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Abstract. Sampling designs in which the selection procedure depends on 
observed values of the variable of interest have been of theoretical interest 
to statisticians for some time, and, in a variety of real-world sampling 
situations, researchers would like to be able to adaptively increase sam­
pling effort in the vicinity of observed values that are high or otherwise 
interesting. This paper describes sampling designs in which, whenever an 
observed value of a selected unit satisfies a condition of interest, additional 
units are added to the sample from the neighborhood ofthat unit. Because 
such a selection procedure introduces biases into conventional estimators, 
several estimators are given which are design-unbiased with the adaptive 
strategy. The Rao-Blackwell Theorem is used to obtain improved unbi­
ased estimators; because of the incompleteness of the minimal sufficient 
statistic, more than one of these improved estimators are obtained. The 
results and examples in this paper show that adaptive cluster sampling 
strategies give lower variance than conventional strategies for certain types 
of populations and, in particular, provide an extremely effective way of 
sampling rare, clustered populations. 

1. Introduction 

In many sampling situations, researchers would like to adaptively in­
crease sampling effort in the vicinity of observed values that are high or 
otherwise interesting. This paper describes designs in which, whenever 
the observed value of a selected unit satisfies a condition of interest, addi­
tional units are added to the sample from the neighborhood of that unit. 
Still more units may be added to the sample if any of these additional 
units also satisfies the condition. Because such selection procedures can 
introduce biases into conventional estimators, several unbiased estimators 
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are given for use with the adaptive designs. Variance formulae and un­
biased estimators of variance are also given. For some of the adaptive 
strategies, simple criteria determine when the adaptive procedure gives 
lower variance than simple random sampling with equivalent sample size. 
Based on these results and on the examples evaluated in this paper, adap­
tive cluster sampling appears to be a highly effective method for sampling 
populations with natural "clustering" patterns. 

The basic idea of the designs in this paper is illustrated in Figure 1, 
in which the problem is to estimate the mean number of point-objects­
which could for example represent locations of animals or mineral de­
posits-scattered unevenly in a study region partitioned into 400 square 
sampling units. An initial random sample of 10 units is shown in Figure 
la. Whenever one or more of the objects is observed in a selected unit, the 
adjacent neighboring units-to the left, right, top or bottom-are added 
to the sample. When this process is completed, the sample consists of 
45 units, shown in Figure lb. Neighborhoods of units may be defined in 
many ways other than the spatial proximity system of this example. 

A design such as illustrated differs from most classical sampling designs 
in that the selection procedure depends on observed values of the variable 
of interest. Motivation for adaptive designs such as this one arises in a 
number of real-word sampling situations such as the following examples 
from ecological, geological, and epidemiological studies. 

In a survey of a rare and endangered bird species, observers record every 
bird seen or heard in the vicinity of randomly selected sites. At most of the 
sites, no birds of the species are detected. When the species is observed 
at a site, however, subsequent observation of neighboring sites will often 
reveal additional individuals of the species. Similar patterns have been 
observed in aerial surveys of polar bears, trawl surveys of fish and shellfish, 
and surveys of lichen biomass. In studies to assess the mineral or fossil 
fuel reserves of a region, neighborhoods of initially sampled units with the 
highest yields may similarly be the most promising for subsequent sam­
pling effort. In an epidemiological study of a sexually transmitted disease, 
an initial random sample from the population may contain relatively few 
cases. Subsequent sampling of sexual partners of the infected individuals 
in the initial sample may reveal considerably higher incidence. 

Sampling designs in which the selection procedure depends on observed 
values of the variable of interest have been of theoretical interest to statis­
ticians for some time. In the paper establishing that the minimal sufficient 
statistic in finite population sampling is the unordered set of distinct ob­
servations together with their unit labels, Basu (1969) expressed the view 
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that the most efficient designs would be ones in which the selection prob­
abilities were conditional on the observed values. Zacks (1969) described 
an optimal fixed-sample-size adaptive design from a Bayesian perspective; 
Soloman and Zacks (1970), while recognizing the theoretical advantage 
of designs depending on the values of the variable of interest, observed 
that the optimal design as described would be impractically complex to 
implement and advocated the development of much simpler sequential 
designs. Cassel, et. al. (1977) summarized the subsequent literature on 
sampling designs which make use of observed values ("informative" designs 
in their terminology), but found little of practical interest there. (Adap­
tive designs such as described in this paper, being readily implemented 
and highly efficient for some types of populations, may necessitate a re­
assessment of the practicality of informative designs in general.) 

