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SUMMARY 

In adaptive cluster sampling designs, an initial probability sample is selected and, 
whenever the observed value of the variable of interest satisfies a given condition, units 
in the neighborhood of that observation are added to the sample. In this paper, the 
initial design is selected in terms of primary units, while subsequent sampling is in terms 
of secondary units. Such initial designs include systematic sampling, strip sampling, 
and other forms of classical cluster sampling. But because of the subsequent addition to 
the sample of secondary units in the neighborhood of any (secondary) unit that satisfies 
the condition of interest, the final "clusters" of units obtained through the procedure 
may be quite different in shape from the initial primary units. The methods described 
in this paper apply to such sampling situations as whale surveys in which the research 
vessel temporarily leaves the selected transect to close in on sighted whales, surveys of 
rare bird species in which initial observations are made at systematically selected sites 
and additional observations are made in the vicinity of any site at which sufficiently high 
abundance is observed, and aerial walrus surveys in which the aircraft searches to either 
side of the preselected transect line whenever a congregation of animals is encountered. 
Because conventional estimators of the population mean and total are biased with such 
a procedure, estimators which are unbiased under the adaptive designs are presented 
in this paper. Variance formulae and unbiased estimators of variance are also given. 
The designs are illustrated using a point pattern representing locations of individuals 
or objects in a spatially aggregated population; for such a population, the adaptive 
designs can be substantially more efficient than their conventional counterparts. 

1. Introduction 

Adaptive cluster sampling designs are those in which, following an initial 
probability selection of units, additional units are added to the sample in 
the neighborhood of any selected unit for which the observed value of 
the variable of interest ("y-value") satisfies a specified condition. Such 
designs are in marked contrast to conventional sampling designs, in which 
the probabilities for selecting samples do not depend on any population 
y-values. 

Key words: Adaptive sampling; Animal abundance estimation; Cluster sampling; Eco­
logical sampling; Systematic sampling. 
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The purpose of the adaptive strategies is to take advantage of population 
characteristics to obtain more precise estimates of population parameters 
with a given amount of effort. For example, many populations of animals 
and plants have aggregation tendencies due to such factors as schooling, 
flocking, dispersal patterns, and environmental patchiness. Often, the 
location and shape of the aggregations can not be predicted before a survey 
so that traditional means of increasing precision such as stratification are 
not sufficient. For such populations, adaptive sampling strategies may 
provide a way to dramatically increase the effectiveness of sampling effort. 

Adaptive cluster sampling designs in which the initial sample is selected 
by simple random sampling, with or without replacement, are considered 
in Thompson (1989). Adaptive designs in which the sample size of a simple 
random sample within primary units or strata depends on initial observa­
tions within those primary units or strata are discussed in Francis (1984) 
and Kremers (1987). Adaptive strategies in which the sample size depends 
instead on observed values in neighboring primary units or strata are pre­
sented in Thompson and Ramsey (1983) and Thompson (1988). Seber 
(1986) and Cormack (1988) discuss the importance of adaptive sampling 
methods for ecologi,:al sampling. 

In this paper, adaptive cluster sampling designs are considered in which 
the initial sample is selected in terms of primary units and subsequent ad­
ditions to the sample are in terms of secondary units. For example, in 
an aerial survey of walruses or polar bears or in a ship survey of whales 
sighted by their spouts, the strip observed in each selected transect forms 
a primary unit. If, whenever animals are sighted, the area to the side of 
the transect is searched-with still further searching if additional animals 
are sighted while on this search-the searching pattern defines neighbor­
hoods of secondary units added to the sample. In surveys of bird and fish 
species, the selection of sites at which to make observations is often done 
systematically and a single systematic selection forms a primary unit. If 
additional observations are made in the neighborhood of any site at which 
abundance is observed, the subsequent observations would not in general 
follow the initial systematic pattern. With such survey situations, one can 
think of the study region as partitioned into secondary units representing 
all possible sites at which observations may be made, while the primary 
units from which the initial sample is selected consist of clusters-such as 
long, thin strips or systematic arrangements-of the secondary units. 

2. Designs 

For the adaptive cluster sampling designs considered in this paper, the 
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population is composed of N primary units. Each primary unit contains 
M secondary units (which may be refered to simply as units). The MN 
units ofthe population are denoted Uij, for i = 1, ... ,N and j = 1, ... ,M. 
Associated with the j-th secondary unit of the ith primary unit is a vari­
able of interest Yij. The object of inference is estimation of the population 

mean f-l = (M N)-l 2:[:1 2:~1 Yij or, equivalently, ofthe population total 
T=MNf-l. 

