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ABSTRACT

Statistical inference for the parameters of a multivariate normal
distribution Np(p,z) based on a sample with missing observations is

straightforward when the missing data pattern is monotone (= nested),
reducing to the analysis of several normal linear regression models by
step-wise conditioning. When the missing data pattern is non-monotone,
however, such analysis is impossible. It is shown here that every
missing data pattern naturally determines a set.of lattice-ordered
conditional independence restrictions which, when imposed upon the
unknown covariance matrix £, yields a factorization of the joint
likelihood function as a product of (conditional) likelihood functions of
normal linear regression models just as in the monotone case. From
this factorization the maximum likelihood estimators of p and £ (under
the conditional independence restrictions) can be explicitly derived.
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1. Introduction.

Suppose that Xy, ---, %, represent a sample of stochastically independent random
vectors from a p-variate normal distribution N(y,£) with mean vector | and positive

definite covariance matrix £, both unknown. Each x; and u are p-dimensional column

vectors. Frequently in practice, some of the p components of one or more x; are

unobserved or missing. Thus the observed data array may assume forms such as the
following four examples, where ineach case p =2, n = 5¢

[INREE [RREE 1
22222 2 2 222 2 22

Figure 1.1.

In each array a " 1" ("2") indicates that the first (second) component of that column
vector x; is present, while a blank indicates a missing observation!.

After permuting columns and combining identical columns, it is seen that the data
arrays in Figure 1.1 determine the following four incomplete data patterns:

! o S 1
2 2 22 2

monotone monotone non-monotone non-monotone
(complete) (Z identifiable) (£ identifiable) (0o unidentifiable)

Figure 1.2.

~ Each pattern is specified by the class S of subsets of indices determined by its
columns, so the four patterns in Figure 1.2 are respectively equivalent to the four

Classes
(r.n {12}, (1,12, {1, 2,12}, {1,2)},
IMore generally, the entries 1", “2*, =+, "q", in such arrays may represent

multivariate columns of variates with every column labelled "i” having the same
dimension p;, where p;+ " +pq = p.



where " 12" denotes the subset {1, 2}, etc.

1.1. Monotone and non-monotone incomplete data patterns.

A incomplete data pattern is called monotone (= nested, hierarchical, stair-case,
etc.) if the p variates can be relabelled such that if variate i is missing in vector x;j,
then the variates i+1,---,p are also missing in x;. Equivalently, S is monotone if its
members are totally ordered by inclusion. The first two patterns in Figure 1.2 are
monotone, while the last two are non-monotone. The correlation between variates |
and 2 is unidentifiable (hence inestimable) in the fourth pattern since these two
variates are never observed simultaneously. Up to permutation of rows and columns
(i.e., relabelling of variates and samples) the four patterns in Figure 1.2 are the only

possible incomplete data patterns for bivariate data (p = 2).

For trivariate data (p = 3), however, there are 32 possible incomplete data
patterns, of which 4 are monotone and 28 are non-monotone. Some examples are

given in Figure 1.3 and 1.4a,b:

I [ 11 (N
2 2 22 22
3 3 3 3

Figure 1.3: The four monotone incomplete data patterns when p = 3.

[ 111 1 11 [
2 22 2 2 2 2 22 22
3

333 33 3 353 3

Figure 1.4a: Five non-monotone incomplete data patterns when p = 3;
complete observations present, £ identifiable.



Figure 1.4b: Four non-monotone incomplete data patterns when p = 3;
no complete observations present.

Note that £ is identifiable in the first pattern in Figure 1.4b even though no complete

observations are present, since every pair of the variates 1, 2, 3 are observed
together, whereas £ is not identifiable in the last three patterns of Figure 1.4b.

1.2. Statistical inference for missing data models.

It is well known that statistical inference for monotone missing data models is
relatively simple (cf. Anderson (1957), Bhargava (1962, 1975), Little and Rubin
(1987), Rao (1956), and many others listed in Kariya, Krishnaiah, and Rao (1983)).
Not only is (u,Z) identifiable since complete observations are present, but more
importantly, the joint likelihood function can be factored as a product of conditional
likelihood functions each having the form of an ordinary multivariate normal linear
regression model. This is accomplished by factoring the joint density function r of

the observed data array in the form
(1.2) r=r(r@|n-rp| (-1,

where (i|1:(i-1)) denotes the conditional density of all observations on variate i
given the values of all observations on variates 1,--,i-1 (also recall Footnote 1).
Furthermore, the factor r(i| 1-(i-1)) depends on (y,Z) only through the usual
regression parameters that appear in the conditional distribution of variate i given
variates 1,---,i-1, and the full parameter space of (,Z) is in 1-1 correspondence
with the product of the parameter spaces of these p sets of regression parameters.
(For i=1, the regression parameters are simply y; and £,,, the unconditional mean
and variance (or covariance matrix) of the first variate (or first block of variates).)
Rubin (1974) refers to these as p sets of "distinct” parameters.

For a monotone incomplete data pattern these factorizations of the likelihood
function and parameter space reduce the problem of maximum likelihood estimation



of (y,g) to that of estimating the parameters of several linear regression models. In
particular, this provides simple necessary and sufficient conditions in terms of the
sample size for existence and uniqueness of maximum likelihood estimates (MLE), and

also provides explicit expressions for these MLE.

For general dimension p >3, however, the vast majority of incomplete data
patterns are non-monotone, in which case the likelihood function and the parameter
space cannot be factored simply as in the monotone case and the estimation problem
cannot be reduced to a set of linear regression problems (cf. Rubin (1974) and Rubin
(1987, §5.6)). The parameter £ may or may not be identifiable, conditions for
existence and uniqueness of the MLE of (U,Z) are not expressible in convenient form2,
and explicit expressions for the MLE are not available. In practice it is usual to
apply the EM algorithm or other algorithms to approximate the MLE3 (cf. Little and
Rubin (1987, Chapter 8), Rubin (1987, §5.6)), but the EM algorithm may not converge
to an unique solution, if at all, and the resulting estimates may depend heavily upon
the initial value chosen for (u,=) (Murray (1977)). Other proposed approximate
methods may not yield positive definite estimates of £ (Hocking and Smith (1968)).
Only one proposed method, that of discarding some observations to obtain a monotone
incomplete data pattern (Rubin (1974) and Rubin (1987, pp.183-130)) yields explicit
MLE for (W,Z), but this incurs a loss of efficiency that may be substantial unless

most observations are complete.

1.3. Pairwise conditional independence models for incomplete data.

In this paper we present an alternative approach to the analysis of non-monotone
incomplete data patterns in a sample from a multivariate normal distribution. Wwe
shall show that every incomplete data pattern generates a finite distributive lattice
which in turn determines a mathematically natural set of pairwise conditional
independence (CI) conditions. When imposed upon £ to produce a restricted parameter
space, these CI conditions yield a statistical model that inherits the desirable
properties of the monotone case described above. In particular, both the likelihood

2Even in the bivariate case the likelihood function may have multiple maxima - cf.
Murray (1977).