In the statistical literature on sequential statistical methods [cf. Wald 
(1947), Chernoff (1972), Woodroofe (1982), Siegmund (1985)J many re­
sults are found showing advantages such as increased power, lower ex­
pected sample size, or more controllable precision compared to nonsequen­
tial methods. Sampling designs which depend on the variable of interest 
are necessarily sequential, but go somewhat beyond the usual situation 
considered in sequential statistics in that the unit labels in the sampling 
data make it possible to choose during a survey not just how much to 
sample next but which units or group of units to sample next. Although 
these labels are responsible for many of the complications in the theory of 
finite population sampling [cf. discussions in Cassel, et. al. (1977), Chaud­
huri and Vos (1988)], estimators which use the labels are in some cases 
better than estimators which do not use the labels. This is certainly the 
case with the designs in this paper, in which unbiased estimators utiliz­
ing information from the labels in the data have lower variance than the 
unbiased estimator which does not use the unit labels. 

The estimators emphasized in this paper are design-unbiased, that is, 
the unbiasedness is based on the way the sample is selected rather than on 
assumptions about the population. The concept of unbiased estimation 
based on the design has had much influence in survey sampling practice 
since Neyman (1934) and has been the topic of more recent discussions in 
Sarndall (1978), Cassel, et. al. (1979), and Godambe (1982). 

By the Rao-Blackwell Theorem, any unbiased estimator that is not a 
function of the minimal sufficient statistic can be improved upon by tak­
ing its conditional expectation given the sufficient statistic. Blackwell's 
(1947) contribution to the topic was motivated by the problem of obtain­
ing an unbiased estimate of the mean following sequential stopping. The 
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method has since been used in a sequential context by Ferebee (1983) for 
estimating the drift of Brownian Motion and by Kremers (1987a), who 
applied it to sequential estimation of a binomial mean. Kremers (1987b) 
applied the Rao-Blackwell Theorem to two-stage adaptive sampling of a 
finite population with sample size depending on the values of initial obser­
vations and derived variance and variance estimation expressions for the 
estimator obtained. In finite population sampling, an unbiased estimator 
obtained by the Rao-Blackwell method is not in general a unique min­
imum variance unbiased estimator because the sufficient statistic is not 
complete, and in this paper, more than one distinct estimator is obtained 
through the Rao-Blackwell method. (This issue did not arise in Kremers' 
work because attention was restricted to estimators which ignore sampling 
unit labels). 

Birnbaum and Sirken (1965) described a sampling design, which has 
subsequently been termed "network" or "multiplicity" sampling, for sur­
veys of patients with rare diseases. In this design, a simple random sam­
ple (without replacement) is selected of units which may for example be 
households or medical institutions. An individual with the disease may 
be linked to more than one of these units. For example, the individual 
may be reported not only by his own household but also by households of 
close relatives; records of a patient with a rare disease may exist at sev­
eral medical institutions. The probability that the individual is included 
in the sample is thus related to the number of units to which he/she is 
linked, called the "multiplicity" of that individual. The additional units 
to which the individual is linked mayor may not be actually observed. 