For every (secondary) unit ofthe population, a collection of units called 
the neighborhood of that unit is defined. The neighborhood of unit Uij 

includes unit Uij, and, if unit Uij belongs to the neighborhood of unit Uif jf, 

then unit Uif jf belongs to the neighborhood of unit Uij' In applications, 
the neighborhood of a unit will typically be defined as a contiguous set of 
surrounding units or a systematic pattern of surrounding units. 

The unit Uij is said to satisfy the condition of interest if the associated 
value Yij is in a specified set C. For problems in the estimation of animal 
abundance, the condition may commonly be defined so that a unit satisfies 
the condition if its y-value equals or exceeds some constant c. 

In the adaptive cluster sampling designs of this paper, an initial sam­
ple of n1 primary units is selected by simple random sampling without 
replacement. Whenever the observed value of a (secondary) unit in the 
sample satisfies the condition of interest, all units in its neighborhood are 
added to the sample. If in turn any of these subsequently added units 
satisfies the condition, the units of its neighborhood are also added to the 
sample, so that finally the sample contains every unit in the neighborhood 
of any sample unit satisfying the condition. 

A population with a given set of y-values can be uniquely partitioned 
into J{ sets called networks so that whenever a unit Uij satisfying the 
condition is in the neighborhood of unit Uif jf also satisfying the condition, 
then units Uij and Ui' jf belong to the same network. Thus, if an initially 
selected primary unit intersects a given network, every unit in that net­
work will be included in the sample. A unit that does not satisfy the 
condition belongs to a network consisting just of itself. 

A unit Uij which does not satisfy the condition will be included in the 
sample either if the primary unit which includes it is initially selected or 
if any primary unit of the initial selection intersects the network of one or 
more units satisfying the condition in the neighborhood of unit Uij' 

Note that while neighborhoods are defined by such relationships as 
physical proximity and do not depend on the y-values of the population, 
networks do depend on the population y-values, corresponding roughly to 
the natural aggregations of animals, plants, or other individuals in the 
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population. 
If each initial primary unit consists of a set of units evenly spaced in 

some arrangement throughout the population, the initial sample will be 
termed a systematic initial sample. The initial primary units will be called 
strips if each initial primary unit consists of a row of units arranged in a 
straight line. 

The draw-by-draw selection probability Pij for unit Uij is the proba­
bility in any initial draw of selecting anyone of the primary units that 
intersects the network containing unit Uij or, if unit Uij does not satisfy 
the condition, selecting a primary unit that intersects the network of any 
unit satisfying the condition in the neighborhood of unit Uij. That is, 

mij + aij 
Pij = N ' 

where mij is the number of primary units that intersect the network con­
taining unit Uij, and aij is the number of primary units which do not 
intersect the network of unit Uij but intersect the network of one or more 
units satisfying the condition in the neighborhood of unit Uij. For a unit 
satisfying the condition, aij = 0, while for a unit not satisfying the con­
dition, mij = l. 

The probability (Xij that unit Uij is included in the sample is the prob­
ability that one or more primary units of the initial sample intersects the 
network that includes unit Uij or intersects a network of which unit Uij is 
an edge unit. That is, 

The expected sample size, that is, the expected number of distinct sec­
ondary units in the final sample, is the sum of the inclusion probabilities 
(Godambe, 1955; and see Cassel, Sarndal, and Wretman, 1977, p.ll), 
so that the expected sample size v expressed in terms of the equivalent 
number of primary units in the final sample is 

3. Estimators 

With the adaptive cluster sampling designs described in this paper, 
standard estimators of the population mean and total are biased. With 
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spatially aggregated populations, for example, if additional units are add­
ed to the sample whenever high abundance is observed, the final sample 
tends to contain units with higher than average abundance, and the sam­
ple mean will overestimate the population mean. If, on the other hand, 
the estimator is formed by averaging first all y-values associated with the 
selection of a primary unit-that is, the units of the primary unit to­
gether with all units adaptively added to the sample as a result of initial 
selection of that primary unit-the mean of these averages may tend to 
underestimate the population mean, due to the fact that, whenever units 
with higher than average y-values are selected, additional sampling com­
mences until low values are obtained, while when units with low values 
are selected, no such compensatory procedure commences. 

