vectors. Frequently in practice. some of the p components of one or more Xj are 

unobserved or m issing. Thus the observed data array may assume forms such as the 
following four examples, where in each case p = 2, n = 5: 

111 11 
22222 

11111 
2 2 

Figure 1.1. 

111 
222 2 22 

11 

In each 'array a "1" ("2") indicates that the first (second) component of that column 
vector Xj is present, while a blank indicates a missing observationl . 

After permuting columns and combining identical columns. it is seen that the data 
arrays in Figure 1.1 determ ine the follow ing four incomplete data patterns: 

1 
2 

mOl)otone 
(comp lete) 

11 
2 

monotone 
(~ ident if iab le) 

1 1 
22 

non-monotone 
(~ identifiab le) 

Figure 1.2. 

1 

2 

non-m onot one 
(0'12 unidentifiable) 

Each pattern is specified by the class S of subsets of indices determ ined by its 
columns, so the four patterns in Figure 1.2 are respectively equivalent to the four 
classes 

( I • 1 ) {12}, {I, 12}. {I, 2. 12}, {1,2}, 

IMore genera Ily, the entries"!", "2" .... , "q". in such arrays may represent 
multivariate columns of variates with every column labelled ''j'' having the same 
dimension Pi. where P1 + '''+pq = p. 
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where" (2" denotes the subset {I. 2}. etc. 

1.1. Monotone and non-monotone incomp lete data patterns. 

A i ncomp lete data pattern is ca lIed monotone (= nested. h ierarch i ca 1, sta ir-case, 
etc.) if the p variates can be relabelled such that if variate i is misSing in vector xi' 

then the var iates i + 1, ... ,p are a Iso m issing in x j. Equ iva lently, S is monotone if its 

members are totally ordered by inclusion. The first two patterns in Figure 1.2 are 
monotone, while the last two are non-monotone. The correlation between variates 1 
and 2 is unidentifiable (hence inestimable) in the fourth pattern since these two 
var iates are never observed s imu ltaneous ly. Up to permutation of rows and co lumns 
(i.e., relabelling of variates and samples) the four patterns in Figure 1.2 are the only 
possible incomplete data patterns for bivariate data (p = 2). 

For trivariate data (p = 3), however, there are 32 possible incomplete data 
patterns, of which 4 are monotone and 28 are non-monotone. Some examples are 
given in Figure 1.3 and l.4a, b: 

1 
2 
3 

1 I 
2 
3 

11 
22 

3 

11 I 
22 

3 

Figure 1.3: The four monotone incomplete data patterns when p = 3. 

1 I 1 
2 22 

333 

1 1 1 
2 2 

33 

1 
2 2 

33 

1 1 1 
22 

3 3 

1 1 
22 

3 

Figure l..4a: Five non-monotone incomplete data patterns when p = 3; 
comp lete observati ons present, l: ident if iab le. 
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1 I 

2 2 
33 

11 

2 
3 

2 
I 1 

2 
3 3 

Figure l.4b: Four non-monotone incomplete data patterns when p = 3; 
no comp lete observat ions present. 

Note that L: is identifiable in the first pattern in Figure l.4b even though no complete 
observat ions are present, since every pair of the variates 1, 2, 3 are observed 
together, whereas L: is not identifiable in the last three patterns of Figure l.4b. 

1.2. Statistical inference for missing data models. 

It is we II known that statistica I inference for monotone m issing data mode Is is 
relatively simple (cf. Anderson (1957), Bhargava (1962.1975), Little and Rubin 
(1987), Rao (1956), and many others listed in Kariya, Krishnaiah. and Rao (1983)). 
Not only is (j.l,L:) identifiable since complete observations are present, but more 
importantly, the joint likelihood function can be factored as a product of conditional 
I ike I ihood functions each having the form of an ordinary mu ltivar iate norma I linear 
regress ion mode 1. This is accomp I ished by factor ing the joint dens ity funct ion r of 
the observed data array in the form 

(1 .2) r = r ( J ) ((2/1) ... ((p / J "'(p~ 1 )), 

where r(i/I"'(i-I)) denotes the conditional density of all observations on variate i 

given the values of all observations on variates 1,,,,, i-I (also recall Footnote 1). 
Furthermore, the factor ((i /1"'(i-l)) depends on (j.l,L:) only through the usual 
regression parameters that appear in the conditional distribution of variate i given 

var iates 1, '" , i-I, and the fu 11 parameter space of (j.l.~) is in 1-1 correspondence 
with the product of the parameter spaces of these p sets of regression parameters. 
(For i = 1, the regression parameters are simply j.ll and L: 11 • the unconditional mean 
and variance (or covariance matrix) of the first variate (or first block of variates).) 
Rubin (1974) refers to these as p sets of "distinct" parameters. 

For a monotone incomp lete data pattern these factorizations of the I ike I i hood 
funct i on ar)d parameter space reduce the prob lem of max imum I ike I ihood est imation 
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of (jl,2:) to that of estimating the parameters of several linear regression models. [n 
part icu lar, th is provides s imp le necessary and suff icient cond it ions in terms of the 
sample size for existence and uniqueness of maximum likelihood estimates (MLE), and 
also provides explicit expressions for these M,LE. 

For general dimension p~3, however, the vast majority of incomplete data 
patterns are non-monotone, in wh ich case the I ike I ihood funct ion and the parameter 
space cannot be factored simply as in the monotone case and the est imation problem 
cannot be reduced to a set of linear regression problems (cf. Rubin (1974) and Rubin 
(1987, §5.6)). The parameter 2: mayor may not be identifiable, conditions for 
existence and uniqueness of the MLE of (jl.2:) are not expressible in convenient form2. 
and explicit expressions for the MLE are not available. In practice it is usual to 
app Iy the EM algor ithm or other a Igorithms to approximate the MLE3 (cL L itt le and 
Rub in (1987, Chapter 8), Rubin (1987. §5.6)). but the EM algor ithm may not converge 
to an unique solution, if at all, and the resulting estimates may depend heavily upon 
the initial value chosen for (jl.2:) (Murray (1977)). Other proposed approximate 
methods may not yield positive definite estimates of 2: (Hocking and Smith (1968)). 
Only one proposed method, that of discarding some observations to obtain a monotone 
incomplete data pattern (Rubin (1974) and Rubin (1987, pp.189-190)) yields explicit 
MLE for (jl,2:), but this incurs a loss of efficiency that may be substantial unless 
most observat ions are comp lete. 

1.3. Pairwise conditional independence models for incomplete data. 

In this paper we present an alternative approach to the analysis of non-monotone 
i ncomp lete data patterns in a samp le from a mu ltivar iate norma I distr ibut ion. We 
shall show that every incomplete data pattern generates a finite distributive lattice 
which in turn determines a mathematically natural set of pairwise conditional 
independence (C!) conditions. When imposed upon 2: to produce a restricted parameter 
space, these Cl conditions yield a statistical model that inherits the desirable 
propert ies of the monotone case descr ibed above. In part icu lar. both the I ike I ihood 

2Even in the b-ivariate case the likelihood function may have multiple maxima - cf. 
Murray (1977). 

3Somet imes without requ iring that 2: be identifiable. 
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funct ion ·and the parameter space can be factored so that the MLE of (jJ,L:) under the 
Cl condition are obtained by solving a set of ordinary multiple linear regression 
models, exact 18 as in the monotone case. This immediately provides simple 
condit ions for existence and uniqueness of the MLE of (jJ,L:) under the Cl model and 
explicit expressions for the MLE when It exists. 

