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Abstract. 

The distribution of the likelihood ratio test for cointegration under 

local alternatives is found to be given by a suitable functional of a p-r 

dimensional Ornstein-Uhlenbeck process. The results are related to those 

of Phillips (1988). who considered near integrated processes, and derived 

the power function of a test for unit roots based on a regression 

estimate. The power function is investigated numerically for a 

one-dimensional alternative. 
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1. Introduction 

The concept of cointegration was introduced by Granger (1981) in 

order to define the notion of a stable economic relation among non stable 

economic variables. 

More preceisely he considered non stationary economic variables, i.e. 

a non stationary vector process. and defined a cointegrating relation as 

a linear combination of the components with the property that it 

determined a stationary stochastic process. This makes precise one of 

the many meanings of the notion of stability and as such it can be 

investigated and tested by statistical techniques. see Engle and Granger 

(1987). Phillips and Park (1986) and Phillips and Ouliaris (1987). Many 

papers have since then been devoted to finding properties of various 

regression and eigenvector estimates for cointegration vectors. 

This paper deals with vector autoregressive processes with Gaussian 

errors where maximum likelihood estimators and likelihood ratio tests can 

be found. see Johansen (1988b). There are now a number of papers that 

describe this method in detail. and apply it to economic problems. see 

Johansen and Juselius (1989). Juselius (1989). Kunst (1988) and (1989). 

Kunst and Neusser (1988). Llitkepohl and Reimers (1989). Hoffman and 

Rasche (1989). Hall (1988). Garbers (1989). The method will be described 

briefly below. 

Consider therefore the p-dimensional vector autoregressive process 

Xt . t= 1, ... ,T. defined by the equations: 

(1.1) Xt = IT1Xt _ 1 + ... + ITkXt _k + et' t = 1, ... ,T, 
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where are independent Gaussian variables with mean zero and 

variance matrix A and XO" ",X-k+I are fixed. The parametres are the pxp 

matrices (ITI , ... ,ITk.A). Let IT = - I + IT1 + ... + ITk be the total impact 

matrix. and consider the hypothesis of the existence of (at most) r 

cointegration vectors formulated as 

(1.2) H: IT=a{3', 

where a and (3 are pxr matrices. 

The maximum likelihood estimation and likelihood ratio test of this 

model were investigated in Johansen (1988). and can be described as 

follows. First the model (1.1) is rewrittenI as 

(1.3) 

where f. = 
1 

k-I 

I + ITI + ... + ITi . i = I .... ,k-1. In this model the 

parameters (fI ..... f k_1 .a.{3.A) are variation independent and one can 

easily maximize with respect to the parameters f I .· .. ,fk- 1 by regressing 

AXt and Xt - k on the lagged differences. and obtain residuals ROt and Rkt . 

Then we define 

T 
s .. = T-1 2: R.tR. t' i,j = O,k, 

IJ t=l 1 J 

and find 
A ,-1 
a({3) = SOk{3({3 Skk(3) . Finally {3 is found as the eigenvectors 

corresponding to the r largest eigenvalues of the equation 

(1.4) 

lOne can also rewrite the model as 

* with fi = fi - IT = - ITi +1 - ... - ITk . It may be convenient to see the 

error correction term with one lag, but the analysis remains the same. 
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giving the maximized likelihood function 

-2/T r 
L = ISool.11(1 - ?\.). 

max 
1=1 

1 

Hence the likelihood ratio test for the hypothesis H of (at most) r 

cointegrating relations is given by 

P 
(1.5) -2 In(Q) = T L In(1 - ?\.). 

i=r+1 1 

The limiting distribution of this statistic is non standard and has been 

tabulated by simulation in Johansen (1988). The theory for the model 

which allows a constant term is a bit more involved. and is given in 

Johansen (1989). 

It is the purpose of this paper to derive the power function of the 

above likelihood ratio test. applying the results of Phillips (1988). 