In this section, therefore, estimators are given which are unbiased with 
the adaptive cluster sampling designs ofthis paper. Since these estimators 
are in fact design-unbiased, the unbiasedness does not depend on any 
assumptions about the population itself. 

3.1 The Initial Sample Mean 

One way to obtain an unbiased estimator is to ignore all units adaptively 
added to the sample and use the sample mean tl of the initial sample: 

1 N M 

tl = -M LLYij. 
nl. . 

z=l J=l 

This estimator does not make use of the observations adaptively added 
to the sample. It is of interest in this paper because it offers the basis 
for nonadaptive alternatives with which the adaptive strategies may be 
compared. 

From classical results on simple random sampling without replacement, 
tl is unbiased and has variance 

where 

1 N (M )2 
(Ji = N -1 b [;Yi j - Mf-l 

An unbiased estimator of variance is 
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where 

( )

2 
1 nl M 

si = nl _ 1?= ?= Yij - M t1 
z=l )=1 

An unbiased estimate of variance is, of course, not available for system­
atic samples with only one starting point (though see Wolters, 1984, for 
methods useful in practice). 

3.2 An Estimator Based on Partial Selection Probabilities 

It is also possible to obtain unbiased estimators which do make use 
of observations in addition to those initially selected. Estimators such 
as the Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943) and the 
"multiplicity" estimator (cf. Sirken, 1970, 1972) achieve unbiasedness by 
dividing each observation by its selection probability and multiplying by 
the number of times the unit was selected. With the adaptive cluster sam­
pling designs of this paper, however, not all of the selection probabilities 
as given in Section 2 can be determined from the sample data. When a 
unit not satisfying the condition appears in the sample, one may not know 
whether its selection probability is influenced by the presence of units in 
its neighborhood which do satisfy the condition. The unbiased estimator 
of this section therefore depends only on aspects of the selection probilities 
which are known. 

For the estimator of this section and the next, it will be convenient to 
relabel the variables in terms of the networks of the population rather than 
in terms of the individual units. Let the K networks of the population 
be labelled 1, ... , K, and let Yi denote the total of the y-values in the 
i-th network. Define the indicator variable hi to be 1 if the k-th primary 
unit intersects the i-th network and 0 otherwise. Let Xi be the number 
of primary units which intersect the i-th network, that is, Xi = ~f=l Iki. 

Consider the estimator 

nl K I 
_ 1 ~~ Yi ki t 2 ---DD--· 

Mn1 . Xi 
k=l z=l 

Note that variables only for those networks that are intersected by selected 
primary units enter into the above expression. 

A network y-value is utilized in the estimator as many times as there 
are primary units in the initial sample that intersect it. Some observations 
in the data-associated with units not satisfying the condition and not 
included in the initial sample-are not utilized at all in the estimator. 
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The actual selection probability for network i is related to Xi but may 
also depend, in a manner not known from the data at hand, on other 
networks. 

It is shown in Appendix A that t2 is an unbiased estimator of the 
population mean with variance 

where 

N (K )2 a~ = 1 L L yJki - Mp 
N -1 . Xi 

k=l z=l 

An unbiased estimator of the variance of Y2 is given by 

where 

3.3 An Estimator Based on Partial Inclusion Probabilities 

The Horvitz-Thompson estimator (Horvitz and Thompson, 1952) esti­
mator achieves unbiasedness by dividing the y-value for each unit in the 
sample by the probability that the unit is included in the sample. With 
the adaptive cluster sampling designs of this paper, not all of these inclu­
sion probabilities, as given in Section 2, are known from the sample data. 
In particular, the constants aij as defined in Section 2 may not be known 
because the sample may not reveal units that satisfy the condition in the 
neighborhoods of sample units that do not satisfy the condition. In this 
section, an unbiased estimator is given based on the partial knowledge of 
inclusion probabilities obtainable from the data. 

Let 7ri denote the probability that one or more of the primary units 
which intersects network i is included in the initial sample. With the 
adaptive cluster sampling designs of this paper, this probability is given 
by 
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Let 7rij denote the probability that one or more of the primary units which 
intersect both networks i and j is included in the initial sample. With the 
designs of this paper, 

where Xij denotes the number of primary units which intersect both net­
works i and j. It is emphasized that the 7r'S are not the actual network 
inclusion probabilities, but are computable from the sample data. 