Rubin (1987, p. 190) explicitly suggested this approach for the analysis of a 
s imp le non-monotone incomp lete data pattern4 , name Iy: 

11111 

2222 

3 3 
44 

Figure 1.5. 

Essentially. he notes that if it is assumed that variates 3 and 4 are Cl given variates 
1 and 2, which we express as 3Jl4/(1,2) following DayYid (1980), then the joint 
dens ity (of the observed data array may be factored as 

( 1.3) (= ((1)((2/1)((31 12)((4/12) 

with each factor corresponding to a standard I inear regression mode I. whereas 
without the cr assumption no such factorization is possible. 

Ear I ier. Anderson (1957) cons idered the follow ing two examp les of non-monoton~ 
incomplete data patterns: 

11 

2 
3 

Figure 1.6. 

111 

22 
3 

4 
5 

40ur labelling of variates is different than, but equivalent to, Rubin's. 
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For the first pattern Anderson (1957) and, previously. Lord (1955) noted that the 
joint likelihood function (may be factored by straightforward sequential 
conditioning as follows: 

( 1.4) ( = (( 1 ) ((2/1) ((3/ 1.) 

but they did not relate this factorization to a Cl assumption. Clearly, however, the 
factorization (1.4) is equivalent to the Cl condition 2lL3 /1. 

Although giving no explicit description of his factorization procedure, Anderson 
(1957) states that "other prob lems of missing observat ions (but not a 11) can be 
handled in this way", including the second pattern in Figure 1.6, for which he did not 
state the factorization but which is easily found by "sequential conditioning" to be 

( 1.5) (= ((1)((2/1)((3/1)((41 12)((5/12) 

where again each factor is the I ikel ihood function of a standard I inear regression 
model. If, however, the patterns in Figure 1.6 are replaced by the augumented 
patterns 

1 1 1 
2 2 

33 

Figure 1.7. 

1 1 1 1 
222 

3 3 
4 

55 

then no factor izat ion of the I ike I ihood funct ion can be obtained by Anderson's 
sequential conditioning approach. even allowing relabelling of the five variates. 
Indeed, without the imposition of Cl conditions. no such factorizations are possible, 
but the appropriate Cl conditions may not be readily apparent. 

App I ication of the theory presented in Section 3 (cf. Examp les 4.3 and 4.13) leads 
to the fo 1I0w ing m inima I sets of Cl restrict ions that a Ilow factor izations of the 
I ike I ihood funct ion for the two incomp lete data patterns in Figure 1.7: 
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( 1.6) First pattern: 2.11.3/1 

( 1.7) Second pat tern: 2Jl3/1 and 3Jl4Jl5/ (1,2). 

When these Cl conditions are imposed on the covariance matrix L:, then the 
factorizations (1.4) and (1.5) regain their validity for the augmented patterns.5 In 
the present paper it will be shown how the latt ice structure of a genera I incomp lete 
data pattern g determines the minimal set of Cl conditions that yields factorizations 
such as (1.3), (1.4), and (1.5), 

1.4. Applicability and limitations of Cl models. 

Rubin (1987, p.191) states that "in some cases, such assumptions of conditional 
independence may be perfectly reasonable" due to the nature of the statistical 
experiment. Furthermore, Andersson and Perlman (1988) show that the Cl 
assumpt ions may be tested (based upon the comp lete observat ions) by standard 
mu I tivar iate techniques. Even in cases where the Cl mode I is not deemed 
appropriate, Rubin (personal communication) has noted that the MLE of (}l,L:) obtained 
under the C I mode I may provide usefu I starting va lues for the EM algor ithm or other 
iterat ive methods for approx imat ing the MLE under the unrestr icted mode l. 
Additionally, the explicit MLE solution obtained under the Cl model enables one to 
app Iy standard d iagnost ic methods to investigate the va I idity of the mode I 
assumpt ions. 

5Thus the incomplete data patterns in Figure 1.7 lead to the same Cl covariance 
models as the corresponding patterns in Figure 1.6, but the factorizations for 
Figure 1.6 may be obtained easily by inspection whereas this is not so in Figure 1.7. 
In the lattice-theoretic language of our general method (cf. Sections 3 and 4), this is 
explained by the facts that the incomplete data patterns S = {12, 13} and g = {13, 
124, 125} in Figure 1.6 consist solely of join-irreducible elements of the 
corresponding 'Iatt ices 'K = <J«S) generated by Sand Ulat both sets J(<J-<) of join-
irreducib le elements are closed under intersect ion. For each of the augmented 
incomplete data patterns in Figure 1.7, however, the last column is not a member of 
J(ex). See Examp les 4.3 and 4.13 for further discussion of these patterns. 
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It must be noted that the lattice-ordered Cl conditions imposed by a given 
incomplete data pattern may be severely restrictive. For example, the Cl conditions 
determined by the first missing data pattern in Figure 1.4a require that the variates 
1,2,3 must be mutua Ily independent (cf. Examp le 4.7). In such cases, exam inat i on of 
the lattice <X determined by the missing data pattern can show which partial 
observations would need to be discarded in order to obtain a less restrictive Cl 
model (e.g., to obtain a monotone pattern, which requires no Cl restrictions for 
exp licit ana Iys is, as Rub in (1987, pp. 189-190) has suggested). Of course, eH i ciency 
cons iderat ions wou Id be necessary to imp lement such a procedure. 

1.5. Out line. 

The latt ice-ordered Cl covar iance mode Is for l: app I ied in th is paper were first 
i ntrodu'ced by Andersson and Per Iman (1988), hereafter abbreviated as [AP). The 
basic identities (3.14) and (4.17) in [AP] will be applied in Section 3 to obtain the 
fundamental factorization (3.12) of the likelihood function of the general lattice
ordered Cl model for missing data. Although the mathematical derivations in [AP] 
will not be repeated. some of the essential concepts and notation regarding finite 
d istr ibut ive latt ices will be reviewed here. a long with severa I examp les illustrating 
the applications of these concepts to the analysis of multivariate normal missing 
data models. Nonetheless. some familiarity with Sections 1.3.3,3.4. and 5 of [AP] 
will a id the reader of the present paper. 

In Sect ion 2 of th is paper the genera I mu ltivariate norma I miss ing data mode I is 
forma Ily introduced and monotone and non-monotone incomp lete data patterns 
formally defined. In Section 3 the lattice-ordered Cl model determined by an 
arbitrary incomplete data pattern S is defined in terms of the finite distributive 
latt ice 'l< = 'l«S) generated from S by intersections and unions. and the fundamental 
factor izat ions (3.12), (3. 1 5), and (3. 16) of its I ike I ihood function and parameter 
space are obtained. This is then shown to yield explicit conditions for existence and 
uniqueness of MLE under the Cl model and expl icit expressions for these MLE. Several 
examples are presented in Section 4 to illustrate the general theory. while some 
additional comments are given in Section 5. The reader is encouraged to exam ine the 
examp les in Sect ion 4 as ear Iy as possib le in order to ilium inate the general theory 
which, although expressed in terms of abstract lattice-theoretic concepts. is 
actually quite easy to apply to specific incomplete data patterns. 
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2. The general multivariate normal missing data mode\. 