3Sometimes without requiring that £ be identifiable.



function.and the parameter space can be factored so that the MLE of (y,Z) under the
Cl condition are obtained by solving a set of ordinary multiple linear regression
models, exactly as in the monotone case. This immediately provides simple
conditions for existence and uniqueness of the MLE of (,%) under the CI model and

explicit expressions for the MLE when it exists.

Rubin (1987, p. 190) explicitly suggested this approach for the analysis of a
simple non-monotone incomplete data pattern, namely:

NRRE
2222
33
44

Figure 1.5.

Essentially, he notes that if it is assumed that variates 3 and 4 are CI given variates
I and 2, which we express as 3114 | (1,2) following Dawid (1980), then the joint
density r of the observed data array may be factored as

(1.3) F=r()r@|NrGE[12)r4]12)

with each factor cerresponding to a standard linear regression model, whereas
without the CI assumption no such factorization is possible.

Earlier, Anderson (1957) considered the following two examples of non-monotone
incomplete data patterns:

I 11
2 22

Figure 1.6.

40ur labelling of variates is different than, but equivalent to, Rubin’s.



For the first pattern Anderson (1957) and, previously, Lord (1955) noted that the
joint likelihood function f may be factored by straightforward sequential

conditioning as follows:

(1.4) = F()FrEINrGL

but they did not relate this factorization to a Cl assumption. Clearly, however, the
factorization (1.4) is equivalent to the CI condition 243 | 1.

Although giving no explicit description of his factorization procedure, Anderson
(1857) states that "other problems of missing observations (but not all) can be
handled in this way”, including the second pattern in Figure 1.6, for which he did not
state the factorization but which is easily found by "sequential conditioning” to be

(1.5) F=r(r|nrE|nrE12)rs]12)

where again each factor is the likelihood function of a standard linear regression
model. If, however, the patterns in Figure 1.6 are replaced by the augumented

patterns

111 (AR

22 222
33 3 3
4
55
Figure 1.7.

then no factorization of the likelihood function can be obtained by Anderson's

sequential conditioning approach, even allowing relabelling of the five variates.
Indeed, without the imposition of CI conditions, no such factorizations are possible,

but the appropriate Cl conditions may not be readily apparent.

Apblication of the theory presented in Section 3 (cf. Examples 4.3 and 4.13) leads
to the following minimal sets of Cl restrictions that allow factorizations of the
likelihood function for the two incomplete data patterns in Figure 1.7:



(1.6) First pattern: 203 |
(1.7) Second pattern: 213 | 1 and 31415](1,2).

When these CI conditions are imposed on the covariance matrix &, then the
factorizations (1.4) and (1.5) regain their validity for the augmented patterns.5 In
the present paper it will be shown how the lattice structure of a general incomplete
data pattern S determines the minimal set of Cl conditions that yields factorizations

such as (1.3), (1.4), and (1.5).

1.4. Applicability and limitations of CI models.

Rubin (1987, p.191) states that "in some cases, such assumptions of conditional
independence may be perfectly reasonable” due to the nature of the statistical
experiment. Furthermore, Andersson and Periman (1988) show that the Cl
assumptions may be tested (based upon the complete observations) by standard
multivariate techniques. Even in cases where the Cl model is not deemed
appropriate, Rubin (personal communication) has noted that the MLE of (u,Z) obtained
under the Cl model may provide useful starting values for the EM algorithm or other
iterative methods for approximating the MLE under the unrestricted model.
Additionally, the explicit MLE solution obtained under the CI model enables one to
apply standard diagnostic methods to investigate the validity of the model

assumptions.

5Thus the incomplete data patterns in Figure 1.7 lead to the same CI covariance
models as the corresponding patterns in Figure 1.6, but the factorizations for

Figure 1.6 may be obtained easily by inspection whereas this is not so in Figure 1.7.
In the lattice-theoretic language of our general method (cf. Sections 3 and 4), this is
explained by the facts that the incomplete data patterns § = {12, 13} and § = {13,
124, 125} in Figure 1.6 consist solely of join-irreducible elements of the
corresponding lattices K = K(8) generated by S and that both sets J(K) of join-
irreducible elements are closed under intersection. For each of the augmented
incomplete data patterns in Figure 1.7, however, the last column is not a member of
J(K). See Examples 4.3 and 4.13 for further discussion of these patterns.



It must be noted that the lattice-ordered Cl conditions imposed by a given
incomplete data pattern may be severely restrictive. For example, the CI conditions
determined by the first missing data pattern in Figure 1.4a require that the variates
1,2,3 must be mutually independent (cf. Example 4.7). In such cases, examination of
the lattice K determined by the missing data pattern can show which partial
observations would need to be discarded in order to obtain a less restrictive Cl
model (e.g., to obtain a monotone pattern, which requires no Cl restrictions for
explicit analysis, as Rubin (1987, pp.189-190) has suggested). Of course, efficiency
considerations would be necessary to implement such a procedure. '

1.5. Outline.

The lattice-ordered CI covariance models for £ applied in this paper were first
introduced by Andersson and Perliman (1988), hereafter abbreviated as [AP]. The
basic identities (3.14) and (4.17) in [AP] will be applied in Section 3 to obtain the
fundamental factorization (3.12) of the likelihood function of the general lattice-
ordered Cl model for missing data. Although the mathematical derivations in [AP]
will not be repeated, some of the essential concepts and notation regarding finite
distributive lattices will be reviewed here, along with several examples illustrating
the applications of these concepts to the analysis of multivariate normal missing
data models. Nonetheless, some familiarity with Sections 1, 3.3, 3.4, and S of [AP]

will aid the reader of the present paper.

In Section 2 of this paper the general multivariate normal missing data model is
formally introduced and monotone and non-monotone incomplete data patterns
formally defined. In Section 3 the lattice-ordered CI model determined by an
arbitrary incomplete data pattern 8 is defined in terms of the finite distributive
lattice K = K(S) generated from S by intersections and unions, and the fundamental
factorizations (3.12), (3.15), and (3.16) of its likelihood function and parameter
space are obtained. This is then shown to yield explicit conditions for existence and
uniqueness of MLE under the CI model and explicit expressions for these MLE. Several
examples are presented in Section 4 to illustrate the general theory, while some
additional comments are given in Section S. The reader is encouraged to examine the
examples in Section 4 as early as possible in order to illuminate the general theory
which, although expressed in terms of abstract lattice-theoretic concepts, is
actually quite easy to apply to specific incomplete data patterns.



2. The general multivariate normal missing data model.

Let I be a finite index set with |I| = p, where |A| denotes the number of
elements in the set A. Let N(j1,=) denote the multivariate normal distribution on Rl

with mean p € Rl and covariance £ € P(1), the set of positive definite Ix] matrices.
Let y = (x;,-, Xp) € M(IxN) be a collection of independent random column vectors with

each xj ~ N(j1,£), where N = {1,---,n} and M(IxN) denotes the vector space of all real
IxN matrices. The general multivariate missing data model can be described as

follows.