Define the indicator variable Zi to be 1 if one or more of the primary 
units which intersect network i are included in the initial sample and 0 
otherwise. Consider the estimator t3 given by 

K 
1 ~ YiZi 

t3 = MN L....t -.-, 
i=l 7rz 

so that the summation is over the distinct networks in the sample which 
intersect one or more primary units of the initial sample. The weight an 
observation receives in the estimator does not depend, as it does with t 2 , 

on the number of intersecting primary units selected, as long as at least 
one of them is included in the initial sample. Also, some observations in 
the data may receive zero weight. 

The estimator t3 is unbiased for the population mean (see Appendix B) 
and has variance 

with the convention that 7rii = 7ri. 

An unbiased estimator of this variance is given by 

K K -et ) 1 L L YiYjZiZj ( 7rij 1) var 3 = -- - , 
M2 N2 7r" 7r"7r' 

i=l j=l ZJ Z J 

provided that none of the joint probabilities 7rij are zero. 

3.4 Improvement of the Estimators with the Rao-Blackwell Method 

Since each of the above unbiased estimators is not necessarily a function 
of the minimal sufficient statistic, it is in principle possible that each 
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could be improved by the Rao-Blackwell method of taking its conditional 
expectation given the sufficient statistic. The minimal sufficient statistic 
for the finite population sampling situation is the unordered set of distinct, 
labelled observations (Basu, 1969), that is, the y-values together with the 
identities of the units with which they are associated, without regard to 
order of selection or number of times selected. Given a set of data, one 
could therefore compute the average of the estimator obtained over all 
possible res elections from the data of nl distinct primary units which 
would give rise to exactly the same set of data. 

While the method can offer practical improvements in estimators for 
such designs as adaptive cluster sampling with initial simple random sam­
ples (Thompson, 1989) and certain designs in which sample sizes within 
strata are based on initial observations (Kremers, 1987), the method does 
not appear to be of great importance for most situations in which the 
designs considered in this paper would be applied. Because of the very 
specific patterns of primary and secondary units typical of the samples 
obtained, one would not often expect to find other initial primary unit 
selections that would give rise to exactly the same value of the minimal 
sufficient statistic. 

4. Example 

Sample calculations for the adaptive cluster sampling strategies of this 
paper will be illustrated with two types of designs. In one, the primary 
units consist of long, thin strips. The other has an initial systematic 
sampling design, with starting points chosen at random in a four-by-four 
square and the positions repeated throughout the study area. The neigh­
borhood of a unit is defined to consist of itself together with all adjacent 
(sharing a full edge) units. Thus, for a unit not on the boundary of the 
study region, the neighborhood consists of five units in a cross shape. 

The square study region of 400 units is depicted in Figures 1 and 2. 
The locations of individuals or objects in the study region were produced 
with a realization of a Poisson cluster process (cf. Diggle, 1985), with 
three parent locations selected at random and Poisson (mean= 1 00) num­
bers of offspring distributed about each parent with a bivariate Gaussian 
distribution (with standard deviation 0.03 in the unit square). The object 
of sampling is to estimate the number of objects in the study region (the 
correct answer: 326) or, equivalently, the mean number per unit (0.815). 
The 400 population y-values for the example are listed in Appendix C. 

A unit is considered to satisfy the condition if it contains at least one 
individual of the population, so that any time a selected unit contains one 
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or more individuals, the remaining units in its neighborhood are added to 
the sample. Figure 1 shows the sample obtained as the result of the initial 
selection of five of the strips. Figure 2 shows the sample obtained with 
an initial selection of two systematic starting points. Sample calculations 
will be carried out for these illustrated samples. 

In the initial strip plot sample, the first (leftmost) of the primary units 
in the sample intersects two collections of units which satisfy the con­
dition, leading to the additional clusters of units added to the sample. 
The network of units satisfying the condition within the uppermost of 
these clusters has total y-value 106; it can be determined from the sample 
that this network intersects four of the primary units. The lower cluster 
has total y-value 105 and also intersects four primary units. All other 
observations in the data are zero. The term l:;~1 Yihdmi associated 
with the first sample primary unit is (106/4) + (105/4) = 52.75. For the 
second sample primary unit the term is 105/4=26.25, and, for the other 
three primary units in the sample, the term is zero. The estimate t2 is 
(1/20)(1/5)(52.75 + 26.25 + 0 + 0 + 0) = .79. The variance estimate is 
VG:r(t2) = (20 - 5)/[(202)(20)(5)](555.85625) = .2084, in which 555.85625 
is the sample variance of the values 52.75, 26.25, 0, 0, and O. 