Let I be a finite index set with III = P. where I A I denotes the number of 

elements in the set A. Let N(}l,~) denote the multivariate normal distribution on lA' 

with mean }l E IAI and covariance ~ E !p(!), the set of positive definite Ixl matrices. 

Let y = (x 1 •... , xn) E M( IxN) be a collect ion of independent random column vectors with 

each x j _ N(}l.~). where N = {1 , ... ,n} and ~(JxN) denotes the vector space of a II rea I 

IxN matrices. The general multivariate missing data model can be described as 
follows. 

Let D(I) denote the ring of all subsets of I. For each j £ N let Kj £ D(I) denote 
that subset of I such that the Kj-Subvector of Xj is observed while the 
I\Kj-sUbvector of Xj is missing. To avoid trivialities it is assumed that Kj;Z: 0 and 
U(Kj I j E N) = I; these conditions insure that no column (respectively, row) of y is 
comp lete Iy miss ing. 

For each K E D(I) define 

NK = {j E NI Kj = K) 

<n. = (NK I K E DO)). 

Then n is an arbitrary family of disjoint and possibly empty subsets of N such that 
N0 =0 and 

(2.1) 

(2.2) 

For each K E D(I) let !l E M(KXNK) denote the KxNK submatrix of y. The projection 

mapping 

M( IxN) ..... E'Tt = X(~(KXNK) I K E .0(1)) 

(2.3) 
Y ..... y'Tt = (yK I K £ D( I)) 
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sends the comp lete data matr ix y to the incomp lete data array y'T1. actua Ily observed, 
whi le the remaining entries of y are missing. 

For (Jl,~) £ 1R1xlP(I), the distribution of y'll. induced by the projection (2.3) is the 
multivariate·normal distribution N'T1.(Jl,~) on E'T1. with density function r given by 

(2.4 ) 

where nK = I NK I ~ 0, L:K £ IP(K) is the KxK submatrix of ~, and JlK £ ~(KxNK) is the KxNK 
matr ix with each column equa I to J1K, the K -subcolumn of J1. The general 
mu ltivar iate normal miss ing data model men) with observat ion space E'T1. and 

parameter space 1R1xlP(I) is defined to be the fam i ly 

(2.5) 

2.1. The incomplete data pattern. 

The class 

S = 9(n) = {K I K £ J:J(I), NK ;z: 0} 

of subsets of I specifies the collection of partially observed column vectors that 
actually occur (with repetition) in y'l1. The classes 9 corresponding to the 
incomplete data patterns in Figure 1.2 are exhibited in (1.1). As additional 

examples, the classes S corresponding to the patterns in Figure 1.6 are 

(2.6) {12,13}, {13, 124, 125}, 

whi le the classes S corresponding to the patterns in Figure 1.7 are 

(2.7) {12, 13, 123}, {13, 124, 125, 1235}, 

Thus we may ident ify 9 with its corresponding pattern and refer to S == 9(<)1) as the 

incomplete data pattern determined by n. Note that condition (2.2) may then be 
rewr itten. as 
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(2.8) U(K I K £ S) = I. 

The parameter (j.l,L:) is identifiable in the model m«n) if the mapping (j.l,L:) ~ 

N'Tl(j.l.L:) from the parameter space IRIxlP(I) to the set of normal distribut ions on E'Tl is 
1-1. Clearly (j.l,L:) is identifiable if I £ S. i.e .. whenever at least one column of y is 
comp lete ly observed. More generally. it can be readi Iy seen that (jl,L:) is 
identifiable in men) if and only if 

(2.9) U(KxK I K £ S) = Ixl, 

i.e .. if and only if every pair of the p variates represented in N(jl,L:) occur together in 
at least one column of the observation matrix. 

The incomplete data pattern S is called monotone (= nested. etc.) if S is totally 
ordered under inclusion. In this case (2.8) implies that 1£ S. hence by (2.9) the 
parameter (jl,L:) is identifiable. Furthermore. the necessary and sufficient condition 
for existence and uniqueness of the MLE of (jl,L:) is simply n, ~ p+ 1 (cr. (4.2)). which 
reduces to the classical condition n 2: p+ 1 when no data are missing. As pointed out 
in Section 1. the statistical analysis of a normal model with a monotone data pattern 
reduces to the ana Iys is of severa I ordinary I inear regress ion mode Is. 

Each pattern S in (2.6) and (2.7) is non-monotone. however, as are the vast 
ma jor ity of incomp lete data patterns. The Cl mode Is that s imp I ify the ana lys is of 
such patterns are described in the following secti~n. 
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3. The- I at t ice-or dered cond i t i ona I independence m ode I 
determined by an incomplete data pattern. 

As def ined in Section 2, an incomp lete data pattern S == S(<fl) is an arb itrar~ 
subclass of D(!)\{£1}. The pattern S uniquely determines the ring <x == "KeS) C D(!) 
defined to be the smallest subring of D(I) that contains Sand £1, i.e., 'X is generated 
from Sand £1 b~ the set operat ions u and n. Note that under these operat ions 'X is a 
finite distributive lattice such that 0, 1£ <J-< (cr. (2.8)). 

The set /p'}«(J) C /pO) is defined in [AP] as the set of all covariance matrices 2: such 
that 

(3.1) "if L,M £ <}{, 

i.e., XL and aXM are Cl given XLliM ' where XK denotes the K-subcolumn of X for K £ 'X. 
If LnM = 0, (3.1) reduces to xL1LXM' Note that (3.1) is ordinari Iy written in the form 

(3.2) "if L,M £ <X. 

Some of these Cl conditions are triviat'ly satisfied, e.g., whenever L C M (cr. Remark 
5.1 of JAP)); in part icu lar, if 'X is a chain (cf. Example 4.1) then IP'}«(J) = IP(J), i.e., 2: 
is unrestricted. At the other extreme, if 'X = D(I) then under JP'}«(I) all components of 

x are mutually independent i.e., 2: = Diag(O'll,"·,O'Pp). 

The lat tice-ordered conditional independence model m *(11.) is obta ined from 

m(11.) by restricting the parameter space from /R1xlP(J) to /R1xlP,}«(J), i.e., by imposing 
the cr restrictions6 (3.1) == (3.2) on 2:. 

3.1. Factorization of the likelihood function. 

Because NL = £1 for L £ D(I)\'X, the probability density function (2.4) of y'l1 may be 

rewritten as 

6Because 'l«S) = S when S is a chain (= totally ordered), and because IP'}«(I) = IPC!) 
whenever 'X is a cha in, it follows that m *(<fl) = m«n) whenever S == S(<fl) is 
monotone. 
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(3.3) 

To show that (3.3) can be factored as a product of densit~ functions of normal linear 
regression models, we shall appl~ the basic decomposition formulas (3.14) and (4.17) 
of [AP]. Their application in (3.3) requires that for each L E ex. the matrices 2:L• ~L' 

and J-lL be partitioned according to the join-irreducible elements J(ex) of the lattice 

ex. This partitioning process, introduced in [AP], §3.3, is now reviewed. 

For K £ ex, K 70, define 

<K> := U(K' E ex I K' c K), 

[K] := K \ <K>, 

hence 

(3.4) K = <K> 0 [KJ, 

where U ind icates that the union is dis joint. Let J(CX) denote the poset of non-nu 11 
jOin-irreducible elements of the finite distributive lattice ex (cL [AP]' §2). i.e., 

J('K) = {K £ ex I K 7 0, <K> C K}. 