Let O(1) denote the ring of all subsets of 1. For each j € N let Kj € O(I) denote
that subset of | such that the Kj-subvector of xj is observed while the
I\NKj-subvector of X is missing. To avoid trivialities it is assumed that Kj =z & and
u(Kjlj € N) = I; these conditions insure that no column (respectively, row) of y is

completely missing.

For each K € (1) define

Ng = {j € N|Kj=K)
= (N |K € O(1).

Then MU is an arbitrary family of disjoint and possibly empty subsets of N such that

Ng =@ and
(2.1) U(Ng|K € (1) = N
(2.2) U(K|K e (1), N = &) = 1.

For each K € O(I) let yk € M(KxN¢) denote the KxNg submatrix of y. The projection
mapping
M(IxN) = ET = X(M(KxNg) | K € (1))

(2.3)
y - gﬂ:(uKlKgD(l))



sends the complete data matrix y to the incomplete data array y™ actually observed,
while the remaining entries of y are missing.

For (u,2) € RIxP(1), the distribution of y™ induced by the projection (2.3) is the
multivariate normal distribution NT(y,£) on ET with density function f given by

(2.4) f= ﬂ((detZK)‘”K/Zxexp{-tr(z;](gK-pK)(gK—pK)t)/z}IK e 0(1),

where ng =|Ng| 20, £ € P(K) is the KxK submatrix of £, and pk £ M(KxNy) is the KxNg
matrix with each column equal to gg, the K-subcolumn of Q. The general
multivariate normal missing data model M(M) with observation space ET and

parameter space RIxP(I) is defined to be the family

(2.5) M) = (NW(p,2) | (1,2) € RIXP(D).

2.1. The incomplete data pattern.

The class
S = 8(N) = {K|K € (), Ny = &)
of subsets of | specifies the collection of partially observed column vectors that
actually occur (with repetition) in y™. The classes S corresponding to the

incomplete data patterns in Figure 1.2 are exhibited in (1.1). As additional
examples, the classes S corresponding to the patterns in Figure 1.6 are

(2.6) {12, 13}, {13, 124, 125},

while the classes S corresponding to the patterns in Figure 1.7 are

(2.7) {12, 13, 123}, {13, 124, 125, 1235}

Thus we may identify § with its corresponding pattern and refer to 8§ = S(T) as the
incomplete data pattern determined by M. Note that condition (2.2) may then be

rewritten.as

10



(2.8) U(K|K e 8)=1.

The parameter (y,£) is identifiable in the model M(M) if the mapping (u,=) -

NT(p,s) from the parameter space RIxP(I) to the set of normal distributions on ET is
I-1. Clearly (4,z) is identifiable if | € 8, i.e., whenever at least one column of Y is

completely observed. More generally, it can be readily seen that (u,5) is
identifiable in M(M) if and only if

(2.9) U(KxK |K € §) = I,

i.e., if and only if every pair of the p variates represented in N(l,Z) occur together in
at least one column of the observation matrix.

The incomplete data pattern § is called monotone (= nested, etc.) if § is totally

ordered under inclusion. In this case (2.8) implies that | € S, hence by (2.9) the
parameter (y,Z) is identifiable. Furthermore, the necessary and sufficient condition

for existence and uniqueness of the MLE of (y,£) is simply n; > p+1 (cf. (4.2)), which
reduces to the classical condition n > p+1 when no data are missing. As pointed out
in Section 1, the statistical analysis of a normal model with a monotone data pattern

reduces to the analysis of several ordinary linear regression models.

Each pattern § in (2.6) and (2.7) is non-monotone, however, as are the vast
majority of incomplete data patterns. The CI models that simplify the analysis of

such patterns are described in the following section.

11



3. The lattice-ordered conditional independence model
determined by an incomplete data pattern.

As defined in Section 2, an incomplete data pattern 8 = S(M) is an arbitrary
subclass of O(D\{@}. The pattern € uniquely determines the ring K = K(S) < (1)
defined to be the smallest subring of O(I) that contains § and &, i.e., ¥ is generated
from § and @ by the set operations U and Nn. Note that under these operations K is a

finite distributive lattice such that &, | € K (cf. (2.8)).

The set Py(1) € P(I) is defined in [AP] as the set of all covariance matrices £ such

that

(3.1) X~ N(LE) 2 XL %y | XLan V LMe %K,

i.e., X and xy are Cl given X v ., Where x¢ denotes the K-subcolumn of x for K € .
If LAM = &, (3.1) reduces to X Xy . Note that (3.1) is ordinarily written in the form

(3.2) XL Lar) L Xeam | XLor V LMe K.

Some of these Cl conditions are trivial'lg sa;isfied, e.g., whenever L € M (cf. Remark
5.1 of [APD): in particular, if ¥ is a chain (cf. Example 4.1) then P(D) = P(1), i.e., £
is unrestricted. At the other extreme, if ¥ = D(I) then under Py(l) all components of

x are mutually independent i.e., £ = Diag(cyy, -+, Opp).

The lattice-ordered conditional independence model M*(N) is obtained from
M(M) by restricting the parameter space from RIxP(I) to RIxPy(l), i.e., by imposing

the CI restrictions6(3.1) = (3.2) on =.
3.1. Factorization of the likelihood function.

Because N, = @ for L € D(I\¥K, the probability density function (2.4) of y™ may be

rewritten as

6Because K(8) = S when § is a chain (= totally ordered), and because Py(1) = P(1)
whenever % is a chain, it follows that M*(M) = M(N) whenever § = S(MN) is

monotone.

12



(3.3) f=T(|dets | "/2|L g ‘}{)xexp{-Z(tr(Z;l(gt-pt)(gt—pt)t)/z L€ %))

To show that (3.3) can be factored as a product of density functions of normal linear
regression models, we shall apply the basic decomposition formulas (3.14) and (4.17)
of [AP]. Their application in (3.3) requires that for each L € K, the matrices £, Y,
and 1, be partitioned according to the join-irreducible elements J(X) of the lattice

K. This partitioning process, introduced in [AP], §3.3, is now reviewed.
For K € ¥, K = &, define
<K> = U(K' € K|K' € K),
[K] := K\ <K>,

hence

(3.4) K =<K>UI[K]

where U indicates that the union is disjoint. Let J(X) denote the poset of non-null
join-irreducible elements of the finite distributive lattice K (cf. [AP], §2), i.e.,

JIK) = {K € ®|K = &, <K> CKl.

={K e K|K =2, K] =g}.