The intersection probability for each of the two non-zero networks in the 
sample is 1 - (20;4) / (25°) .7183, and the estimator t3 is 
(1/20)(1/20)[(106/.7183) + (105/. 7183)] = .7344. Since two primary units 
intersect both networks, the joint intersection probability for the two sam­
ple networks is 1- [(2°5- 4) + CO;4) - CO-4;4+2)]/ (25°) = .5657. The sample 
estimate of variance is VG:r( t3) = (1/202 )(1/202){ (1062 /. 7183)[(1/.7183)-
1] + (1052/. 7183)[(1/. 7183) -1] + 2(106)(105/.5676)[(.5676/. 71832) -1]} = 
.09963. 

For the sample with the initial systematic design, the first primary 
unit (based on the starting position in the third column of the second 
row) intersects the central left network, with y-total 106, while the sec­
ond primary unit (starting position in fourth column of third row) in­
tersects both that network and the top right network, which has total 
y-value 115. By dividing the study area into four-by-four squares, it 
can be determined that 10 primary units (that is, 10 of the 16 pos­
sible systematic samples) intersect the top right network and 13 inter­
sect the central left network, while nine intersect both. For this sam­
ple, t2 = (1/25)(1/2)[8.1538 + 19.6538] = .5562, and VG:r(t2) = [(16 -
2)/(252)(16)(2)](66.125) = .0463. The intersection probability for the top 
network is .875 and for the left network is .975, and their joint intersec­
tion probability is .8583. For this sample, t3 = (1/25)(1/16)(115/.875 + 
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106/.975) = .6004, and var(t3) = (1/252 )(1/162){(1152 /.875)[(1/.875) -
1] + (1062 /.975)[(1/.975) -1] + 2(115)(106/.8583)[(.8583/((.875)(.975))-
1] = .01684. 

The actual variances for each of the unbiased estimators are given in 
Table 1 for the design with the initial strips and in Table 2 for the ini­
tially systematic design. In addition to the estimators tl, t2, and t3, the 
variance has been computed for the sample mean tr of a simple random 
sample of primary units with sample size equal to the expected sample 
size under the adaptive designs. The variance of tr is computed using the 
formula of Section 3.1 with sample size E( v), even if fractional, in place 
of nl. Thus, tr offers one way to compare the adaptive strategies with 
nonadaptive counterparts of equivalent sample size. Sample sizes in the 
table are expressed in terms of primary units. One primary unit consists 
of 20 secondary units in the strip design and 25 secondary units in the 
systematic design. The tables give variances obtained with initial sample 
sizes ranging from one up to a sampling fraction of one-half. 

With the initial strip design, the adaptive strategies with an initial sam­
ple size of one primary unit are slightly more efficient than the comparable 
nonadaptive strategy for the example population. The relative advantage 
of the adaptive strategies increases with increasing initial sample size, 
and also the efficiency of t3 relative to t2 increases. With an initial sam­
ple size of 10 (initial sampling fraction of one-half), the adaptive cluster 
sampling strategy adds less than one primary unit to the expected sample 
size [E(v) = 10.76]' but is almost five times as efficient as the equivalent 
nonadaptive strategy [var(tn/Var(t3) = .04917/.01008 = 4.88]. 

With the initial systematic sampling design, the adaptive strategies are 
dramatically more efficient than their nonadaptive counterparts for the 
example population. Also, comparing Tables 1 and 2, one sees that even 
with conventional systematic strategies (tl and tn, variances are con­
siderable lower than with the conventional strategies using strips. (This 
result would be expected due to the positive, monotonically decreasing 
covariance density function of the Poisson cluster process-see for exam­
ple, Matern, 1988 and Thompson and Ramsey, 1987.) The efficiency of 
the adaptive strategy with t3 relative to the comparable nonadaptive sys­
tematic strategy with tr ranges from 152% for a single initial systematic 
sample (.12852/.08441=1.52) to infinity-the adaptive strategy has zero 
variance for initial selections of more than six, as the intersection proba­
bility for each of the three networks in the population becomes one with 
such a design. 
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ApPENDIX A 

The estimator t2 can be written 

K 

1 L Yiri t2 = -- --, 
Mnl Xi 

i=l 

where the random variable ri denotes the number of primary units in the initial sample 
that intersect the i-th network of the population. Under the design, ri has a hyperge­
ometric distribution with expected value n1x;/N. The expected value of t2 is thus 

K K 

1 L Yi n 1Xi 1 L E(t2) = -- --- = -- Yi = p, 
Mn1 XiN MN 

i=l i=l 

so t2 is an unbiased estimator of the population mean. 
An easy way to obtain the variance of t2 is to associate with primary unit i of 

the population the variable Wi = (l/M) ~~1 y;Ik;/Xi, for i = 1, ... , N, using the 
notation of Section 3.2. Then t2 is the sample mean of the Wi for a simple random 
sample of size n1. The formulas for the variance and the estimator of variance for t2 
follow readily. 