Birnbaun1 and Sirken derived three unbiased estimators, and variance 
expressions for the first two, for use with this design. The first estimator 
divides each observation by its draw-by-draw selection probability, with 
each observation repeated in the estimator as many times as selected in 
the sample, and hence is of the Hansen-Hurwitz (1943) type. The second 
estimator divides each distinct observation by its probability of inclusion 
in the sample, and hence is of the Horvitz-Thompson (1952) type. (The 
third estimator depends on the order of selection and may be of less practi­
cal interest.) Subsequent papers [Sirken (1970, 1972a, 1972b), Sirken and 
Levy (1974), Nathan (1976), Levy (1977), Czaja et. al. (1986)J have con­
centrated on the Hansen-Hurwitz type of estimator. References to many 
innovative applications are found in Sudman et. al. (1988) and Kalton 
and Anderson (1986). The network sampling design was first used not 
to increase efficiency but because it unavoidably arose in the sampling 
situation (a patient having records at more than one medical institution). 
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Later papers on the subject recognized its potential for giving lower vari­
ance estimates than conventional procedures and for increasing the "yield" 
of the survey, i.e., the total number of individuals with the disease in the 
sample. 

The designs in this paper are related to network sampling in that se­
lection of certain units may lead to observation of others. Because of the 
way the decisions to observe additional units depend adaptively on the 
observed values of the variable of interest, however, the selection and in­
clusion probabilities are not in general known for all units in the sample. 
Modifications must therefore be made in estimators of the Hansen-H urwitz 
or Horvitz-Thompson types to obtain unbiased estimators. These mod­
ified estimators can then be improved if desired by the Rao-Blackwell 
method. 

Seber (1986) and Cormack (1988) have recognized the need for adaptive 
sampling methods to effectively sample ecological populations, because of 
the natural clustering tendencies of many such populations or the patch­
iness of their environments. Some two-stage adaptive designs allowing 
for increases or decreases in local sampling effort based on observed abun­
dances are described along with some ecological applications in Thompson 
and Ramsey (1983) and Thompson (1988). The adaptive cluster sampling 
designs presented in this paper, allowing for much flexibility in the defini­
tion of neighborhoods of units, appear to most directly satisfy the inclina­
tion of researchers in such fields to increase sampling effort in the vicinity 
of high observed abundances. In the examples with clustered popula­
tions evaluated in this paper, the adaptive strategies give, as anticipated, 
substantially lower variance than does simple random sampling. 

In Section 2 of this paper, adaptive cluster sampling designs are de­
scribed and some terminology given. Estimators which are unbiased with 
designs of this type are given in Section 3. Section 4 contains a small ex­
ample to which the adaptive and conventional strategies are applied and 
compared. In Section 5, variances and estimators of variance are worked 
out for the adaptive strategies. Expected sample size and cost are the 
topics of Section 6. Adaptive sampling and simple random sampling are 
compared in Section 7. Examples with spatially clustered populations are 
evaluated in Section 8. 

2. Designs 

Adaptive cluster sampling refers to designs in which an initial set of units 
is selected by some probability sampling procedure, and, whenever the 
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variable of interest of a selected unit satisfies a given criterion, additional 
units in the neighborhood of that unit are added to the sample. In the 
designs considered in this paper, the initial sample consists of a simple 
random sample of n1 units, selected either with or without replacement. 

As in the usual finite population sampling situation, the population 
consists of N units with labels 1,2, ... ,N and with associated variables of 
interest y = {Y1, Y2, ... , Y N }. The sample s is a set or sequence of labels 
identifying the units selected for observation. The data consist of the 
observed y-values together with the associated unit labels. The object 
of interest is to estimate the population mean f-l = N- 1 2..:{:1 Yi or total 
N f-l of the y-values. A sampling design is a function p( slY) assigning a 
probability to every possible sample s. In designs such as those described 
in this paper, these selection probabilities depend on the population y­
values. 

It is assumed that for every unit i in the population a neighborhood Ai 
is defined, consisting of a collection of units including i. These neighbor­
hoods do not depend on the population y-values. Classical (nonadaptive) 
cluster sampling is a special case in which the neighborhoods form a parti­
tion of the population (into clusters), but in general the neighborhoods are 
overlapping sets of units and do not correspond to clusters. In the spatial 
sampling examples of this paper, the neighborhood of each unit consists 
of a set of geographically nearest neighbors, but more elaborate neigh­
borhood patterns are also possible, including a larger contiguous set of 
units or a non contiguous set such as a systematic grid pattern around the 
initial unit. In other sampling situations, neighborhoods may be defined 
by social or institutional relationships between units. The neighborhood 
relation is symmetric: if unit j is in the neighborhood of unit i, then unit 
i is in the neighborhood of unit j. 

