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Abstract. Stratified adaptive cluster sampling refers to designs in which, 
following an initial stratified sample, additional units are added to the 
sample from the neighborhood of any selected unit with an observed value 
that satisfies a condition of interest. For example, in surveys of animal 
populations, additional observations may be made in the vicinity of any 
site at which sufficiently high abundance is observed. If any of the added 
units in turn satisfies the condition, still more units are added to the sam­
ple. Such designs differ markedly from conventional stratified sampling 
designs, in which the entire sample may be selected prior to the survey, 
selection probabilities do not depend on the values of the variable of inter­
est, and selections in separate strata are independent. Since conventional 
estimators such as the stratified sample mean are biased with the adaptive 
designs of this paper, several types of estimators are developed which are 
unbiased for the population mean or total with stratified adaptive clus­
ter sampling. The variances of the estimators and unbiased estimators 
of these variances are also obtained. Formulae for optimal allocation of 
the initial sample among strata apply to some of the estimators. Estima­
tion of the population mean or total with the stratified adaptive cluster 
designs is complicated by the possibility that a selection in one stratum 
may result in the addition of units from other strata to the sample, so 
that observations in separate strata are not independent. The estimators 
given in this paper differ partly in respect to the weightings given obser­
vations resulting from selections in other strata. Improvement of each of 
the types of estimators through the Rao-Blackwell method is discussed. 
An example illustrates the use of the different estimators with stratified 
adaptive cluster sampling. 
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1. INTRODUCTION 

In stratified adaptive cluster sampling, an initial stratified sample is 
selected from a population and, whenever the value of the variable of 
interest for any unit is observed to satisfy a specified condition, additional 
units from the neighborhood of that unit are added to the sample. Still 
more units may be added to the sample if in turn any of the subsequently 
added units satisfies the condition. 

The objective of such a design is to obtain the most precise possible es­
timate of the mean or total of the population, and possibly of individual 
strata as well. Known patterns of variation are taken into account with the 
initial stratification of the population, collecting units which tend to be 
similar into a single stratum. The adaptive addition of neighboring units 
to the sample whenever a selected unit satisfies the specified condition is 
designed to take advantage of characteristics such as aggregation tenden­
cies in a population, when the locations and shapes of the aggregations 
can not be predicted prior to the survey. 

Sampling situations in which such adaptive designs apply include sur­
veys of spatially distributed populations such as animal and plant species 
and geological, mineral, and fossil fuel resources. Whenever sufficiently 
high abundance is encountered during the survey, neighboring units may 
be added to the sample. In such surveys, the neighborhood of a unit would 
typically be defined in terms of spatial proximity. The adaptive procedures 
also apply to such situations as the study of infectious diseases, in which, 
following an initial random sample of individuals, additional individuals 
may be added to the sample whenever an infected person is identified. The 
neighborhood in such a case can be defined in terms of social or kinship 
relationships as well as physical proximity. 

Stratified adaptive cluster sampling differs markedly from classical 
stratified sampling, in which the sample selection probabilities do not 
depend in any way on the variable of interest, the entire sample may be se­
lected prior to the survey, and selections in separate strata are made inde­
pendently. With the adaptive designs considered in this paper-described 
in detail in Section 2-the initial selection is made by classical methods, 
but the subsequent additions to the sample depend on values of the vari­
able of interest associated with selected units. Since the clusters of units 
added through the adaptive procedure may cross stratum boundaries, se­
lections in one stratum can influence selections in others, and so the final 
selections are not independent between strata. 

Conventional estimators, such as the stratified sample mean, which are 
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unbiased with classical stratified random sampling, are not unbiased with 
the adaptive designs. In Section 3, several estimators which are unbiased 
with the adaptive selection procedures are given, together with formulae 
for their variances and unbiased estimators of their variances. The unbi­
ased estimators are of five basic types: 1. the stratified sample mean of the 
initial observations, ignoring all subsequent observations; 2. an estimator 
using subsequent observations but ignoring any obtained as a result of ini­
tial selections in other strata; 3. an estimator related to the "multiplicity 
estimator" of the network sampling literature; 4. an estimator using ex­
pected numbers of intersections between the initial sample and networks 
of associated units; and 5. an estimator based on probabilities of such 
intersections. Optimal allocation formulae are obtained for the estima­
tors of the first four types. In addition, since none of the above unbiased 
estimators is necessarily a function of the minimal sufficient statistic, im­
provements in each of the estimators through the Rao-Blackwell method 
are considered. A small example in Section 4 illustrates some of the prop­
erties and computations involved with the different estimators. 