The alternative we are interested in is clearly that there are one or 

more extra cointegrating relations than assumed under H. If we 

investigate the power of the test under the assumption that there is in 

fact another cointegration relation with some non zero loadings. then it 

is not difficult to see, that the power tends to one. More interesting 

is it to consider local alternatives of the form 

(1.6) 

where a 1 and ~1 are pxs matrices. Under the alternative ~ we are thus 

allOWing s extra cointegration vectors to enter the model with small 

weight a 1/T. These extra linear components of Xt are "near integrated" 

in the terminology of Phillips (1988), and the basic mathematical results 

are directly taken from that paper and adopted to this slightly different 

framework of analysing the multivariate Gaussian distribution. 
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In the next section we describe the asymptotic properties of near 

integrated series, and apply these to find an asymptotic expression for 

the power function. In section 3 we investigate by simulation the power 

function for the local alternative of one extra cointegration vector with 

a small loading. The appendix contains the proofs of the mathematical 

results. 

2. Asymptotic properties of the process Xt and the power function under 

local alternatives. 

In order to discuss the asymptotic properties we shall recall some of 

the properties of the process Xt as given in Theorem 3.1 (Grangers 

representation theorem) Johansen (1989). We assume that rank (a) = 

rank(~) = r and let a i and ~i denote px(p-r) matrices orthogonal to a and 

~ and of full rank. The condition of "balance". see Johansen (1988a). 

expressed as a relation between the impact matrix IT = a~' and the mean 

k 
lag matrix ~ = 2 iIT .. is given by 

i=l 1 

(2.1) rank(a~~~i) = p-r. 

Under this condition we have the moving average representation AXt = 

C(L)c t and the expression 

(2.2) C(l) = ~i(a~~~i)-la~ = C, 

say. From this it is seen that AX t is stationary. ~'Xt is stationary and 

Xt is non stationary. 

In order to separate the stationary part of the process from the near 

integrated and integrated components under the model HT we introduce the 

r-dimensional process yeT) = (~.~)-l~·X(T) and the (p-r)-dimensional 
t t 

process Z~T) = (~~~i)-l~~X~T). such that 
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(2.3) X(T) = f3y(T) 
t t 

+ f3 Z(T) 
.1 t . 

THEOREM 1. Under the local alternatives 

HT : UT = af3' + a1f3i/T, 

and under the condition (2.1) and 

(2.4) 

the process X~T) converges weakly to the process Xt ' and the process 

(T) -~ 
Z[Tt]T converges weakly to the (p-r)-dimensional process Kt' which 

satisfies the stochastic differential equation 

t 
(2.5) - ab'~KudU + Kt = Bt" 

Here Bt is a (p-r)-dimensional Brownian motion, and a = a~al and b = 

f3~f31· 

The (p-r)x(p-r) matrix ab' has rank s and the solution to (2.5) is 

the Ornstein-Uhlenbeck process in p - r dimensions which can be expressed 

as 

(2.6) 
t 

Kt = Jexp{ab'(t-u)}dB. 
o 

The proof of this result will be given in the the appendix. We shall 

apply the result in the proof of the main result about the power 

function: 
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THEOREM 2. The asymptotic distribution of the LikeLihood ratio test 

- 2LnQ for the hypothesis H: IT = a~' is, under the LocaL aLternative 

given by 

(2.7) tr{f(dK)K'(fKK'du)-l fK(dK)'}, 

where K is given by the (p - r)-dimensionaL Ornstein-UhLenbeck process 

(2.6) . 

The proof is given in the appendix. If the (p-r)-dimensional process 

Kt has coordinates {K. (t). 
1 

i= 1 .... p-r}. then the notation f(dK)K' 

stands for a (p-r)x(p-r) matrix of stochastic integrals with elements 

1 1 
fdK.K. = JK.dK .. The matrix JKK'du has elements JK.(u)K.(u)du. 