={K£exIK;z!0, [K] 70}. 

B~ Remarks 2.1 and 2.2 of [AP], 

I = u([K] I K £ J('K), 

which decomposition determines the partitioning 

(3.5) x = (X[K11 K £ J(ex)), 

For every K E J('K) partition 2:K according to (3.4) as 

13 
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-(3.6) _ [~<K> ~<Kl) 
~K - , 

~ [K> ~ [Kl 

where 2::<K> is <K>x<K>, 2::[K> is [K]x<K>, ~<Kl =. (2::[K»t, and 2::[Kl is [K]x[K]. Furthermore. 

define 
-1 

~[Kl' == ~[KJ'<K> := ~[KJ - ~[K>~<K>~<Kl 

-1 
and let ~[Kl' denote (~[Kl')-1. Lastly, for L E ~ with K £ L define y~ E ~(KxNL) to be 

the KxNL submatrix of yL, and partition y~ according to (3.4) as 

We now apply (4.17) of [AP] with (I, ex,~) replaced by (L, <XL' ~L)' where <XL is the 

sublattice of ~ defined as <XL = {L' E <xl L' c U. Since 

it follo\-ys from (4.17) of [AP] that 

(3.7) 

= n(n( I det~[Kl' l-nL / 21 K E Je,o. K eL)l L E ex) 

= n(n( I det~[Kl' l-nL / 21 L E <J<, L :J K I K E J(<X)) 

= n( I det~[KJ·I-nK/21 K E J(<K)), 
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where 

(3.8) K E J('X). 

Next. appl~ (3.14) of [AP] with (I. 'X, ~, x) -replaced b~ (L. <'K L• ~L' ~L-J.1L) to obtain 

(3.9) 

For K E J('K). define 

let ~; ~ M(KxN;) be the matrix whose KxNL submatrix is y~ for L E 'X, L :> K. and 

partition y; according to (3.4) as 

(3.10) 

Then the final expression in (3.9) can be rewritten as 

(3.1 1) 

B~ combining (3.7) and (3.11) we conclude that the density function f given by 
(3.3) of the Cl model m*(n) has the following fundamental factorization: 
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(3.12) 

( = n( / det~[Kl" /-nK/2xexp{-tr(~~~1'(Y[Kl- .J.l[Kl-~[K>~:~>(Y:K> - .J.l:K»)(-··)t)';2/ KEJ(~)). 

The K-th factor in (3.12) is the conditional density of YrKl given Y:K> . from which it 

is seen that 

(3.13) 

where 

(3.14) 
-1 

RK = ~[K>~<K> 

I\.K = ~[Kl 

Thus the K-th (actor in (3.12) is the likelihood (unction or a multivariate normal 
linear regress ion model with regression parameters ~K' RK and covar iance matr ix I\.K' 

where 
. -1 

~K = .J.l[Kl- ~[K>~<K>.J.l<K> 

If we let (([KJ/ <K» denote the K-th factor in the density function (given by 
(3.12). then (3.12) assumes the abbreviated form 

(3.15) ( = nu ([K] I <K» I K £ J(CX)). 

Since [K] = K when <K> = 0 we write r(K) for r([K] 10). Equations (1.2) - (1.5) are 

specia I cases of (3.15). 
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3.2. Factorization of the parameter space. 

The parameters (~K' RK, A K), K E J(~.<), are called the 't<-parameters of the Cl 
m issing data model m*(n) (cf. [AP], §3.3)7. By means of the algorithm for 
reconstructing (j1,L:) from its 't<-parameters presented below, the mapping 

(3.16) IRlxlP'){(I) ~ X(IR[KlxM([K]x<K»xlP([K]) I K E J('t<)) 

can be shown to be a 1 ~ 1 correspondence, so the parameter space or the mode I 
m *(n) is thereby represented as the product or the parameter spaces or the linear 
regression models given by (3.13). In summary, it follows from (3.12), (3.13), and 
(3.16) that the analysis or the Cl missing data model can be reduced to the analysis 
or q == I J(<J-<) I multivariate linear regression models, as in the case of a monotone 
pattern. From this it is seen that the <J-<-parameters of (j1,L:) are identifiab le, hence 
(j1,L:) is identifiable under the restriction L: E !pcx(I). 

3.3. The reconstruction algorithm. 

We now describe the process of reconstructing (J,1,L:) from its <J-<-parameters 
((~K' RK, A K) I K E J('t<)). Under the Cl model <JTl*(n) the MLE (~, t) is obtained by 

first finding the MLE ((tK, RK, AK) I K E J(ex)) of the <K-parameters, then applying the 

reconstruction algorithm to obtain (~, t). 

The reconstruction algorithm is a direct extension of the stepwise algorithm 
described in Remark 3.6 of [AP] for reconstructing L: from its <K-parameters 
((RK, A K) I K E J(<J-<)). S imp Iy follow Remark 3.6 of [AP] with the follow ing changes: 

(i) Rep lace (3.19) of [AP] by the I ist ((~k' Rk, A k) I k= 1.· ... q). where q = I J(<J-<) I and Kk 
is abbrev i ated by k as in [AP]. 

(ii) Modify Steps 1,2.3, .. ·. k in Remark 3.6 of [AP] as follows (Step 3b is unchanged): 

7Recall that <J-< is uniquely determined by S == S('Tt). However, different patterns S 
may determine the same lattice <K, cf. the Examples in Section 4. 
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Step 1*: 

Step 2*: 

Step 3*: 

Step k*: 

L:[2> = R2L: 1 
L:[21 = A2 + R2L:<21 

Jl[21 = t2 + R2Jll 

L:[3> = R3L:<3> 
L:[31 = A3 + R3L:<3J 

Jl[31 = t3 + R3Jl<3> 
L:[3> = R3L:<3> 

L:[k> = RkL:<k> 
L:[k1 = Ak + RkL:<kl 

Jl[kl = tk + RkJl<k> 
L: [k> = RkL:<k> 

(i i i) In the discussion accompany ing these steps in [AP] rep lace express ions of the 
form IK by K, K £ <)(, and Ik by k, k = 1, "',q, and replace the symbol V b~ u. In the 
paragraph follow ing Step 2 in [AP], insert "and the subvector Jllu2 (= Jl2 here)" after 
"the submatrix 'L: 1u2 (= L:2 here)", and insert "and jJ<3> is a 5ubvector of Jllu2" after 
"L:<3> is a submatrix of L: 1u2". In the new paragraph following Step 3b in [AP]' insert 

"and the subvector JllU"'U(k-1)" after "the submatrix L: 1U"'U(k-l)", and insert "and Jlk" 
after" L: 1u ... uk ". In the paragraph immediately preceding Step k in [AP], insert "and 

Jl<k> is a subvector of JllU'''U(k-l)'' after "L: 1U"'u(k-1)'" In the final paragraph of 
Remark 3.6 of [AP], insert "and the subvector JllU"'Uk" after "the submatrix L: 1U"'Uk ", 

and insert "and JllU·"uq = Jl" after "L: 1U'''uq = L:". 
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3.4. The maximum likelihood estimator of (j1,E). 