By Remarks 2.1 and 2.2 of [AP],

I = U(K]| K € J(K)),

which decomposition determines the partitioning

(3.5) X = (Xp| K € J(KD), x € Rl

For every K € J(%) partition = according to (3.4) as

13



Z<K> Z<K] o
(36) ZK = )
Ek> ZK]

where Sos is <K>x<K>, g is [KIX<K>, £ = (E-)t and g is [KIx[K]. Furthermore,

define
-1
ZK) = ZKp<k> T ZK] T ZK>Z <k>2<K]

-1
and let £y denote (Sy)7". Lastly, for L & % with K € L define y € M(KxNL) to be

the KxN_ submatrix of yt, and partition yg according to (3.4) as

L
Yk >

L =
gg = L
YTk

We now apply (4.17) of [AP] with (I, ¥, £) replaced by (L, ¥, £.), where ¥ is the
sublattice of K defined as K = {L' ¢ ‘K]L' CL}). Since

J(K) = JOKINK,
)k = Sk K € JOKL),
it follows from (4.17) of [AP] that
(3.7) (| dets | "/2|L £ K)
= TI(TT( | detZy. | /2| K € J(KD)|L € K)

= TI(TT(| detZy. | /2| K € J(K), K S L)L € K)

= TI(M(| detEy | /2 L e K, L 2 K|K € J(KD)

= T1(| det=y. | /2| K € J(K)),

14



where

(3.8) g = Z(n|Le K L2K), K e J(K).

Next, apply (3.14) of [AP] with (I, %, £, x) replaced by (L, .. .. yt-pL) to obtain

(3.9)  S(tr(s, (- pb(g-pY L € ®)

L

= Z(Z(tr(z[,gl.(uh(]-p[LK]—Z[K>Z;L>(Q<K>—p5K>))(---)t)[ KeJXK)L,KeL|Le®

= Z(E(tr (3 (8o g~ TS, B DD L e K, L 2K)[K € 0K

= Z(r(E g (S (g~ Mg~ ST (Uhy, - L DCID[LE K, L 2K K € JK),

For K € J(%), define
Ng = OINL|L € %, L 2K),

let yg € M(KxN) be the matrix whose KxN_ submatrix is g,ﬁ forLe ¥, L2K, and

partition yg according to (3.4) as
» + U:K>
(3 | O) . UK = .
Yk
Then the final expression in (3.9) can be rewritten as

(3.11) Z(tr(z[—;].,(g{m-p{K,—z[K>z;L(gip—pzp))(---)t)|K e J(K)).

By combining (3.7) and (3.11) we conclude that the density function f given by
(3.3) of the CI model M*(N) has the following fundamental factorization:

15



(3.12)
+ -1 -1 :
r = TI(| detSp. | K/ 2xexp{-tr (S (Uiky~ Hik)~ Stko S x> Uik = B> ))()8/2 | KEI(K)).

The K-th factor in (3.12) is the conditional density of yj, given yZ. , from which it

is seen that
+ + + -1 + + :
(3.13) Uk | Y<k> ~ N(}i[K]*”Z[K>Z<K>(Q<K>_JJ<K>)- D'ag(Z[K]'))
= N(&g + Rgy<> . Diag(Ag)),
where
+ + -1 +
(:K = ,U[K]_Z[K>Z<K>}J<K>
. _—
(3.14) Rk = Zi>Z<k>

Ny = Zkg
Thus the K-th factor in (3.12) is the likelihood function of a multivariate normal
linear regression model with regression parameters &x. Rx and covariance matrix /g,

where
| -1
Sk = M1~ EK>Z k> Hek>

If we let f([K]l <K>) denote the K-th factor in the density function f given by
(3.12), then (3.12) assumes the abbreviated form

(3.15) f=T(r (K] <K>)|K € J(K)).

Since [K] = K when <k> = @ we write f(K) for r([K]| 2). Equations (1.2) - (1.5) are
special cases of (3.15).

16



3.2. Factorization of the parameter space.

The parameters (&, Ry, Ag), K € J(X), are called the K-parameters of the CI

missing data model M*(M) (cf. [AP], §3.3)7. By means of the algorithm for
reconstructing (U,E) from its K-parameters presented below, the mapping

RixPy(1) - X(RKIXM([KIx<K>)xP([K])|K € J(K))

(3.16)

(1,2) = (. Re. A K g JOK)
can be shown to be a 1-1 correspondence, so the parameter space of the model
M*(N) is thereby represented as the product of the parameter spaces of the linear

regression models given by (3.13). In summary, it follows from (3.12), (3.13), and
(3.18) that the analysis of the CI missing data model can be reduced to the analysis

of q = ]J(?{)l multivariate linear regression models, as in the case of a monotone
pattern. From this it is seen that the K-parameters of (i,%) are identifiable, hence

(W,%) is identifiable under the restriction £ € Py(l).

3.3. The reconstruction algorithm.

We now describe the process of reconstructing (y1,2) from its K-parameters
(., Ry, Ag)| K g JIK)). Under the CI model M*(N) the MLE (fi, £) is obtained by
first finding the MLE ((&x, R¢, Ag)|K € J(K)) of the K-parameters, then applying the

reconstruction algorithm to obtain (Ji, £).

The reconstruction algorithm is a direct extension of the stepwise algorithm
described in Remark 3.6 of [AP] for reconstructing £ from its ¥-parameters
((Rg, Ag)| K g J(K)). Simply follow Remark 3.6 of [AP] with the following changes:

(i) Replace (3.19) of [AP] by the list (&, Re, Ay)|k=1,-.q), where q = | J(K)| and K
is abbreviated by k as in [AP].

(i1) Modify Steps 1,2, 3,, k in Remark 3.6 of [AP] as follows (Step 3b is unchanged):

"Recall that ¥ is uniquely determined by S = S(M). However, different patterns S
may determine the same lattice ¥, cf. the Examples in Section 4.
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Step 1*: Z] :/\]

py =&,
Step 2*: Z[2> = Rzzl
Z2) = N+ RaZeg
Hiz) = &2+ Rojy
SteD 3*: Z[3> = R3Z<3>
Zi3) = Nz *+ RsZay
Hizp = &3 + R3llez>
Zzy = R3Zeay
Step k*: : Zik> = BeZe>

k) = N+ Ry
Hig = &k * Relay>
Ziky = RkZ<ks

(iii) In the discussion accompanying these steps in [AP] replace expressions of the
form Ig by K, K € ¥, and I, by k, k=1,",q, and replace the symbol V by U. In the

paragraph following Step 2 in [AP], insert "and the subvector {,up (= U, here)” after
"the submatrix £,,, (= 22 here)”, and insert "and i3> iS @ subvector of ;" after
"Z<3> 1S @ submatrix of 5", In the new paragraph following Step 3b in [AP], insert
"and the subvector Hyy..yk-1)" after "the submatrix Zyy...uk-1", and insert "and "
after " £,u..u”. In the paragraph immediately preceding Step k in [AP], insert "and
H<> is @ subvector of Hyy..ui-1)" after "Zyy..yk-1)”- In the final paragraph of
Remark 3.6 of [AP], insert "and the subvector p,,...g" after “the submatrix £,y..uk”

and insert "and flyy..uq = W” after "Syy..uq = "

18



3.4. The maximum likelihood estimator of (u,Z).

By (3.12) and well-known results for the multivariate normal linear regression
model, for each K € J(K) the MLE (&, Ry, Ag) exists if and only if ng > [K[+1. Let &
denote the Ny -column vector each of whose entries is 1/ng, define

Uk = Uk
(3.17) ' Uk = Ug(ngegegt)

Sk = (Ye - YRk -yt

partition the KxK matrix Sy as in (3.6), and partition the K-column vector yy
according to (3.4). Then the MLE (&, Ry, Ag) is given by

- -1 —
£ = Yik1~ Sik>S<k>Y<k>

(3.18) Rk = Si>S<¢>

In view of the factorizations (3.12) and (3.16), it follows that under the CI model
M*(M), the MLE (1,2) for (,£) € RIxPy(1) exists for a. e.y € EN if and only if
(3.17) g > [K|[+1 VK € J(K).
Since |[K'| = [K| and ng. 2 ng whenever K* € K and K*, K € J(%), the condition (3.17)

need be verified only for every maximal element K of the poset J(¥). When a MLE
(11, %) exists, it is unique and is explicitly obtained by applying the reconstruction

algorithm of Section 3.3 to the family (€., R, Ax)|K € J(K)) given by (3.18).
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4. Examples.