Adaptive cluster sampling designs without stratification are described 
in Thompson (1989). Adaptive sampling designs in which the sample size 
of a simple random sample within each stratum is based on initial obser­
vations within the stratum are discussed in Kremers (1987), and Francis 
(1984). Adaptive designs in which sample size in each stratum or primary 
unit is based on observations in neighboring strata or primary units are 
described in Thompson and Ramsey (1983) and Thompson (1988). The 
importance of adaptive sampling designs for ecological populations with 
spatial aggregation tendencies is discussed in Seber (1986) and Cormack 
(1988). 

2. DESIGNS 

For the adaptive cluster sampling designs of this paper, the population 
is partitioned into L strata, of which stratum h is comprised of Nh units, 

for h = 1, ... , L. The number of units in the population is N = I:f=l Nh. 
Associated with unit Uhi, the i-th unit of stratum h, is a variable of 
interest Yhi. The object of sampling is estimation of the population mean 
N -l "L "Nh 

.L..;h=l .L..;i=l Yhi· 

For any unit Uhi of the population, the neighborhood of unit Uhi is de­
fined as a collection of units which includes Uhi and with the property 
that, if unit Uh'i' is in the neighborhood of unit Uhi, then unit Uhi is in 
the neighborhood of unit Uh'i'. In spatial sampling situations, the neigh­
borhood of a unit is typically a collection of contiguous or systematically 
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arranged units centered about that unit. The neighborhood of a unit may 
include units from more than one stratum. 

A unit Uhi is said to satisfy the condition of interest if the y-value 
associated with that unit is in a specified set C. In many applications, 
the condition is specified so that unit Uhi satisfies the condition if Yhi ;:: c, 
for some constant c. 

In the designs considered in this paper, an initial sample of units is se­
lected from a population using stratified random sampling; that is, within 
stratum h, a simple random sample of nh units is selected without re­
placement, the selections for separate strata being made independently. 
Whenever a selected unit satisfies the condition, all units in its neighbor­
hood not already in the sample are added to the sample. Still more units 
may be added to the sample whenever any of the additionally-added units 
satisfies the condition, so that the final sample contains every unit in the 
neighborhood of any sample unit satisfying the condition. 

The population may be partitioned into K sets of units, termed net­
works, such that selection in the initial sample of any unit in a network 
will result in inclusion in the final sample of all units in that network. 
Any two units satisfying the condition, with one of them in the neigh­
borhood of the other, belong to the same network. A unit not satisfying 
the condition belongs to a network consisting just of itself. Note that 
initial selection of a unit satisfying the condition will typically result also 
in addition to the sample of units not in its network, that is, units not 
satisfying the condition but in the neighborhood of one or more members 
of the network. 

In spite of the fact that the initial sample is selected without replace­
ment, a unit may be selected more than once. The number of times a 
unit is selected equals the number of units from its network selected in 
the initial sample. Let rhi represent the number of times unit Uhi is se­
lected. Let mkhi denote the number of units in the intersection of stratum 
k with the network which contains unit Uhi. For a unit Uhi not satisfying 
the condition, let akhi be the total number of units in the intersection of 
stratum k with the collection of distinct networks, exclusive of Uhi itself, 
which intersect the neighborhood of unit Uhi. Initial selection of any of 
these akhi units will result in the addition of unit Uhi to the sample. De­
fine akhi to be zero for any unit Uhi satisfying the condition. Because of 
the initial stratified random sampling, the expected number of times unit 
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Uhi is selected is 
L 

E( ) '""'" mkhi + akhi 
'{'hi = ~nk . 

k=l Nk 

The unit Uhi will be included in the sample if one or more units from 
the network to which Uhi belongs is included in the initial selection or, 
for a unit Uhi not satisfying the condition, if one or more units from 
any network which intersects the neighborhood of unit Uhi is included in 
the initial sample. Because of the initial stratified random sampling, the 
inclusion probability Ghi for unit Uhi is 

The expected sample size v-that is, the expected number of distinct 
units in the final sample-is the sum of the above inclusion probabilities 
(see Godambe, 1955, and Cassel, Sarndal, and Wretman, 1977, p. 11): 

L Nh 

E(v) = LLGhi. 

h=l i=l 

3. ESTIMATORS 

Conventional estimators such as the stratified sample mean, although 
unbiased for the population mean with classical stratified random sam­
pling, are not unbiased with the adaptive designs described in this paper 
(see the example in the next section). In this section several estimators 
which are unbiased with stratified adaptive cluster sampling are intro­
duced and evaluated. The estimators and the estimators of variance given 
are design-unbiased, so that the unbiasedness does not depend on any as­
sumptions about the population itself. 