B~ (3.12) and we II-known resu Its for the mu It ivar iate norma I I inear regress i on 

model, for each K s -j(<)·O the MLE ctK, RK. AK) exists if and only if n; ~ I K 1+ 1. Let eK 

denote the Ni( -column vector each of whose entries i's 1 InK, define 

- + 
YK = YKeK 

(3.17) ~ = ~K(nKeKeK t) 

SK = (y;-~)(y;-y+)t, 

partition the KxK matrix SK as in (3.6), and partition the K-column vector ~K 
according to (3.4). Then the MLE (tK, RK, AK) is given by 

tK ::: YrKJ- S[K>s:~>y<K> 
(3.18) 

A -1 
RK = S[K>S<K> 

AK = S[K]' 

In view of the factorizations (3.12) and (3.16), it follows that under the Cl model 
<JTl*(n), the MLE (~.f) for (j1,l:) s IRlxlP'J{(I) exists for a. e. y E E'11 if and only if 

(3.17) V K s J(<J<). 

Since / K'/ .::: / K / and ni(. ~ nK whenever K' C K and K', K £ J(<)·O. the condition (3.17) 

need be verified only for every maximal element K of the poset J(<)·O. When a MLE 
(~, i:) exists, it is unique and is explicitly obtained by applying the reconstruction 
algorithm of Section 3.3 to the family ((tK, RK• AK)/K s J(<J<)) given by (3.18). 
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4. Examples. 

Since different incomp lete data patterns S ma~ generate the same d istribu tive 
latt i ce <J-<, the fam i l~ of lattice-ordered C I mode Is cm *(n) for incomp lete 
mu It ivar iate -data arra~s is divided into equ ivalence classes indexed b~ the fam i l~ of 
all finite distributive lattice diagrams. In Examples 4.1 - 4.11 a lattice <K C J.:j(J) is 
selected, the associated Cl covariance restrictions are described. the factorization 
(3.12) == (3.15) of the likelihood function for the models m*(n) that give rise to "K 

is determ ined, the necessary and sufficient condit ion (3.17) for the existence of the 
MLE is specified. and the class of all patterns S that generate 'X is described. In 
Examp les 4.12 and 4.13. specif ic incomp lete data patterns S that appear in the 
I iterature are presented. then the latt ices 'X == 'X(S) are determ ined and the 
corresponding missing data models analyzed as above. 

Each Example is accompanied by a Figure displaying the lattice diagram for 'X. In 
these Figures. the members of the poset J(<J<) are indicated by open circles wh i le the 
remaining members of ~ are indicated by solid dots. The minimal element 52f appears 
at the left of each diagram while the maximal element I appears at the right. From 
the Figures, notice that K E J(<J-<) iff K covers exactly one other element of <J-<. i.e .. iff 
exactly one I i ne connects K with elements to its left in the latt ice diagram. 

Example 4.1. (Monotone data patterns). If <J-< == <J-<1 is an ascending chain. i.e .. 

52f == Ko C Kl C"· C Kq == I (cf. Figure 4.1) then (3.1) is trivially satisfied and IP~(J) = 
IP(I), i.e .. no Cl restrictions are imposed on l: (cf. Examples 3.1 and 3.2 of [AP]). 

Figure 4.1: The lattice <J<1' 

Here J(<J-<I) = {K 1 ... ·.Kq == I} and <Kk> = Kk- l • k = 1 ..... q. For every missing data model 

<JTl*(n) with ~(S(<fl)) = <Xl. the fundamental factorization (3.15) of the likelihood 

funct ion r therefore assumes the form 

(4.1) 
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Since I is the only maximal element of the poset J(<X 1), condition (3.17) for the 

existence of the MLE becomes simply 

( 4.2) 

The only data pattern S that generates <Xl is S = J(<J<l)' In the special case where 
1= 12"'p and Kk = 12"'k for k = 1, ...• P == q. then [Kk] = {k} and (4.1) reduces to (1.2). 0 

The remaining Examp les in this Section treat non-monotone incomp lete data 
pat terns. 

Example 4.2. (Independence of two blocks). Consider the lattice <J-< == <J<2 in Figure 
4.2 (cf. Example 3.3 in [AP]): 

Figure 4.2: The lattice <J<2' 

Here J(<J<2) = {L, M} and <L> = <M> = 0. The partitioning (3.5) and the Cl condition 
(3.2) reduce to 

( 4.3) 

( 4.4) 

respectively, so L: £ IP'HCI) iff ~ = Diag(L:L. L:M). The factorization (3.15) becomes 

(4.5) r = r(L)r(M). 

and the condition (3.17) for the existence of the MLE becomes 
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( 4.6) 

n;; == nM + n I ~ I M I + 1, 

since L and M are the maximal elements of j(<)-(2)' 

In this example, 9 c .0(1) generates <)<2 iff {L, M} c S, so there are 2 possible 

patterns S such that <)-(2 = 'K(9): 

(4.7) 9 = {L. M. I}. {L. M}. 

If I = 12, for example. the patterns 

(4.8) S={1,2,12}, {1.2} 

(cf. (1.1)) have the forms in (4.7). For both patterns, the Cl restriction (4.4) thus 

reduces to XI Jl x2 and the factorization (4.5) reduces to (= ((1)((2). For the first 

pattern in (4.8) the MLE existence condition (4.6) becomes 

while for the second pattern (4.6) reduces to nl ~2, n22:2.(8) 

If I = 123 the patterns 

(4.9) S = {12. 3, 123}, {12.3} 

(cf. the third patterns in Figures l.4a and l.4b) also generate <)<2, so (4.4) reduces to 

(x I, X2) Jl x3 and (4.5) reduces to ( = (( 12) ((3). For the first pattern in (4.9) 

cond it ion (4.6) becomes 

8 More generally. if the variates labelled" 1 and "2" actually represent multivariate 

blocks of variates of dimensions PI and P2. respectively, (cL Footnote 1) then 

condition (4.6) becomes nl+n12 2: PI+ I, n2+n122: P2+ 1 for the first pattern in (4.8) 

and nl .::: PI + 1, n2'::: P2 + 1 for the second pattern. 
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while for the second pattern (4.6) reduces to n12 .:: 3, n3 2: 2.(9) 0 

Example 4.3. (One pairwise Cl condition). Consider the lattice ~;: ~3 in Figure 
4.3 (cf. Example 3.5 in [AP]): 

L 

M 

Figure 4.3: The lattice ~3. 

Here J(~3) = {LnM, L. M}, <LnM> = 0, <L> = <M> = LnM. The partitioning (3.5) and 

the Cl condition (3.2) reduce to 

(4.10) 

(4. I I) 

respectively. The class IP'}<O) is described in (3.37) of [AP]. The factorization (3.15) 
becomes 

( 4.12) f = f(LnM)r([U/ LnM)f([MJ/ LnM), 

and the MLE ex istence cond it ion (3.17) is aga in (4.6). 

In th is examp le. S C DC I) generates ~3 iff {L. M} C S, so there are 22 = 4 possib le 

patterns S such that <)<3 = <J«S): 

9More generally (cf. Footnote 8), condition (4.6) becomes nI2+ n 123':: PI +P2+1. 

n3 +n123 2: P3+ 1 for the first pattern in (4.9) and n12'::: PI +P2+ I, n3'::: P3+ 1 for 

the second pat tern. 
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(4.13) S = {L. M}, {LnM, L, M}, {L, M, D, {LnM, L, M. n. 