Since different incomplete data patterns § may generate the same distributive
lattice K, the family of lattice-ordered CI models M*(MN) for incomplete
multivariate -data arrays is divided into equivalence classes indexed by the family of
all finite distributive lattice diagrams. In Examples 4.1 - 4.11 a lattice K < O(1) is
selected, the associated CIl covariance restrictions are described, the factorization
(3.12) = (3.15) of the likelihood function for the models M*(M) that give rise to
is determined, the necessary and sufficient condition (3.17) for the existence of the
MLE is specified, and the class of all patterns S that generate K is described. In
Examples 4.12 and 4.13, specific incomplete data patterns S that appear in the
literature are presented, then the lattices K = K(S) are determined and the

corresponding missing data models analyzed as above.

Each Example is accompanied by a Figure displaying the lattice diagram for K. In
these Figures, the members of the poset J(%) are indicated by open circles while the
remaining members of ¥ are indicated by solid dots. The minimal element & appears
at the left of each diagram while the maximal element | appears at the right. From
the Figures, notice that K € J(K) iff K covers exactly one other element of X, i.e., iff
exactly one line connects K with elements to its left in the lattice diagram.

Example 4.1. (Monotone data patterns). If K = K, is an ascending chain, i.e.,
@ =Ky CKyC " CKq=1(cf. Figure 4.1) then (3.1) is trivially satisfied and Py(1) =

P(I), i.e., no Cl restrictions are imposed on £ (cf. Examples 3.1 and 3.2 of [APD).

& e—————p———0— 0 0 6 —o——=0 |

K, K, Kq-1

Figure 4.1: The lattice ;.

Here J(%,) = {Ky,,Kq = 1} and <K\ > =Ky, k = 1,°,q. For every missing data model
M*(N) with K(S(N)) = K,, the fundamental factorization (3.15) of the likelihood
function 7 therefore assumes the form

(4.1) r=rK)rAK[K = (] Kgop)

20



Since 1 is the only maximal element of the poset J(%,), condition (3.17) for the

existence of the MLE becomes simply
(4.2) n2p+l.

The only data pattern S that generates ¥, is § = J(%;). In the special case where
[=12pand K =12k for k=1,-,p=q, then [K,]={k} and (4.1) reduces to (1.2). O

The remaining Examples in this Section treat non-monotone incomplete data

patterns.

Example 4.2. (Independence of two blocks). Consider the lattice ¥ = %, in Figure

4.2 (cf. Example 3.3 in [AP]):
QQ 1

M

Figure 4.2: The lattice K.

Here J(K,) = {L, M} and <L> = <M> = @. The partitioning (3.5) and the CI condition
(3.2) reduce to

(4.3) X = (X, Xm)

(4.4) XU Xy,

respectively, so £ € Py(I) iff £ = Diag(g,, &4). The factorization (3.15) becomes
(4.5) r=riL)rm,

and the condition (3.17) for the existence of the MLE becomes
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nfEn+n 2L+

(4.6)
np+np 2 |M|+1,

M
since L and M are the maximal elements of J(%,).

In this example, S € O(1) generates K, iff {L, M} £ S, so there are 2 possible
patterns S such that ¥, = K(S):

s={L M1, {L, M.

(4.7)
If 1 =12, for example, the patterns
(4.8) gs={1,2,12), {1,2)

(cf. (1.1)) have the forms in (4.7). For both patterns, the CI restriction (4.4) thus
reduces to x; IL X and the factorization (4.5) reduces to £ = f(1)7(2). For the first

pattern in (4.8) the MLE existence condition (4.6) becomes

M*+Nig 22, N+ 22,
while for the second pattern (4.6) reduces ton,; 22, n, 22.6)

If I =123 the patterns

(4.9) s ={12,3, 123}, {12, 3}

(cf. the third patterns in Figures 1.4a and 1.4b) also generate ,, so (4.4) reduces to
(%), ®2) 1L Xz and (4.5) reduces to f = F(12)f(3). For the first pattern in (4.9)

condition (4.6) becomes

8 More generally, if the variates labelled "1 and "2” actually represent multivariate
blocks of variates of dimensions p; and po, respectively, (cf. Footnote 1) then
condition (4.6) becomes ny+Nny, 2 py+1, Ny+nyp 2 pp+1 for the first pattern in (4.8)
andny>pi+1, ny>py+1 for the second pattern.

22



Nig*Nigz 23, N3*Nizz 22,
while for the second pattern (4.6) reduces ton;, 23, nz 22.0 0O

Example 4.3. (One pairwise CI condition). Consider the lattice % = 3 in Figure
4.3 (cf. Example 3.5 in [AP]):

LM
M

Figure 4.3: The lattice Hs.

Here J(¥z) = {LNM, L, M}, <LNM> = @, <> = <M> = LNM. The partitioning (3.5) and
the Cl condition (3.2) reduce to
(4.10) % = (Reams XLy Ximp)

(4.11) X[L].lLXm]Ixmn '

respectively. The class Py(1) is described in (3.37) of [AP]. The factorization (3.15) -

becomes

(4.12) = rLom) ALl Lom) (M| Lam),

and the MLE existence condition (3.17) is again (4.6).

In this example, S € O(I) generates Kz iff {L, M} € S, so there are 22 = 4 possible
patterns S such that ¥z = K(S):

9 More generally (cf. Footnote 8), condition (4.6) becomes ny2+N123 > p1+p2+1,
N3 +ny23 > pz+1 for the first pattern in(4.9) and nyp 2 py+p2+1, N3 > p3+1 for

the second pattern.
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(4.13) s={Lnm, {tom, LMy AL, M 0, {Lom, LM, 1.
If 1 =123, for example, the patterns
(4.14) s ={12,13, 123y, {12, 13}

(cf. the second patterns in Figures 1.4a and 1.4b) have the forms {L, M, 1} and {L, M},
respectively. For both patterns, the CI restriction (4.11) thus becomes X, Il X3 [ X

and the factorization (4.12) reduces to (1.4). For the first pattern in (4.14)
condition (4.6) becomes

Niz* N2z 23, N3+ Nz 23,
while for the second pattern (4.6) reduces ton;, >3, ny3 >23. O

Example 4.4. (Marginal independence of two blocks). Consider the lattice K = Kq4
in Figure 4.4 (cf. Example 3.4 of [AP]):

LUM

™

Figure 4.4: The lattice K.