1 J 0 J 1 ° 1 J 

This result is closely related to the result by Phillips (1988) 

p.1031 on the power function for a certain test statistic for the 

hypothesis IT = 0 based on a normalization of a regression estimate of IT. 

In this situation, where we want to test IT = 0, the present test which 

exploits the Gaussian distribution can not be distinguished by its 

asymptotic properties for local alternatives from the general test given 

by Phillips. 

It is seen that the asymptotic power function for local alternatives 

depends on the parameters only through a = a~a1 and b = ~~~1' Thus it 

depends on how the extra loadings (a1) and cointegrating relations (~1) 

are related to the a and ~ assumed under H. A tabulation of the power 

function thus involves 2(p-r)xs parameters. It turns out, however, that 

fewer parameters will do. In order to see this, we shall exploit the 

invariance of the multivariate Brownian motion under rotation and the 
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invariance of the test statistic. 

Let 0 denote a (p-r)x(p-r) orthonormal matrix. Then clearly Bt and 

OBt have the same distribution and hence multiplying (2.5) by 0 we see 

that OKt solves the equation (2.5) for the Brownian motion OBt with the 

pxs matrices Oa and Ob. The test statistic is independent of this 

transformation and thus the power function is the same for any 

alternatives ab' and a1bi such that Oab'O' = a1bi. We can simplify still 

further by choosing new coordinates using the orthonormal vectors 

e 1 = b(b'b)-~ 
e2 = (a - b(b'b)-lb 'a)(a'a - a'b(b'b)-lb'a)-~ 

We define K. = 
It 

e'K and B = i t it eiBt i = 1,2,3. then the equation (2.5) is equivalent to 

(2.7) 
~ ~ t 

- (b'b)- b'a(b'b) ~ludU + KIt = BIt' 

(2.8) - (a'a - a'b(b'b)-lb'a)~(b'b)~~ du K B o lu + 2t = 2t' 

(2.9) K3t = B3t . 

This shows that the power function only depends on a 1 and ~1 through the 

matrices a'a, b'b and a'b. For s = 1 this result simplifies still 

further. 

COROLLARY. Under the LocaL aLternative IT = a~' + a1~1/T, where a 1 and ~1 

are px1 vectors, the power function for the LikeLihood ratio test for 

cointegration depends on a 1 and ~1 onLy through the quantities f and g 

given by 

(2.10) f = a'b = ~iCa1 < 0, 
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(2.11) g2 = a'ab'b - (a'b)2 

= (alaL(a~AaL)-1a~a1)(~lcAC'~1) - (~lCal)2 , 

where C = ~L(a~~~L)-la~, see (2.2). 

Note that the expressions above for C as well as aL(a~AaL)-1a~ do not 

depend on the particular choice for aL and ~L. Note also that for p - r 

= 1 the power function depends only on f, since (2.7) above describe the 

process Kt .. 

The proof of the corollary is given in the appendix. 

In order to interprete these results we consider the hypothesis HT 
for the simple example we get from (1.3) by letting k = 1, that is we 

consider the system 

Ax~Tl T-1a1~iX~~~ + et. 

Thus we have left out the short term dynamics and assumed that a = ~ = 0. 

We then want to investigate if we can find a cointegration vector ~1 in 

the data. In this case IT = 0, a L = ~L = I and ~ = I. Thus C = I, a = a 1 

and b = ~1' such that f = ai~1 and g2 = aia1~i~1 - (ai~1)2. 
We can express the results as follows: The power for finding a 

-1 
stationary relation ~1 with loadings T a 1 depends on the position of the 

vectors a 1 and ~1 through the angle (f/g) between them and the area (g) 

spanned by them, as well as the dimension (p) of the space in which we 

are looking for them. 
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3. Numerical investigation of the power function under the alternative of 

one extra cointegration vector. 