The condition for additional selection of neighboring units is given by 
an interval or set C in the range of the variable of interest. The unit i is 
said to satisfy the condition if Yi E C. In the examples of this paper, a 
unit satisfies the condition if the variable of interest Yi is greater than or 
equal to some constant c; that is, C = {x : x ~ c}. 

When a selected unit satisfies the condition, all units within its neigh­
borhood are added to the sample and observed. Some of these units may 
in turn satisfy the condition and some may not. For any of these units that 
does satisfy the condition, the units in its neighborhood are also included 
the the sample, and so on. 

Consider the collection of all the units that are observed under the 
design as a result of initial selection of unit i. Such a collection, which 
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may consist of the union of several neighborhoods, will be termed a cluster 
when it appears in a sample. 

Within such a cluster is a sub collection of units, termed a network, with 
the property that selection of any unit within the network would lead to 
inclusion in the sample of every other unit in the network. 

Initial selection of any unit in the network will in fact lead to selection 
of the entire associated cluster. Any unit in the cluster not satisfying the 
condition is termed an edge unit. While an edge unit does not satisfy 
the condition, it is in the neighborhood of one or more units that does. 
Selection of any unit in the network will result in inclusion of all units in 
the network and all associated edge units, but selection of an edge unit 
will not result in the inclusion of any other units. These distinctions be­
come important in determining selection probabilities on which unbiased 
estimators and sample size computations depend. 

It will be convenient to use the term network to include isolated (non­
edge) units not satisfying the condition in addition to the interconnected 
groups of one or more units satisfying the condition. Then, given the 
y-values, the population of units may be partitioned into networks. 

A number of sampling designs are possible for the selection of the initial 
nl units in adaptive cluster sampling. Two are considered in this paper: 

2.1 Initial sample selected by simple random sampling without 
replacement. In this design, an initial sample of nl units is selected by 
simple random sampling without replacement. Whenever the y-value of a 
selected unit satisfies the given criterion, all units in its neighborhood are 
added to the sample, and the process continues until the neighborhood of 
every unit satisfying the criterion is included. 

Although the nl units in the initial sample are distinct due to the 
without-replacement sampling, the data may contain repeat observations 
due to selection in the initial sample of more than one unit in a cluster. 

The unit i will be included in the sample either if any unit of the network 
to which it belongs (including itself) is selected as part of the initial sample 
or if any unit of a network of which unit i is an edge unit is selected. Let 
mi denote the number of units in the network to which unit i belongs, 
and let ai denote the total number of units in networks of which unit i 
is an edge unit. Note that if unit i satisfies the criterion C then ai = 0, 
while if unit i does not satisfy the condition then mi = 1. The probability 
of selection of unit i on anyone of the nl draws is Pi = (mi + ai) / N. The 
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probability that unit i is included in the sample is 

Neither the draw-by-draw selection probability Pi nor the the inclusion 
probability ()!i can be determined from the data for all units in the sample, 
because some of the ai may be unknown. 

2.2 Initial sample selected by simple random sampling with re­
placement. When the initial sample is selected by simple random sam­
pling with replacement, repeat observations in the data may occur due 
either to repeat selections in the initial sample or to initial selection of 
more than one unit in a cluster. 

With this design, the draw-by-draw selection probability is Pi = (mi + 
ai) / N, and the inclusion probability is 

Under this design, as with the previous one, these probabilities can not 
be determined from the data for all units. 

3. Estimators 

Classical estimators such as the sample mean y, which is an unbiased 
estimator of the population mean under a nonadaptive design such as 
simple random sampling, or the mean of the cluster means y, which is 
unbiased under cluster sampling with selection probabilities proportional 
to cluster sizes, are biased when used with the adaptive designs described 
in this paper. (These biases are demonstrated in the small example of the 
next section.) In this section several estimators are examined which are 
unbiased for the population mean under the adaptive designs. 