3.1 The Initial Stratified Sample Mean 

The stratified mean of the observations in the initial sample, 

is an unbiased estimator of the population mean, since the initial sample 
is selected by stratified random sampling. Expressions for the variance of 
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tl are well-known, and an unbiased estimator of its variance is available 
provided that the sample sizes nh are at least two in each stratum. Op­
timal allocation of the initial sample among the strata to minimize the 
variance of tl is given by the classical formula. With the estimator t 1, all 
observations adaptively added to the sample are ignored. 

3.2 An Estimator Ignoring Crossover Between Strata 

An unbiased estimator which makes use of observations added to the 
sample subsequent to the initial sample, but using only those added in 
the same stratum as the initial selection, can be formed as follows. Define 
the indicator variable I(hi,kj) to be one if unit Uhi and unit Ukj belong 
to the same network and zero otherwise. For unit Uhi, define ekhi to be 
the total of the y-values in the intersection of stratum k with the network 

that includes unit Uhi; that is, ekhi = 2.:~1 YkjI(hi,kj) 0 The number of 

units in this intersection is mkhi = 2.:~1 I(hi,kj). 

For unit Uhi, let the new variable Whi be the total of the y-values in 
the intersection of the stratum and network of unit Uhi, divided by the 
number of units in that interesction, that is, 

The estimator of the population mean is 

To see that t2 is unbiased for the population mean, let the random 
variable rkhi represent the number of units in the initial sample which 
are in the intersection of stratum k with the network to which unit Ukhi 

belongs. Since the y-value of a unit appears in the estimator in as many 
terms as there are initially selections in the intersection of the stratum 
and network to which that unit belongs, the estimator t2 can be written 

Since rhhi has a hypergeometric destribution with expected value E(rhhi) = 
nhmhhi/Nh, it follows that the expected value of t2 equals the population 
mean. 
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The variance of t2 is readily obtained from classical results if one notes 
that, with the variable Whi replacing the y-variable of unit Uhi for each 
unit of the population, t2 is the stratified sample mean of a stratified 
random sample from the population. Hence, the variance of t2 is 

L 2 
1 "\' (72h 

var(t2) = -2 6 Nh(Nh - nh)-, 
N nh 

h=l 

where 
1 Nh 

(7~h = N _ 1 L (Whi - plo 
h i=l 

An unbiased estimator :va;r( t 2 ) of this variance is obtained by replacing 
(7~h in the above expression with the sample variance sh, for h = 1,000, L, 
where 

3.3 An Estimator Related to the Multiplicity Estimator 

The stratified multiplicity estimator for network sampling, as intro­
duced by Birnbaum and Sir ken (1965) and investigated in Sirken (1972) 
and Levy (1977), applies the total weight of the y-values in a network only 
to the stratum in which the initial selection intersecting that network was 
made. In the multiplicity estimator, each observation is divided by the 
number of units-called the "multiplicity"-which if initially selected re­
sult in inclusion of the given observation in the sample. With adaptive 
cluster sampling designs, these multiplicities are not known for every unit 
in the sample, and so an estimator analagous to the multiplicity estimator 
must use only those aspects of the multiplicities which can be determined 
from the data. 

For unit Uhi, define the new variable Whi to be the total ofthe y-values in 
the entire network to which unit Uhi belongs, divided by the total number 
of units in that network; that is, 

W~i = t tkhi It mkhi . 
k=l k=l 

The modified stratified multiplicity estimator, for use with stratified 
adaptive cluster sampling, is 
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For every time any unit of a network is selected in the initial sample, the 
estimator includes a term with the total of the y-values for that network, 
divided by the network size and weighted by Nk/nk for the stratum from 
which the unit was selected. Thus each individual y-value occurs in the 
estimator every time any unit from the network to which it belongs is 
selected in the initial sample, but with weightings depending on the strata 
from which the initial selections came. Thus, the estimator i3 can be 
written in the alternate form 

U nbiasedness of i3 for the population mean follows from the fact that 
E(rkhi) = nkmkhi/Nk. 