For s = 1 the equations (2.7), (2.8) and (2.9) are of the form 

t 
(3.1) - f ~ludu + KIt = BIt' 

t 
(3.2) - g ~ludU + K2t = B2t' 

(3.3) 

The distribution of the functional (2.7) is too complicated to find 

analytically but can be found by simulation. In order to simulate the 

processes we shall apply the discrete version of these equations 

(3.4) KIt = (1 + f/T)Klt_l + elt' 

(3.5) K2t = K2t- l + (g/T)Klt_l + e2t , 

(3.6) K3t = K3t- l + e3t , 

t = 1, ... ,T starting with KO = O. 

Note that the actual expression for the limit distribution is not so 

important. What is being applied is that the limit distribution exists 

and does not involve the parametres. but for f and g. Thus in order to 

simulate the system we simply choose the simplest possible system 

compatible with the given f and g. 

We then easily solve the equations (3.4), (3.5) and (3.6) recursively 

and form the Tx(p-r) matrix M with elements Mti = Kit. Then we calculate 

AM and M_I i.e. the differences and lagged variables respectively and 

find the test statistic 



10 

The number of observations T has to be chosen so large that the 

approximation of the random walk to the Brownian motion is sufficiently 

good. We have chosen T = 400. 

We find the results for stationary alternatives and p-r = 1.2. and 3 

in Table I and Figures 1. 2 and 3 based on 2000 - 5000 simulations and T 

It is seen that. not surprisingly, the power decreases as the 

dimension increases, i.e. if there are many dimensions to hide in, i.e. 

it is difficult to find the cointegrating vector, if it has a small 

loading. It was found that the non stationary alternatives (not shown) 

are readily picked up by the test with large power. The test appears 

unbiased as f and g move away from O. 

One can interprete the coefficient 1 + fIT = 1 + ai~lIT as the 

autoregressive parameter. see (3.4), in the stationary (or near 

integrated) relation we are trying to find. Hence we see from Table I, 

that if for instance we have T = 100 observations and expect an 

autoregressive coefficient of say .79 then we have f = 100*(.79 - 1.00) = 

- 21. Now the power of finding such a process depends on the relation 

between the loadings and the cointegration vector. If a 1 and ~1 are 

proportional, such that g = 0, then, if p = 1, we have a probability of 

.998 of rejecting the hypothesis of non statonarity, and hence of finding 

a stationary relation. If, however. the system is of dimension p = 3, 

then the probability of rejecting the non stationarity hypothesis is only 

.346. For a given angle that is for fixed f/g it is seen from the tables 

that the larger the vectors the easier it is to find them. 
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4. Appendix. 

We have here collected the proofs of Theorem 1, Theorem 2 and the 

Corollary. We first define the variance and covariance matrices 

conditional on the lagged differences by 

~oo = Var(AXtIAXt_1' ... ,AXt _k+1), 

~.~~ = Var(~'Xt_kIAXt_1'·· .,AXt - k+1)· 

~Ok~ = Cov(AXt·~'Xt_kIAXt_1·· .. ,AXt _k+1)· 

It follows from the representation (1.3) that, since ~t is independent of 

the past values of the process Xt , one can find the relations 

( 4.1) 

and 

(4.2) 

which can be solved for a 

(4.3) 

One can apply these identities to prove 

LEMMA 1. The foLLowing reLations hoLd 

(4.4) 

PROOF. The second equality sign holds by the relation (4.1) and the two 

other are just the well known relation between a block matrix M and its 

inverse 
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expressed in the coordinates given by a and a~. 

We now choose a~. such that 

(4.5) 

This can always be done for if a~ is any choice of p-r vectors orthogonal 

~ ~,~ -~ 
to a, then we just take a~ = a~(a~Aa~) . 

We shall further choose ~~ such that 

(4.6) 

This is always possible since for any choice of ~~ of p-r vectors 

~ ~-1 
orthogonal to ~ we just take ~~ = ~~(a~~~~) which satisfies (4.6). 

These choices will simplify the calculations later, but the results 

about the power function are of course formulated such that they do not 

depend on this particular choice. 