ApPENDIX B 

The estimator t3 can be written 

K 
1 L YiZi t3 = -- --, 

MN 7ri 
i=l 

where the random variable Zi equals 1 if one or more primary units of the initial sample 
intersect network i, and Zi equals 0 otherwise. Under the design, Zi is a BernoulIi 
random variable with expected value 7ri. The expected value of t3 is thus 

K K 
1 ~ Y'7r' 1 ~ 

E(t3) = MND ~i' = MNDYi=P, 
i=l i=l 

so that t3 is an unbiased estimator of the population mean. 
The variance of t3 can be written 

K K 
1 ~~ YiYj 

vat(t3) = -2-- DD --COV(Zi,Zj). 
M N2. . 7ri7rj 

,=1 J=l 

Since var(zi) = 7ri(l - 7ri) = 7ri - 7rT, and COV(Zi, Zj) = 7rij - 7ri7rj for i =I- j, 

K K 
1 ~~Y'Y' var(t3) = ---DD _'_J (7rij 

M2 N2. . 7ri7rj 
,=1 J=l 
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using the convention that 1rii = 1r. 

The expression in Section 3.3 for ;;;r(t3) is unbiased for var(t3) because E(ZiZj) = 
1rij· 

ApPENDIX C 

The 400 y-values for the population in the example of Section 4 are listed below: 

0 0 0 0 0 0000000000 o 0 0 0 0 

o 0 0 0 0 0000000000 o 0 0 0 0 

o 0 0 0 o 0 0 0 0 0 0 0 0 0 14 25 2 0 0 0 
0 0 0 0 0 o 0 0 0 0 0 0 0 0 22 38 3 0 0 0 
0 0 0 0 0 0000000022 6 1 0 0 0 

0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 

0 1 1 1 0 000 0 0 0 0 0 0 0 0 o 0 0 0 

211 26 5 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 

2 22 19 8 0 0000000000 0 o 0 0 0 

o 3 5 0 0 0000000000 0 o 0 0 0 

0 0 0 0 0 0000000000 0 o 0 0 0 

0 0 0 0 0 000 0 0 0 0 0 0 0 0 000 0 

0 0 0 0 0 00000 0 0 0 0 0 0 o 0 0 0 
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o 0 0 0 0 000 0 0 0 0 0 0 0 0 o 0 0 0 
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Table 1 
Variances with initial long, thin strip plots 

n1 E[v] var(t1 ) var( t~) var( t 2) var(t3) 

1 1.57 1.30628 0.80706 0.79253 0.79253 

1 1.57 1.30628 0.80706 0.79253 0.79253 

3 4.35 0.38959 0.24758 0.23637 0.19944 

4 5.58 0.27501 0.17749 0.16685 0.12651 

5 6.74 0.20625 0.13530 0.12514 0.08378 

6 7.82 0.16042 0.10702 0.09733 0.05636 

7 8.85 0.12768 0.08666 0.07746 0.03788 

8 9.82 0.10313 0.07123 0.06257 0.02510 

9 10.76 0.08403 0.05907 0.05098 0.01621 

10 11.66 0.06875 0.04917 0.04171 0.01008 

Table 2 
Variances with initial systematic samples 

n1 E[v] var( t 1 ) var(t~ ) var(t2) var(t3) 

1 2.98 0.44078 0.12825 0.08441 0.08441 

2 4.36 0.20570 0.07846 0.03939 0.01684 

3 5.31 0.12734 0.05919 0.02439 0.00363 

4 6.15 0.08816 0.04701 0.01688 0.00072 

5 6.98 0.06465 0.03798 0.01238 0.00011 

6 7.80 0.04898 0.03089 0.00938 0.00001 

7 8.62 0.03778 0.02516 0.00724 0.00000 

8 9.44 0.02939 0.02042 0.00563 0.00000 
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FIGURES 

Figure 1. Adaptive cluster sample with initial selection of five strip plots. 

Figure 2. Adaptive cluster sample with initial selection of two systematic 
samples. 
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