Associating the variable w~i with unit Uhi, the estimator i3 is a stratified 
sample mean of a stratified random sample. Hence, the variance of i3 is 

where 
Nh 

2 1 "'\' (' )2 (j3h = N _ 1 ~ whi - f-t . 
h i=l 

An unbiased estimator w( i3) of the variance of i3 is obtained by re­
placing in the above expression the variance (j~h with the sample variance 

3.4 An Estimator Using Expected Numbers of Initial Intersections 

Originally designed for sampling with replacement with known, un­
equal draw-by-draw selection probabilities, the Hansen-Hurwitz estimator 
achieved unbiasedness by dividing the y-value of each unit by the draw­
by-draw selection probability of that unit. In extending the idea of this 
estimator to other types of designs, it is perhaps more to the point to 
observe that in the Hansen-Hurwitz estimator each observation is divided 
by the expected number of times it is selected in the sample and multi­
plied by the number of times it is selected (or, equivalently, is included in 
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the estimator as many times as selected). In this sense, the multiplicity 
estimator used with an unstratified population is of the Hansen-Hurwitz 
type, but in its stratified form is not of that type. 

With stratified adaptive cluster sampling, the selection probabilities and 
hence the expected number of times selected are not known for every unit 
in the sample, so that an unbiased estimator must be based only on the 
aspects of the expected selection numbers that can be determined from 
the data. 

For the unit U hi, define the new variable wKi to be the total of the y­
values of the network to which Uhi belongs, divided by a weighted sum of 
the network-stratum intersection sizes as follows: 

The estimator of the population mean is 

With this estimator, a y-value of a unit receives a weight that depends 
on how many units of the network to which it belongs are selected in the 
initial sample, but does not depend on the strata from which those units 
were selected. The estimator can be written in the alternative form 

1 L Nh [ L / ( L ) 1 
t4 = N L?= Yhi Lrkhi L ~: mkhi . 

h=l z=l k=l k=l 

Since E(rkhi) = nkmkhi/Nk, it follows that t4 is an unbiased estimator of 
the population mean. 

With wKi as the variable of interest for unit Uhi for each unit in the 
population, t4 is the stratified sample mean of a stratified random sample 
and hence has variance 

where 
Nh 

2 1 ""' (" )2 0'4h = N _ 1 D whi - P . 
h i=l 
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An unbiased estimator w( t 4) of the variance of t4 is obtained by re­
placing 0"1h in the above formula with the sample variance 

For the estimators t 2, t 3, and t 4, the variance of the estimator depends 
on the sample size nh in each stratum through a term which is inversely 
proportional to nh. By the usual derivation, therefore, the optimal allo­
cation of the total initial sample size n among the strata is given by 

NhO"ih 
nh = n L ' 

I:k=l NkO"ik 

where O"ih designates the square root of the variance term O"rh associated 
with estimator t i , for i = 2, ... ,4. 

3.5 An Estimator Using Initial Intersection Probabilities 

Unbiasedness in the Horvitz-Thompson estimator is achieved by divid­
ing the v-value for each unit in the sample by the probability that unit is 
included in the sample. With adaptive cluster sampling, these inclusion 
probabilities can not be determined from the data for every unit in the 
sample. An estimator close to the Horvitz-Thompson type can be formed 
using for each unit the probability that the initial sample intersects the 
network to which that unit belongs, and giving zero weight to any ob­
servation not satisfying the condition that was not included in the initial 
sample. Since these intersection probabilities are constant for every unit 
within a network, it will be convenient in this section ut work directly in 
terms of the networks of the population. 

Let the K distinct networks of the population be labelled 1,2, ... , K, 
without regard to stratum boundaries. Let Yi denote the total of the y­
values in the i-th network of the population. Let Xhi be the number of 
units in stratum h which intersect network i. The probability Xi that the 
initial sample intersects network i is 

L 

,,>;=1-Q (Nk:,Xk;) /(::). 
Letting qi = 1 - Xi, the probability Xij that the initial sample intersects 
both networks i and j is 

rrL (Nk - xki - xk ') / (Nk) Xij = 1 - qi - qj + J 
nk nk 

k=l 

10 



Let the indicator variable Zi be one if the initial sample intersects net­
work i and zero otherwise. The stratified estimator of modified Horvitz­
Thompson type is 

K 
1 L YiZi t5 = - --. 
N ?To 

i=l t 

For i = 1, ... , K, Zi is a Bernoulli random variable with E(Zi) = ?Ti, 

var(zi) = ?Ti(l - ?Ti), and COV(Zi,Zj) = ?Tij - ?Ti?Tj), for i ::I j. It follows 
that t5 is an unbiased estimator of the population mean, and, with the 
convention that ?Tii = ?Ti, 

K K ) 1 ?To ° 

var(t5) = - "''' YiYj (_t_J - 1 . N L..t L..t ?To?T ° 

i=l j=l t J 

An unbiased estimator of this variance, since E(ZiZj) = ?Tij, is 

provided that the joint intersection probability ?Tij is not zero for any pair 
of networks. 