If I = 123. for example. the patterns 

(4.14) S = {I 2, 1 3. 1 23 }", { 1 2. 1 3} 

(cf. the second patterns in Figures l.4a and l.4b) have the forms {L. M; D and {L. M}, 
respectively. For both patterns. the Cl restriction (4.11) thus becomes X2..11.x31x, 
and the factorization (4.12) reduces to (1.4). For the first pattern in (4.14) 
condition (4.6) becomes 

whi le for the second pattern (4.6) reduces to n12 ~ 3, n13 ~ 3. 0 

Example 4.4. (Marginal independence of two blocks). Consider the lattice ~ == ~4 

in Figure 4.4 (cf. Example 3.4 of [AP]): 

L 

M 

Figure 4.4: The latt ice ~4' 

Now J(<J-<4) = {L, M. n. <L> = <M> = 0. and <I> = LUM. The partit ioning (3.5) becomes 

( 4.15) 

and the Cl condition (3.2) again becomes (4.4), so L: £ 1P')o«(J) iff L:LuM = Diag(L:L' L:M)· 

The factorization (3.15) becomes 

(4.16) ( = ((L) ((M) ((U] I LUM), 

and the MLE existence condit ion (3.17) takes the simp le form 
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( 4.17) 

since I is the onlhi maximal element of J(<J-<4)' 

In this examp le S C D(I) generates <)<4 i f( {L. M. I} C S, so there are 2 poss ib le 
patterns S such that <J-<4 = <)«1:1). For example, if I = 123 the pattern 

(4.18) S={1.2,123} 

(cf. the fifth pattern in Figure l.4a) has the form {L. M. n. hence generates <J-<4' In 
this case (4.4) reduces to xllL x2, (4.16) reduces to (= ((1)((2)((3/12), and (4.17) 

becomes n123 ..:: 4. 0 

Example 4.5. (One marginal pairwise Cl condition). Consider the lattice <)-( == <)-(5 in 

Figure 4.5 (tf. Examp le 3.6 of [AP]): 

L 

M 

Figure 4.5: The lattice <)-(5' 

Now J(<J-<5) = {Lnr'1, Lp M, j}. <LnM> = 50. <L> = <M> = LnM, and < I> = LUM. The 

partitioning (3.5) becomes 

( 4.19) 

and the Cl condit ion (3.2) becomes (4. t I). (The class IP'}{(I) is described in (3.42) of 
[AP].) The factorization (3.15) becomes 

( 4.20) ( = ((LnM) (([LJ / LnM) (([M] / LnM) r ([I] / LUM) 

and the condition (3.17) again takes the simple form (4.17). 
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In this example S C DO) generates <K5 iff {L. M. I}.£ S. so there are 22 = 4 

poss ib le patterns S such that <K5 = <K(S). If I = 1234, for examp le. the 2 patterns 

(4.21 ) . S = {12, 13, 1234}, {12. 13, 123. 1234} 

have the forms {L, M. !} and {L, M, LUM, n, respectively, hence both generate <){5. 

Here (4.11) becomes X2JlX3/ Xl. (4.20) becomes (= ((1)((211)((311)((4/123), and 

(4.17) becomes n1234 > 5. 0 

Example 4.6. (Two pairwise Cl conditions). Consider the lattice <K6 in Figure 4.6 

(cf. Example 3.7 of [AP)): 

L L' 

M M' 

Figure 4.6: The lattice <K 6 . 

Now J(<J<6) = {LnM, L. M, L', M'}, <LnM> = $0. <L> = <M> = LnM, and <L'> = <M'> = LUM. 

The partitioning (3.5) and the Cl conditions (3.2) assume the respective forms 

( 4.22) 

(4.23) 

(The class IP'}((I) is described in Example 3.7 of [AP].) The factorization (3.15) and 
the MLE existence condition (3.17) become. respectively, 

(4.24) (= r(LnM)r([UILnM)r([MJILnM)r([L'JILUM)(([M'JILUM), 

(4.25) 

n;;, == nM' + n I:: I M' I + 1 • 
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since L' and M' are the only max ima I elements of J('K6). 

A pattern S c ,o(I) generates 'K6 iff {L, M, L', M'} c S. so there are 23 = 8 possible 
patterns 9 such that 'K6 = 'K(S). If I = 12345 two such patterns are 

( 4.26) 9 = {I 2, 1 3, 1 23, 1 234, 1 235}, { 1 2, 1 3, 1 23 4 , 1 235, 1 2345}, 

which have the forms {L, M, LUM, L', M'} and {L, M, L', MD, I}, respectively. For these 
patterns, (4.23) and (4.24) become 

r = r(1)r(2/1)r(3/1)r(4/123)r(5/123), 

respect ive ly, wh i le for the first pattern (4.25) becomes 

and for the second pattern (4.25) becomes 

n1235+n123452:5. D 

Examp le 4.7. (Independence of three b locks). Cons ider the latt ice 'K7 in Figure 4.7: 

K KUL 

M LUM 

Figure 4.7: The lattice 'K7. 

Unl ike the preteeding examples, 'X7 is a non-planar lattice. Here J(<K7) = {K, L. M}, 
and <K> = <L> = <M> = 5ZJ. The part itioning (3.5) assumes the form 
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(4.27) 

whi le (3.2) and (3.15) reduce to 

( 4.28) 

( 4.29) r = r(K)r(L)r(M), 

respectively, so 2: £ IP'){(I) iff 2: = Diag(2:K• 2:L, 2:H)' Since K, L, M are the maximal 
elements of J(<X7), (3.17) becomes 

(4.30) . 

A pattern S.£ .0(1) generates <){7 iff S contains one of the following five 
subpatterns: {K. L, M}, {K. L, KUM. LUM}. {K. M. KUL. LUM}, {L, M. KUL. KUM}, 

{KUL. KUM. LUM}; there are 36 such patterns. If I = 123. for examp le. two such 
patterns are 

(4.3 I) S = {12. 13.23. 123}. {12, 13. 23} 

(cf. the first patterns in Figures l.4a and l.4b), which have the forms {Kul, KuM. 

LUM. I} and {KUL, KUM. LUM}. respectively. with K = 1. L = 2. M = 3. For these two 
patterns (4.28) becomes Xl JL X2 JL X3 while (4.30) reduces to 

28 



Example 4.8. (Conditional independence of three blocks). Consider the lattice 'Ks in 
Figure 4.8: 

K KUL 

M LUM 

Figure 4.8: The lattice <)<8. 

Here J('K8) = {KnLnM, K, L, M}, wh i le <KnLnM> = 0, <K> = <L> = <M> = KnLnM. The 

partitioning (3.5) assumes the form 

( 4.32) 

whi le (3.2) and (3.15) reduce to 

(4.33) X[Kl.lL x[LllL X[M 1 j XKn LnM • 

( 4.34) r = r(KnLnM)r([KJj KnLnM)r([LJj KnLnM)r([MJj KnLnM), 

respectively, and (3.17) becomes (4.30). 

Again a pattern S C D(I) generates <)<8 iff S contains one of the following five 
subpatterns: {K, L, M}, {K. L. KUM, LUM}, {K. M, KUL , LUM}, {L, M, KUL, KUM}, 
{KUL, KUM, LUM}; there are 72 such subpatterns. 