Now J(K4) = {L, M, I}, <L> = <M> = &, and <[> = LUM. The partitioning (3.5) becomes

(4.15) X = (XL, Xv» X))

and the CI condition (3.2) again becomes (4.4), so £ € Py(D) iff &y = Diag(g,, Zy).
The factorization (3.15) becomes

(4.16) r=r)renrqnfLom,

and the MLE existence condition (3.17) takes the simple form

24



(4.17) np>p+l
since | is the only maximal element of J(K4).

In this example § € O(I) generates K4 iff {L, M, I} € S, s0 there are 2 possible
patterns § such that K4 = K(S). For example, if [ = 123 the pattern

(4.18) s={1,2, 123}

(cf. the fifth pattern in Figure 1.4a) has the form {L, M, I}, hence generates ¥4. In
this case (4.4) reduces to x; I Xz, (4.16) reduces to £ = r(1)7(2)f (3] 12), and (4.17)

becomes N,z > 4. O

Example 4.5. (One marginal pairwise CI condition). Consider the lattice ¥ = s in
Figure 4.5 (cf. Example 3.6 of [AP]):

LNM LUM

M
Figure 4.5 The lattice Ks.
Now J(Ks) = {LnM, L, M, 1}, <L;1M> =g, <[> = <M>=LnM, and <[> = LUM. The
partitioning (3.5) becomes
(4.19) X = (KLam . %L1 Xe1e %)

and the CI condition (3.2) becomes (4.11). (The class Py(l) is described in (3.42) of
[AP].) The factorization (3.15) becomes

(4.20) f= rLam AL Loy (Ml Lam) £ (o | Lom)

and the condition (3.17) again takes the simple form (4.17).
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In this example S € O(I) generates Ks iff {L, M, I} £ S, so there are 22 = 4
possible patterns S such that ¥s = K(S). If | = 1234, for example, the 2 patterns

(4.21) .8 ={12,13, 1234), {12, 13, 123, 1234)

have the forms {L, M, I} and {L, M, LUM, I}, respectively, hence both generate Ks.
Here (4.11) becomes Xy IL X3 | Xy, (4.20) becomes 1 = r(1)F (2| 1)F (3| 1)r(4]123), and

(4.17) becomes Nyo34 2 5. O

Example 4.6. (Two pairwise CI conditions). Consider the lattice g in Figure 4.6
(cf. Example 3.7 of [AP]):

LNM RV,

Figure 4.6: The lattice ¥g.

Now J(Hg) = {LnM, L, M, L', M'}, <LNM> = &, <> = <M> = L.NM, and <L'> = <M'> = LUM.
The partitioning (3.5) and the Cl conditions (3.2) assume the respective forms

(4.22) X = (XLaMs X1 %M1 XL X s

(4.23) Xy L% | ®eam s Xoen X | %o -

(The class P(1) is described in Example 3.7 of [AP].) The factorization (3.15) and
the MLE existence condition (3.17) become, respectively,

(4.24) fo= rnm AL Lom ] Lam e Lom) r M| Lo,

nGC=nge+n > L]+

(4.25)
Nye = Mot N2 [ MY+,
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since L' and M* are the only maximal elements of J(Kg).

A pattern 8 € O(1) generates Kg iff {L, M, L', M'} £ 8, so there are 23 = 8 possible
patterns § such that g = K(S). If | = 12345 two such patterns are

(4.26) g=1{12, 13, 123, 1234, 1235}, {12, 13, 1234, 1235, 12345},

which have the forms {L, M, LUM, L', M'} and {L, M, L', M', 1}, respectively. For these
patterns, (4.23) and (4.24) become

Kol X3 | X, RallXs| (%), Xp, X3),
=r()r@| DG 1rE123)r(s|123),
respectively, while for the first pattern (4.25) becomes
Ni234 25, Ni23s 25
and for the second pattern (4.25) becomes
Ni234*N123452 5, Ny23s*Ni2345 25. O

Example 4.7. (Independence of three blocks). Consider the lattice - in Figure 4.7:

Figure 4.7: The lattice 5.

Unlike the preceeding examples, K- is a non-planar lattice. Here J(¥7) = {K, L, M},
and <K> = <L> = <M> = &, The partitioning (3.5) assumes the form
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(4.27) | K= (e, XLy Xu),
while (3.2) and (3.15) reduce to

(4.28) X AL XL UL Xy
f=rKrwre,

(4.29)

respectively, so £ € Py(I) iff £ = Diag(Zk, £, Z4). . Since K, L, M are the maximal

elements of J(%7), (3.17) becomes

N+ NgoL * Ngom * N2 [K| + 1

1]

Nk

=t ngot Moo N2 L]+

=+
1l

(4.30) n
Mf =M+ Ngow * Do * NP2 | M)+

A pattern S € O(I) generates ¥, iff S contains one of the following five
subpatterns: {K, L, M}, {K, L, KUM, LUM}, {K, M, KUL, LUM}, {L, M, KUL, KUM},
{KUL, KUM, LUM}; there are 36 such patterns. If I = 123, for example, two such

patterns are

(4.31) S={12,13,23, 123}, {12, 13, 23}

(cf. the first patterns in Figures 1.4a and 1.4b), which have the forms {KuL, KUM,
LUM, I} and {KUL, KUM, LUM}, respectively, withK=1, L=2, M=3. For these two
patterns (4.28) becomes X; 1L X, IL X3 while (4.30) reduces to

Nio + NP 23, Nz + NP 23, Nz +Np>3. 0
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Example 4.8. (Conditional independence of three blocks). Consider the lattice g in

Figure 4.8:

Figure 4.8: The lattice Kg.

Here J(Kg) = {KNLNM, K, L, M}, while <KNLNM> = &, <K> = <[> = <M> = KNLNM. The

partitioning (3.5) assumes the form
(4.32) X = (XkaLam s XKl» X1+ XM
while (3.2) and (3.15) reduce to

(4.33) Rk AL XLy AL X I.xKnan -

(4.34) r = r(KaLAM) (KT KaLnM) 7 (LT[ KnLaM) £ ((MT] KnLnmM),

respectively, and (3.17) becomes (4.30).

Again a pattern § € O(1) generates Kg iff S contains one of the following five
subpatterns: {K, L, M}, {K, L, KuM, LUM}, {K, M, KUL, LUM}, {L, M, KUL, KUM},
{KUL, KUM, LUM}; there are 72 such subpatterns.