The estimator t5 is not a true Horwitz-Thompson estimator because 
the ?Ti are not the inclusion probabilities for every unit, but give rather 
the probabilities of intersection of the initial sample with the networks to 
which units belong. Statistical properties of the sampling strategy such 
as expected sample size depend on the actual inclusion probabilities as 
given in Section 2. 

3.6 Improvement of the Estimators Using the Rao-Blackwell Method 

None of the above five unbiased estimators is a function of the minimal 
sufficient statistic, and so each may be improved by the Rao-Blackwell 
method of taking its conditional expectation, given the minimal sufficient 
statistic. The minimal sufficient statistic D in the finite population setting 
is the unordered set of distinct, labelled observations (Basu, 1969). The 
initial stratified sample mean tl depends on order-i.e. which of the 
observations were initial. The estimators t 2, t 3, and t4 depend on the 
number of times units are selected in addition to order. The estimator t5 

does not depend on the numbers of times selected, but does depend on 
order in that a sample unit not satisfying the condition is utilized in the 
estimator only if it was selected in the initial sample. 
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Starting with any of the unbiased estimators t, one may obtain the Rao­
Blackwell version tRB = E(t/D). Consider a given sample, with minimal 
sufficient statistic D consisting of the y-values and labels of v distinct 
sample units. Consider a selection from this sample with nl of the sample 
units from stratum 1, n2 from stratum 2, ... , and nL of the sample units 
from stratum L. Let Vh denote the number of distinct units in the sample 
from stratum h. Of the rr~=l (~~) possible combinations from the data, 
only some will be compatible with D in the sense that an initial sample 
consisting of that combination of units would lead through the adaptive 
design to a final sample of precisely the units in D. A combination is 
compatible with D if and only if it contains at least one unit from each of 
the distinct networks in D, exclusive of units not satisfying the condition 
which are in the neighborhood of one or more units in the sample which 
do satisfy the condition. The estimator tRB is the average of the values 
of t obtained over all such combinations compatable with D. 

Decomposing the variance of any of the estimators t as 

var(t) = E[var(t/D)] + var[E(t/D)], 

the variance of the the Rao-Blackwell version of t can be written 

var(tRB) = var(t) - E[var(t/D)]. 

An improved estimator of var(t) can be obtained by the Rao-Blackwell 
method with E[var(t)/D)]' the average over all the compatible combi­
nations of the unbiased estimators var(t). The term var(t/D) can be 
computed exactly from the sample as the variance of the values of t over 
all the compatible combinations. Thus an unbiased estimator of var( t RB) 
is provided by the difference of the above two unbiased estimators; this 
difference can, however, take on negative values. 

Computational aspects of the Rao-Blackwell estimators are deserving of 
further study. The Rao-Blackwell version ofthe ordinary Hansen-Hurwitz 
estimator was obtained in Basu (1958) and Pathak (1962), but has not 
been a popular estimator because of its computational complexity (see 
Cassel, et. al., 1977, p. 42 and Chaudhuri and Vos, 1988, p. 259). 
The ordinary Horvitz-Thompson estimator is a function of the minimal 
sufficient statistic and hence can not be improved by the Rao-Blackwell 
method, unlike the closely related estimator t5' The estimator t5 gives 
some observations zero weight based on the order in which they appeared 
in the sample, whereas the Rao-Blackwell version tRB5 may utilize these 
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same observations with positive weight (as in the example of Section 4). 
Kremers (1987) provides some computationally simplifying results for the 
Rao-Blackwell estimator based on the initial mean of an adaptive design. 

The Rao-Blackwell version t RBI of the initial stratified sample mean tl 
is identical, based on a result in Thompson (1989), with the Rao-Blackwell 
version tRB2 oft2 . The Rao-Blackwell versions tRB2, tRB3, tRB4, and tRB5 

are, however, distinct estimators, as demonstrated in the example of the 
following section. 