The incomp lete data pattern in Figure 6.3 of Lit tie and Rub in (1987) has the form 

s = {ex 1, ex2, ex3}, 

where exn{l. 2. 3} = 0. It is readily seen that S generates the lattice <.I<s with 
K = exl, L = ex2, M =ex3. In this case the partitioning (4.32). the Cl restriction (4.33), 
the factorization (4.34), and the MLE existence condition (4.30) take the respective 
forms 
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n0<3 ~ ! O<! + 2. 0 

Example 4.9. (Independence of two blocks). Consider the lattice <Kg in Figure 4.9: 

M 

Figure 4.9: The lattice <)(g. 

Here J('Xg) = {L, M, L'J. <L> = <M> = 0, and <L'> = L. The partitioning (3.5) and the Cl 

condition (3.2) become, respectively 

( 4.35) 

( 4.36) 

a sing le independence condit ion. The factor ization (3.15) and MLE exi stence cond it ion 
(3.17) become 

(4.37) 

( 4.38) 

n+ -
L' = 

f = f(L)f(M)f([L'J! L). 

respect ive Iy. since M and L' are the maxima I elements of J('Xg). 

30 



A pattern S .£ D(I) generates <Kg iff {M, L', U c S or {M, L 0, LUM} c S; there are 

3 x 2 = 6 such patterns. If 1= 123, two such patterns are 

( 4.39) S={I,3,12,123}, {1,3,12} 

(cf. the fourth patterns in Figures l.4a and l.4b), which have the forms {L, M, LO, I} 

and {L, M, L'}, respectively. For these patterns. (4.36) becomes (Xl, X2)Jl.X3, (4.37) 

becomes f = f(l)f(2/1)f(3), while (4.38) becomes 

for the first pattern and n3 .2: 2, n12 .2: 3 for the second pattern. The pattern 

(4.40 ) S={3, 12, 13, 123} 

has the form {M, L', LUM, I}, hence also generates <Kg; in this case (4.38) assumes 

the form 

Example 4.10. (One pairwise cr condition). Consider the lattice <}{10 in Figure 

4.10: 

M 

Figure 4.10: The lattice <}{10' 

Here J(<J-< 1 0) = {LnM, L, M. L '}, <LnM> = 0 ° <L> = <M> = LnM, and <L '> = L. The 

partitioning (3.5) and cr condition (3.2) become. respectively. 

(4.41) 

( 4.42) 
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a single Cl condition. The factorization (3.15) becomes 

( 4.43) ( = (LnM)([UI LnM)([MJI LnM)(([L'JI L), 

whi le (3.17) again becomes (4.38). 

It is again seen that a pattern S c t)(I) generates <r<10 if[ {M, L', L} c S or 

{M, L', LUM} c S; there are 3 x 2 2 = 12 such patterns. 

Rubin (1987, Table 5.6, p. 190), considered the following incomplete data pattern4 

where I = 1234: 

( 4.44) S = {I, 12, 13, 123, 124, 1234}. 

Clearl~ S has the form {LnM, L, M, LUM, L', n, i.e., S = <r<1O\{0}, hence S generates 
<J-<10. Since LnM = I, (4.42), (4.43), and (4.38) become, respectively, 

( 4.45) 

(4.46) (= (1)(21 1)(31 1)(41 12), 

Condition (4.45) is the minimal Cl assumption under which the anal~sis of a model 
m*(n) with the incomplete data pattern S in (4.44) can be reduced to the anal~sis.of 
ordinary I inear regression models. However, Rubin (1987) did not discuss the 
condition (4.45) or the factorization (4.46). Instead, he remarked (bottom of p. 190) 
that if the data pattern (4.44) were reduced to 

(4.47) S' = {I, 12, 123. 124, 1234} 

(cf. Figure 1.5) b~ discarding the observations on variate 3 in block 13 of S, then 
under the Cl assumpt ion 

( 4.48) 

the factorization (1.3) obtains. 
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To relate this to our general theory, note that the data pattern S' in (4.47) 

generates the sublattice <f<1'0 in Figure 4.IOa: 

124 

1234 

123 

Figure 4.10a: The sublattice 1<1'0. 

In this case the Cl restriction (3.2) reduces to (4.48), the general factorization 
(3; 15) reduces to (1.3), whi le (3.17) becomes 

Actually, since (4.45) and (4.48) each entail only a single Cl restriction, the 

analysis of the pattern S' is no simpler than that of S. Because 1<1'0 is a sub lattice 

of <K 10 , however, condition (4.48) imposes fewer restrictions on 2: than does (4.45). 

By exam ining Figure 4.1 Oa it is also seen that a monotone incomplete data pattern 
S" can be obtained from S' either by discarding the observations on variate 3 in 
block 123 or by discarding the observations on variate 4 in block 12; under S" no 
restrictions are imposed on 2:. Of course. as suggested in Section I, loss of 
est imat ing efficiency m ight offset the benef it" of fewer covariance restrict ions. 0 

Remark. Of course, it is not usually the case that a less restrictive Cl covariance 
model is obtained when some observations are discarded from an incomplete data 
pattern. For example, if the observations on variate 2 in block 12 of the pattern S in 
(4.44) are discarded. then the resulting pattern {I. 13. 123, 124, 1234} generates 
exactly the same lattice 1<10 as did S. and hence the same Cl covariance model. In 
fact. if instead the observations on variate 1 in blocks 1 and 12 of S are discarded, 
then the resu It ing pattern {2, 13. 123. 124. 1234} generates a lattice (s im i lar to the 
lattice 1<11 below except that LnM = .0) which is strictly larger than 1<10 and which 
determines a more restrictive Cl covariance model. 0 
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Example 4.11. (Two pairwise Cl restrictions). Consider the lattice CX 11 in Figure 
4.11 (cL Example 3.8 of [AP]): 

M M' 

Figure 4.11: The lattice CX 11. 

Here J(CX jj ) = {LnM, L, M, L', M'}, while <LnM>, <L>, <M>, <L'> are as in Example 4.10 

and <M'> = LUM. The partitioning (3.5) assumes the form (4.22) , while it can be 
shown that (3.2) and (3.15) are equivalent to 

(4.49) 

( 4.50) f = f(LnM)f([UILnM)f([MJILnM)f([L'JIL)f([M'JILUM), 

respectivel~. (5ee Remark 5.1 of [AP] for other sets of Cl conditions equivalent to 
(4.49).) Since L' and M' are the maximal elements of J(CX 11 ), condition (3.17) for 

existence of the MLE becomes 

(4.51 ) 

nM' + nr ~ I M I I + 1. 

A pattern S C DO) generates CX 11 iff {M, L', M'} c S. There are 25 = 32 such 

pat terns. 

If the lattice CX11 is extended to the lattice CX1'1 in Figure 4.11a, a simpler but 

more restrictive Cl model is obtained (cL Example 3.9 of [AP]). 
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MOl 

Figure 4. I 1 a: The latt ice <)( l' 1 . 