The incomplete data pattern in Figure 6.3 of Little and Rubin (1987) has the form
S = {x!, x2, 3},

where «N {1, 2, 3} = &. It is readily seen that S generates the lattice ¥g with
K=xl, L =x2, M=x3. In this case the partitioning (4.32), the CI restriction (4.33),
the factorization (4.34), and the MLE existence condition (4.30) take the respective

forms
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X = (Xer X1, %o, X3)
K1 L %o L X3 | %o
r =1 r(]edr(2|e)r (3| ).
Nt 2 || *2, nep2|x|+2, ng2|x|+2. O

Example 4.9. (Independence of two blocks). Consider the lattice g in Figure 4.9:

Figure 4.9: The lattice g.
Here J(Xg) = {L, M, L'}, <L> = <M> = &, and <L'> = L. The partitioning (3.5) and the Cl
condition (3.2) become, respectively
(4.35) % = (X, %M X))
(4.36) ' (%, x[L-l)JL,xn .

a single independence condition. The factorization (3.15) and MLE existence condition
(3.17) become .

(4.37) f=rL)renrae|L,

Ny =My * Mooy * NP2 [ M+

(4.38)
N+ np > L+,

+
ne:

respectively, since M and L' are the maximal elements of J(Kg).
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A pattern S8 C O(I) generates Kq iff {M, L', L} €8 or {M, L', LUM} C S: there are
3x2 =6 such patterns. If [ = 123, two such patterns are
(4.39) s={1,3,12,123}), {1,3,12}

(cf. the fourth patterns in Figures 1.4a and 1.4b), which have the forms {L, M, L', I}
and {L, M, L'}, respectively. For these patterns, (4.36) becomes (X, Xp) L%z, (4.37)

becomes 7 = F(1)(2|1)f (3), while (4.38) becomes

N3+ Nigz 22, Nz *+Njgz 23
for the first pattern and nz > 2, n;, > 3 for the second pattern. The pattern
(4.40) - g ={3,12, 13, 123}
has the form {M, L', LUM, 1}, hence also generates g; in this case (4.38) assumes
the form

N3+ M3z * N2z 22, Nig+Njpz 23. 0

Example 4.10. (One pairwise CI condition). Consider the lattice ¥;q in Figure
4.10:

LAM
M

Figure 4.10: The lattice ¥o.

Here J(K,qg) = {LNM, L, M, L'}, <LNM> = &, <[> = <M> = LNM, and <L'> = L. The
partitioning (3.5) and CI condition (3.2) become, respectively,

(4.41) X = (Xeam» XLl XM]» X1

(4.42) (e %D L emy | Xeam
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a single CI condition. The factorization (3.15) becomes

(4.43) f= ALl Lam) ram| Lam e L,

while (3.17) again becomes (4.38).

It is again seen that a pattern S8 € O(I) generates Ko iff {M, L', L} c Sor
{M, L', LUM} C S: there are 3x22 = 12 such patterns.

Rubin (1987, Table 5.6, p. 190), considered the following incomplete data pattern?
where | = 1234: :

(4.44) s={1,12,13, 123, 124, 1234}.

Clearly S has the form {LnM, L, M, LUM, L', 1}, i.e., 8 = K ;o\M@}, hence S generates
Kio0. Since LNM = 1, (4.42), (4.43), and (4.38) become, respectively,

(4.45) (X2, X4) IL X3 l X1

(4.46) r=rr@lnrGnrEf2),

Niz + N2z * Nygzq 23, Ni24 * Nigz4 2 4.

Condition (4.45) is the minimal CI assumption under which the analysis of a model
M*(N) with the incomplete data pattern S in (4.44) can be reduced to the analysis of
ordinary linear regression models. However, Rubin (1987) did not discuss the
condition (4.45) or the factorization (4.46). Instead, he remarked (bottom of p. 190)

that if the data pattern (4.44) were reduced to

(4.47) ' =A{1,12, 123, 124, 1234}

(cf. Figure 1.5) by discarding the observations on variate 3 in block 13 of S, then
under the CI assumption

(4.48) | X3 1L X4 | (X1,%2)

the factorization (1.3) obtains.
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To relate this to our general theory, note that the data pattern §' in (4.47)
generates the sublattice Ko in Figure 4.10a:

124
1] 1234

123

Figure 4.10a: The sublattice g .

In this case the Cl restriction (3.2) reduces to (4.48), the general factorization
(3:15) reduces to (1.3), while (3.17) becomes

N2z * Nigzg 24, Niygg * Nigzg 2 4.

Actually, since (4.45) and (4.48) each entail only a single Cl restriction, the
analysis of the pattern S' is no simpler than that of S. Because g is a sublattice
of K. however, condition (4.48) imposes fewer restrictions on £ than does (4.45).

By examining Figure 4.10a it is also seen that a monotone incomplete data pattern
S'' can be obtained from S' either by discarding the observations on variate 3 in
block 123 or by discarding the observations on variate 4 in block 12; under ' no

restrictions are imposed on £. Of course, as suggested in Section 1, loss of .
estimating efficiency might offset the benefit of fewer covariance restrictions. O

Remark. Of course, it is not usually the case that a less restrictive Cl covariance
model is obtained when some observations are discarded from an incomplete data
pattern. For example, if the observations on variate 2 in block 12 of the pattern S in

(4.44) are discarded, then the resulting pattern {1, 13, 123, 124, 1234} generates
exactly the same lattice ¥,g as did S, and hence the same CI covariance model. In

fact, if instead the observations on variate 1| in blocks 1 and 12 of S are discarded,
then the resulting pattern {2, 13, 123, 124, 1234} generates a lattice (similar to the
lattice K| below except that LnM = &) which is strictly larger than g and which

determines a more restrictive Cl covariance model. O
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Example 4.11. (Two pairwise Cl restrictions). Consider the lattice %, in Figure

4.11 (cf. Example 3.8 of [AP]):

L L'UM
LAM

M M’
Figure 4.11: The lattice ¥,.

Here J(¥;;) = {LnM, L, M, L', M'}, while <LNM>, <L>, <M>, <L'> are as in Example 4.10
and <M'> = LUM. The partitioning (3.5) assumes the form (4.22) , while it can be
shown that (3.2) and (3.15) are equivalent to

(4.49) (eye XD Lxen [Xeam . X KRy X)) | %

(4.50) = FLAM) FALT| LAM) F (M| LaM) FAL T L) FCMeT L),

respectively. (See Remark 5.1 of [AP] for other sets of Cl conditions equivalent to
(4.49).) Since L' and M* are the maximal elements of J(%,,), condition (3.17) for

existence of the MLE becomes

nC=ne+ ooyt np > L]+

(4.51)
Mo *+ Np > |1+ 1.

Ny

A pattern 8 € O(1) generates K, iff {M, L', M'} £ S. There are 2° = 32 such

patterns.

If the lattice ¥, is extended to the lattice K, in Figure 4.11a, a simpler but
more restrictive CI model is obtained (cf. Example 3.9 of [API).
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Figure 4.11a: The lattice %, .