We now give the proof of Theorem 1. The result follows from the 

results in Phillips (1988), and we shall here only sketch the 

calculations involved in the proof. 

We write the model (1.1) under HT in the form 

(4.7) - (a~' + a ~'/T)X(T) + ~AX(T) + IT (L)A2x(T) 
lIt t 2 t 

The basic idea is to go to the limit in this stochastic difference 

equation and derive either another stochastic difference equation or a 

limiting stochastic differential equation. It turns out that only IT and 

~ will be relevant in this last approximation. such that near integrated 

processes can be approximated by AR(l) processes, see (3.4). 

If we let T ~ 00, in (4.7) we get the equation 

- a~'Xt + ~AXt + IT2 (L)A2Xt = et' 

which shows that X~T) converges weakly to Xt . If we multiply (4.7) by a~ 

we get instead 
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T- 1a'a ~'X(T) + a'WAX(T) + a'IT (L)A2X(T) = a.l'e t . .l 1 1 t .l t .l 2 t 

Summing over t = 1 ..... [Tt], and dividing by ~ we obtain. apart from 

some initial values, 

(4.8) 
I [Tt] (T) 1£ • (T) l' + (T) l' 

- aT- 2 ~'X /Tn + a.lwX[Tt]/Tn a'IT (L)AX /Tn 
t=1 1 t .l 2 [Tt] 

[Tt] 1 

= 2 a~et/~' 
t=1 

Now apply the decomposition (2.3) and use the result that Ry(T) -~ _ 
~ [Tt]/Y- -

~(~,~)-I~'x~i~]~ ~ 0 since ~'Xt is stationary. Hence we can replace Xt 

by ~.lZt' 

The right hand side converges to a Brownian motion with covariance 

a~Aa.l = I, by the choice of a.l' and the first term is -

i.e. a Riemann sum of the process Z~T)/T~, which converges weakly to the 

t 

integral - ab'~udu, whereas the second term converges to a~W~.lKt = Kt by 

the choice of ~.l' 

It is easily checked that the solution is given by (2.6). In order 

to see that the matrix ab' has rank s we have to apply the conditions 

(2.1) and (2.4) which guarantee that the process Xt is at most 1(1) both 

under H and HT. Let bI = ~.l(~~~.l)-I~~~1 and let b2 be orthogonal to 

(~,bl) such that (~,bl,b2) has full rank. Then~.l = (b1 ,b2 ) and (~'~I).l 

= b2 · Similarly we define a 1 and a2 from a1 and a.l' The condition (2.1) 

can now be expressed as 

~i%1 
rank la2Wb1 

whereas the condition (2.4) can be expressed as 
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These conditions clearly imply that 

A = ai~bl - ai~b2(a2~b2)-la2~bl 
is of full rank s. This therefore also holds for ai~bl and hence for a l 

and b l . Now 

ba' = fj~fjlaial = fj~blaial = [:~lblai(ala2) = [blbl~lal ~l 

which has rank s. 

Next we shall turn to the proof of Theorem 2. This follows closely 

the proof given in Johansen (1988) for the asymptotic distribution under 

H, and it will therefore not be given in full technical detail. The 

likelihood ratio test is calculated from (1.5) solving the eigenvalue 

problem (1.4) The basic idea in the proof is to study what happens as T 

~ 00 in the equation (1.4) under different normalizations, and then apply 

the continuity of the ordered eigenvalues as a function of the 

coefficients. 

First multiply the matrix equation (1.4) by (~,T-l/2~L) and its 

transposed and apply the stationarity of ~'Xt to see that ~'Skk~' ~'Skk~L 

By Theorem 1, ~~Skk~L/T converges weakly to ~~~LJKK'd~~~L = 

~, say, and this shows that in the limit A has to satisfy the equation 

or 

which has r positive solutions and p-r null solutions. Thus the r 

largest eigenvalues of (1.4) converge to those of 
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and the p-r smallest tend to zero. The r largest eigenvalues correspond 

to the stationary components ~'Xt' whereas the p-r smallest correspond to 

the near integrated as well as the non stationary components. 