For the Cl model determined by <K 1'1 the partitioning (3.5) again assumes the form 

(4.22) (with X[M'l replaced by X[M "l)' but (4.49) is now replaced by the single Cl 
condition 

( 4.52) 

while (4.50) and (4.51) are replaced by 

( 4.53) r = r(UiM)r([U/LnM)r([MJ/LnM)r([L']/L)r([M"J/M), 

ni:, == nl' + nl 'uM + n I.:!. / L I / + 1 
( 4.54) 

Even though the C I mode I determ ined by ~ I' 1 is more restr ictive than that determ i ned 

by ~II' its relative simplicity suggests that it might be considered for the analysis 

of incomp lete data patterns that generate ~11' 0 
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Example 4.12. Rubin(1974, p. 469, Table 1) considered the incomplete data pattern 

(4.55) S = {3, 8, 1238, 123678. 345678}, 

where 1= 12345678". The pattern S generates the lattice"<J<12 in Figure 4.12: 

345678 

3 1238 

Figure 4.12: The lattice <J<12. 

Since J(<J<12) = {3, 8, 1238,3678. 345678}, the partitioning (3.5) becomes 

(4.56) 

The Cl conditions (3.2), the likelihood factorization (3.15), and the MLE existence 
condition (3.17) determined b~ <J<12 are. respectivel~, 

( 4.57) 

(4.58) ( = (3) (8) ( 12138) (67138) (4513678), 

ni238 == nl238 + nl23678 + nl > 5 
(4.59) 

+ -
n345678 = 

since 1238 and 345678 are the maximal elements of J(<)<12)' For the incomplete data 

pattern S in (4.55) cons idered b~ Rub in. nl = O. 

From Figure 4.12 it can be seen that the Cl model determined b~ <)<12 remains 

app I icab le if incomp lete observat ions of an~ of the follow ing forms are added to the 
pattern S in (4.55), in which case (4.57), (4.58). and (4.59) remain valid: 38,3678, 
12345678 (= comp lete). 0 
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Examp le 4. 13. Anderson (1957. eqn. (14)) cons idered the incomp lete data pattern 

(4.60) S = {13. 124. 125}. 

where I = 12345 (cf. the second pattern in Figure 1.6). The pattern S generates the 
lattice <J-<13 in Figure 4.13: 

124 1245 

13 123 1235 

Figure 4.13: The lattice <J{13' 

Here J(<J-<13) = {I. 12. 13. 124. 125} and the partitioning (3.5) is simpl~ 

(4.61 ) 

The Cl conditions (3.2). the likelihood factorization (3.15). and the MLE existence 
condition (3.17) determined b~ <J{13 are. respectivel~. 

(4.62) 

(4.63) 

( 4.64) n+ -
124 = 

n+ -
125 = 

since 13. 124. and 125 are the maxima I elements of J(<J-< 13)' For the pattern S in 

(4.60) considered b~ Anderson. onl~ n13. n124. and n125 are non-zero. 
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From Figure 4.13 it can be seen that the Cl model determined by ~13 remains 
app I icab le if incomp lete observat ions of any of the follow ing forms are added to the 
incomplete data pattern S in (4.60), in which case (4.62), (4.63), and (4.64) remain 
va I id: 1. 12. 123, 1245, 1235, 12345 (= comp lete). In part icu lar, the second pattern 
in Figure 1.7 also generates the lattice <)-(13, hence, as stated at the end of Section 
1.3, the above analysis remains applicable. 0 

5. Comments. 

Under a genera I mu It ivar iate norma I miss ing data mode I men) as def ined in 
Section 2, some elements Oij of L: may be unidentifiable. hence inestimable. For 
example, if 1= 123 and S = {12.13} (cf. (4.14) of Example 4.3) then the covariance 
023 (equivalently, the correlation P23) is unidentifiable because the variates 2 and 3 
are never observed s imu Itaneous Iy. The Cl miss ing data mode I m *('Tl.) imposes 
conditional independence restrictions on L: under which the unidentifiable covariances 
are assumed to be functions of the identifiable covariances, which in turn are 
funct ions of the <)-(-parameters of L Thus, in the above examp le the Cl restr ict ion 

2.11.311 is equivalent to the relation 023 = 0210111013. Here 011,021, and 013 are 

functions of the <X-parameters 0'11. <121<11 11, and <1310'1 11, so once their ML estimates 
are obtained the ML estimate of <123 is immediately determined. It is important to 
note that the u'nidentifiable covariances and correlations are not simply set equal to 
o under the C I mode I determ ined by S (un less the 'c I restr ict ions are in fact 
independence restrictions). See Sections 3.3, 3.4, and 5 of [AP] for additional 
examp les. 

In order to carry out the likelihood analysis of the missing data model m*(TI), 
after deter m ining the incomp lete data pattern S it is necessary to determ ine the 
poset J("K) of join-irreducible elements of the lattice 'K == <)-«(9) generated by S. This 
may be carried out in a computationally straightforward manner by first generating 
"K and then determining J(<X). Since'K is distributive, <x may be generated as ~ = 
u(n(S)). where n(S) is the collection of all finite intersections of members of Sand 
u(n(S)) is the collection of all finite intersections of members of n(S). Then J("K) 
can be determ ined from the representation of 'l< as a directed graph. 
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In general, however, <r< and possibly also S may be much larger thanJ(<r<). For 

e x a m pIe, i f I = 1 2 .. · pan d S = {I, ... , p} or D ( J) \ 0. the n ex = J:) (I) sol <r< I = 2 P, W h i le 
J(<r<) = {I ... ·. p} so I J(<X) I = p. In fact, for every lattice ex C J:)(J) it is true that 
I J(<X) I ~p (cf. Graetzer (1977, ILl, Corollary 14)). Thu$ it would be desirable to 
find a po Iynom ia I t ime(p) algor ithm that determ ines J(<r<) directly from S without 
first generating <X, if such an algorithm exists.1o 

Another comb i nator ia I question of a more theoret ica I nature is the fo Ilow ing. 
Suppose that observat ions are miss ing at random from a comp lete pxn data matr ix y 
(cf. Section 2) according to a Bernoulli process. As P. n ~ 00 at appropriate rates, 
what is the limiting probability that the resulting incomplete data pattern S is 
monotone? Other variat ions of this question can be readi Iy formu lated. 

Finally, it is important to note that the results in this paper can be expressed in a 
coordinate-free way. thus allowing their application to generalized missing data 
models where some observations may be iinear combinations of the original variates. 
As a s imp le examp le, if x == (x I. x2. X3) denotes a comp lete observat ion (p = 3). then 
for some individuals in the sample only Xl +X2+X3 might be observed. Furthermore, 
the results in this paper can be extended to more general multivariate linear models 
with missing data, e.g .. MANOVAand GMANOVA, and results can be obtained for 
test ing appropr iate I inear hypotheses as we 11 as for estimat ing papameters. These 
topics will be treated in two forthcoming papers by Andersson. Marden. and Perlman 
(1989a.b) that treat invariant multivariate linear models with monotone and non
monotone missing data patterns. respectively. 

Acknow ledgement. We gratefu Ily thank Dona Id Rubin and Richard Ladner for many 
helpful suggestions and David Perlman for preparing the graphic illustrations. 

lOThere is no general inclusion relation between S and I J(<J<) I. Simple examples can 
be constructed where S = I J(<r<) I. S C I J(<X) / ' S :::> I J(<J<) /. or where none of these 
relations hold. It is true that S == J(<J<) always generates J(<J<), i.e .. <J«J(<J.<)) = <)\ 

(cf.Graetzer (1978, I I. 1. Corollary 13)). 
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