For the Cl model determined by Ky the partitioning (3.5) again assumes the form
(4.22) (with %y replaced by xq 1), but (4.49) is now replaced by the single CI

condition

(4.52) “ (%10 %)) LCmpe X)) | Keam

while (4.50) and (4.51) are replaced by

(4.53) = (LM rALT|LaM) FAMI LM FaLTfLrame1| M,

NG = Ne* Mooy * NP2 L]+

(4.54)

N = Mo * Moy * NP2 [ M0+ 1L

Even though the CI model determined by |, is more restrictive than that determined
by ¥,,, its relative simplicity suggests that it might be considered for the analysis

of incomplete data patterns that generate ¥;,. O
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Example 4.12. Rubin (1974, p. 469, Table 1) considered the incomplete data pattern

(4.55) S = {3, 8, 1238, 123678, 345678},
where | = 12345678. The pattern § generates the 4lattice~‘}<,2' in Figure 4.12:
345678
8 367 |
? 38 23678
3 1238

Figure 4.12: The lattice ¥,,.
Since J(Kz) = {3, 8, 1238, 3678, 345678}, the partitioning (3.5) becomes
(4.56) X = (X3, Xg, (X1, X2), (Xg, X7), (X4, Xs5)).

The CI conditions (3.2), the likelihood factorization (3.15), and the MLE existence
condition (3.17) determined by K, are, respectively,

(X1, %2) L (X4, X5, Xg, X7) l (X3, Xa),

(457) Xz 1l Xg,
(4.58) r=r(3)r@rz|38)re7|38)r4s|3678),
N1238 = Ni238 * Ni23678 * N 25
(4.59)
N345678 = N34s678 + NI > 7.

since 1238 and 345678 are the maximal elements of J(¥,,). For the incomplete data
pattern § in (4.55) considered by Rubin, n; = 0.

From Figure 4.12 it can be seen that the CI model determined by ¥, remains

applicable if incomplete observations of any of the following forms are added to the
pattern § in (4.55), in which case (4.57), (4.58), and (4.59) remain valid: 38, 3678,

12345678 (= complete). O
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Example 4.13. Anderson (1957, eqn. (14)) considered the incomplete data pattern
(4.60) S ={13, 124, 125},

where I = 12345 (cf. the second pattern in Figure 1.6). The pattern § generates the

lattice K,z in Figure 4.13:

Figure 4.13: The lattice ¥,s.
Here J(K,3) = {1, 12, 13, 124, 125} and the partitioning (3.5) is simply
(4.61) X = (X1, %o, X3, Xgq, X5).

The CI conditions (3.2), the likelihood factorization (3.15), and the MLE existence
condition (3.17) determined by ;3 are, respectively,

(4.62) Ko L %3 [ X1, X3 lLXgqlXs | (%), %2,

(4.63) F=rrE|nNrGE|nrE|12)rs|12),
NT3 = M3+ N2z + Nizzq * Nig3s * NP 23

(4.64) N4 = Ni24* Ni234 * Nigas * N 2 4
Nizs = Niz2s* Ni23s * Nigas * N 2 4,

since 13, 124, and 125 are the maximal elements of J(,3). For the pattern S in
(4.60) considered by Anderson, only N;z, Ny24, and N5 are non-zero.
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From Figure 4.13 it can be seen that the CI model determined by K,z remains
applicable if incomplete observations of any of the following forms are added to the
incomplete data pattern § in (4.60), in which case (4.62), (4.63), and (4.64) remain
valid: 1, 12, 123, 1245, 1235, 12345 (= complete). In particular, the second pattern
in Figure 1.7 also generates the lattice ¥,3, hence, as stated at the end of Section

1.3, the above analysis remains applicable. O

S. Comments.

Under a general multivariate normal missing data model M(M) as defined in
Section 2, some elements djj of & may be unidentifiable, hence inestimable. For
example, if [ =123 and S={12,13} (cf. (4.14) of Example 4.3) then the covariance
023 (equivalently, the correlation pz3) is unidentifiable because the variates 2 and 3
are never observed simultaneously. The Cl missing data model M*(N) imposes
conditional independence restrictions on £ under which the unidentifiable covariances
are assumed to be functions of the identifiable covariances, which in turn are
functions of the K-parameters of . Thus, in the above example the Cl restriction

21311 isequivalent to the relation o3 = 6210_111(513. Here 011, 021, and O3 are

functions of the K-parameters oy, 62107}, and 03,07}, so once their ML estimates
are obtained the ML estimate of O3 is immediately determined. It is important to
note that the unidentifiable covariances and correlations are not simply set equal to
0 under the CI model determined by S (unless the CI restrictions are in fact
independence restrictions). See Sections 3.3, 3.4, and S of [AP] for additional

examp les.

In order to carry out the likelihood analysis of the missing data model M*(M),
after determining the incomplete data pattern S it is necessary to determine the
poset J(%K) of join-irreducible elements of the lattice K = (8) generated by 8. This
may be carried out in a computationally straightforward manner by first generating
K and then determining J(K). Since ¥ is distributive, ¥ may be generated as ¥ =
u(n(S)), where N(8) is the collection of all finite intersections of members of § and
u(n(8)) is the collection of all finite intersections of members of N(S). Then J(K)

can be determined from the representation of K as a directed graph.
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In general, however, K and possibly also § may be much larger than J(%). For
example, if I = 12-=-pand S={1,--,p} or O(D\&, then ¥ = (1) s0 ]‘K[ = 2P, while
JIK) ={1,,p}so | J(K)| = p. In fact, for every lattice K < O(I) it is true that
| J(K)| <p (cf. Graetzer (1977, 111, Corollary 14)). Thus it would be desirable to
find a polynomial time(p) algorithm that determines J(K) directly from S without

first generating K, if such an algorithm exists.10

Another combinatorial question of a more theoretical nature is the following.
Suppose that observations are missing at random from a complete pxn data matrix y
(cf. Section 2) according to a Bernoulli process. As p, n = o at appropriate rates,
what is the limiting probability that the resulting incomplete data pattern 8 is
monotone? Other variations of this question can be readily formulated.

Finally, it is important to note that the results in this paper can be expressed in a
coordinate-free way, thus allowing their application to generalized missing data
models where some observations may be linear combinations of the original variates.
As a simple example, if x = (X1, x2, x3) denotes a complete observation (p = 3), then
for some individuals in the sample only x;+x2+X3 might be observed. Furthermore,
the results in this paper can be extended to more general multivariate linear models
with missing data, e.g., MANOVA and GMANOVA, and results can be obtained for
testing appropriate linear hypotheses as well as for estimating papameters. These
topics will be treated in two forthcoming papers by Andersson, Marden, and Periman
(1989a,b) that treat invariant multivariate linear models with monotone and non-

monotone missing data patterns, respectively.

Acknow ledgement. We gratefully thank Donald Rubin and Richard Ladner for many
helpful suggestions and David Periman for preparing the graphic illustrations.

10There is no general inclusion relation between S and |J(‘K)|. Simple examples can
be constructed where 8 = | J(K)|, 8 C|J(K)|, 8 2| J(K)|, or where none of these
relations hold. It is true that § = J(K) always generates J(X), i.e., K(J(K)) = K

(cf.Graetzer (1978, 11.1, Corollary 13)).
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