Now normalize A. by T and define p. = TA .. We multiply (1.4) from 
1. 1 1 

boths sides by (~'~i) and let T ~ 00, then we get that the limiting value 

of p will satisfy the equation 

[ 0 0]- rW};kO]};~; rW~o]' 
I 0 peP l F' l F I = 0, 

where F' is the weak limit of ~~SkO. This can be written 

1~'~O};O~I};Ok~1 IpeP - F'(};~6 - };~6};Ok~(~'~O};0~1};Ok~)-I~'~o};~6)FI=o. 
Since a the matrix between F' and F as 

which by Lemma 1 equals 

by the definition of ai' see (4.5). 

Thus p is the solution to the equation 

(4.9) 

The equation (1.3) gives the following relation between the residuals and 

the residual sum of squares after the preliminary regressions, 

T 
SkO - Skk(~a'+ ~1aiT-1) = T-1 }; ~t6~. 

t=1 

It follows, that ~~SkOai = F'ai has the same limit as 

T 
~~skk~1a'T-1+ T-1 }; ~~Rkt6~ai' 

t=1 

which by Theorem 1 converges to 

~~~i(JKK'du ba'+ JK(dB)'), 

since V(a~6t) = a~Aai = I, by the choice of a i . 

Now apply (2.5) to obtain 
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~~~i(JKd(B' + JK'duba'» = 

~~~ifK(dK)'. 

Thus inserting this result in (4.9) we find that the limiting value of p 

is a solution to the equation 

Ip]KK'du - JK(dK)'f(dK)K' I = 0, 

and hence the result (4.9) holds, since 

- 2lnQ = - T ~ In(1-~.) ~ ~ TA. = ~ ~. ~ tr{f(dK)K'(]KK'du)-1JK(dK)'}. 
i=r+1 1 i=r+l1 i=r+11 

Finally we shall give the proof of the Corollary. This result follows 

from the equations (2.7), (2.8) and (2.9), and the expressions for the 

coefficients f and g are easily deduced by applying the expression for C 

-1 , = ~i(ai~~i) ai together with the identities a~Aai = I and a~~~i = I. We 

find 

which is non zero by the result of Theorem 1. Since we are interested in 

stationary alternatives only it follows from (2.7) that a'b < O. 

Furthermore 

and 
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Table I 

The asymptotic power of the likelihood ratio test at 5% for r 

cointegration vectors among p variables under the local alternative of 

one extra cointegration vector. The quantities f and g are defined in 

(2.10) and (2.11). The number of simulations are 2000-5000 and T = 400. 

f 

power 

g 

o 

6 

12 

g 

o 

6 

12 

o 

.052 

.060 

.615 

.944 

.054 

.510 

.834 

-3 

.141 

.069 

.335 

.850 

.059 

.211 

.694 

-6 

.350 

.105 

.269 

.760 

p - r = 1 

-9 -12 

.620 .820 

p - r = 2 

.175 .272 

298 .390 

.716 .717 

p - r = 3 

.073 .105 .136 

.143 .142 .188 

.536 .424 .407 

-15 

.945 

.416 

.513 

.760 

.187 

.233 

.429 

-18 

.987 

.565 

.642 

.830 

.266 

.305 

.476 

-21 

.998 

.714 

.772 

.874 

.346 

.383 

.543 
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Legend to Figures. 

Fig. 1. 

The power function of the likelihood ratio test for cointegration. as 

a function of f. see (2.10). for g = 0, see (2.11). and different values 

of the dimension p - r. 

Fig. 2. 

The power function for the likelihood ratio test for cointegration as 

a function of f and g. see (2.10) and (2.11) and p-r = 2. 

Fig. 3 

The power function for the likelihood ratio test for cointegration as 

a function of f and g, see (2.10) and (2.11) and p-r = 3. 
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