4. EXAMPLE 

The computational differences between the estimators of Section 3 can 
be illustrated with a very small example. Consider a population of five 
units with y-values {1,2,10,1000,3} divided into two strata so that the 
first stratum contains the units with the values {1,2,10} and the second 
stratum contains the units with the values {1000,3}. Let the condition of 
interest be specified by C = {y : y ;;::: 5}, so that, whenever a value greater 
than or equal to five is observed, the units in the neighborhood of that 
observation are added to the sample. The neighborhood of each units is 
defined to include its immediately adjacent units. Thus, for example, if 
the unit with value 10 is observed, the adjacent units, having values 2 
and 1000, are added to the sample; then, since 1000 also exceeds five, the 
adjacent unit with value 3 is also added to the sample. The two units 
with values {ID, 1000}, the only units in the population which satisfy the 
condition, form a network which crosses the boundary between strata. 

Consider a stratified adaptive cluster sampling design with an initial 
sample size of one in each stratum, i.e., nl = n2 = 1. The six possi­
ble samples obtainable under this design, each with equal probability, are 
listed in Table 1. The initial observations for each of the six possible 
samples is followed, after the semicolon, by the observations subsequently 
added to the sample with the adaptive procedure. For each possible sam­
ple, the value of each of the unbiased estimators, other than the initial 
stratified sample mean, is computed. At the bottom of the table are 
given the means (equal in each case to 203.2, the population mean) and 
variances of the estimators under the adaptive design. 

In the third row of the table, for illustration, the initial sample selected 
the unit with value 2 from the first stratum and the unit with value 1000 
from the second stratum, resulting in the addition to the sample of the 
units with values 10 and 3. The computations for each of the estimators 
are as follow: The intersections of the network of {10, 1000} with each 
stratum have only one unit each, so t2 = (1/5)[3(2) + 2(1000)] = 401.2. 
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The sample unit with value 3 does not satisfy the condition and was not 
intersected by the initial sample, so t3 = (1/5)[2 + (10 + 1000)/2J = 203.2. 
The expected number of times the unit with value 2 is intersected by 
an initial sample is 1/3. The expected number for the unit with value 
10, as well as for the unit with value 1000, is 1/3+1/2=5/6. Thus, 
t4 = (1/5)[2/(1/3) + 10/(5/6) + 1000/(5/6)J = 243.6. The intersection 
probability 7ri for the unit with value 2 is 1/3. For the units with val­
ues 10 and 1000, the intersection probability is 1-(2/3)(1/2)=2/3. Thus, 
t5 = (1/5)[2/(1/3) + 10/(2/3) + 1000/(2/3) = 304.2. 

The conventional stratified sample mean for the sample of the third 
row would be (1/5)[3(2+10)/2+3(1000+3)/2J=204.2. The mean of these 
estimates, over the six possible samples is 136.67. Hence, the conventional 
stratified sample mean is biased when used with the adaptive design. 

Three of the possible samples in the table-those in the third, fifth, 
and sixth rows-have the same set of four distinct observations, and hence 
have the same value of the minimal sufficient statistic. The Rao-Blackwell 
version of any of the estimators for each of these samples is obtained by 
averaging the value of the corresponding estimator over the three samples. 
The values of the Rao-Blackwell versions of each of the estimators is listed 
in Table 3 for each of the six possible samples, and the variances of these 
improved unbiased estimators are given at the bottom of the table. 
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Table 1. Values of estimators for the six possible samples in the example. 

observations t2 t3 t4 t5 

1,1000;10,2,3 400.6 202.6 243.0 303.6 

1,3 1.8 1.8 1.8 1.8 

2,1000;10,3 401.2 203.2 243.6 304.2 

2,3 2.4 2.4 2.4 2.4 

10,1000;2,3 406.0 505.0 484.8 303.0 

10,3;2,1000 7.2 304.2 243.6 304.2 
---- ---- ---- ----

mean: 203.2 203.2 203.2 203.2 

vanance: 39,766.2 30,361.2 27,504.9 20,220.8 

Table 2. Values of estimators improved by the Rao-Blackwell method. 

observations tRB2 tRB3 tRB4 tRB5 

1,1000;10,2,3 400.6 202.6 243.0 303.6 

1,3 1.8 1.8 1.8 1.8 

2,1000;10,3 271.47 337.47 324.0 303.8 

2,3 2.4 2.4 2.4 2.4 

10,1000;2,3 271.47 337.47 324.0 303.8 

10,3;2,1000 271.47 337.47 324.0 303.8 
---- ---- ---- ----

mean: 203.2 203.2 203.2 203.2 

vanance: 22,305.1 22,494.3 21,040.8 20,220.6 
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