The expected value of an estimator t is defined in the design sense, that 
is, E[t] = 2:tsp(sly), where ts is the value ofthe estimate computed when 
sample s is selected, p( slY) is the design, and the summation is over all 
possible samples s. 

The sampling strategy-the estimator together with the design-is de­

sign unbiased for the population mean if E[t] = N-1 2:[:1 Yi for all popu­
lation vectors y E ~N. The emphasis on design-unbiased strategies stems 
from the desire to have estimators whose unbiasedness does not depend 
on any assumptions about the nature of the population itself. 
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3.1 The initial sample mean. If the initial sample in the adaptive de­
sign is selected by simple random sampling, with or without replacement, 
the mean ih of the n1 initial observations is an unbiased estimator of the 
population mean. This estimator ignores all observations in the sample 
other than those initially selected. 

3.2 A modified Hansen-Hurwitz type of estimator. For sampling 
designs in which n units are selected with replacement and the probability 
Pi of selecting unit i on any draw is known for all units, the Hansen­
Hurwitz estimator tHH = (Nn)-l 2:~=1 Yk/Pk is an unbiased estimator 
of the population mean. The n units in the sample may include repeat 
selections, and an observation is used in the estimator as many times as 
it is included in the sample. 

With the adaptive cluster sampling designs of this paper, the selection 
probabilities are not known for every unit in the sample. An unbiased 
estimator can be formed by modifying the Hansen-Hurwitz estimator to 
make use of observations not satisfying the condition only when they are 
selected as part of the initial sample. Let W k denote the network which 
includes unit k, and let mk be the number of units in that network. (Recall 
that a unit not satisfying the criterion is considered a network of size one.) 
Let y'k represent the average of the observations in the network which 
includes the k-th unit ofthe initial sample, that is, y'k = (mk)-l 2:jEWk Yj. 

The modified estimator is 

To see that t H H* is unbiased, let Zi indicate the number of times the 
i-th unit of the population appears in the estimator, which is exactly 
the number of times the network including unit i is represented in the 
initial sample. Note that Zi may be less than the number of times unit 
i appears in the sample, which includes selections of unit i as an edge 
unit. The random variable Zi has a hypergeometric distribution when 
the initial sample is selected by simple random sampling without replace­
ment and a binomial distribution when the initial sample is selected by 
simple random sampling with replacement. With either design, Zi has 
expected value E[Zi] = n1mi/N. Writing the estimator in the form 

tHH* = nIl 2:[:1 ziyi/mi, it follows that E[tHH*] = N-1 2:[:1 Yi, so 
that t H H* is a design-unbiased estimator of the population mean. 

3.3 Improvement upon Y1 and tHH* through the Rao-Blackwell 
method. Neither Y1 nor tHH* is a function of the minimal sufficient 
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statistic. Therefore, each of these unbiased estimators can be improved 
upon using the Rao-Blackwell method of taking their conditional expecta­
tions given the minimal sufficient statistic. The minimal sufficient statistic 
D in the finite population sampling setting is the unordered set of distinct, 
labelled observations; that is, D = {(k,Yk) : k E s}, where s denotes the 
set of distinct units included in the sample. Both fh and t H H* depend 
on the order of selection; t H H* depends on repeat selections, and when 
the initial sample is selected with replacement, fh also depends on repeat 
selections. 

First consider the estimator f} = E[Yl!Dj, the application of the Rao­
Blackwell method to the initial sample mean. When the initial sample is 
selected by simple random sampling, each of the (~) possible combina­
tions of nl distinct units from the N units in the population has equal 
probability of being selected as the initial sample. When the initial sample 
is selected by simple random sampling with replacement, it is easiest to 
think in terms of the Nn 1 equally probable sequences, which distinguish 
order and can include repeat selections, of nl units chosen from the N 
units in the population. Conditional on the minimal sufficient statistic D, 
all initial samples of nl units which give rise through the design to the 
given value of D have equal selection probability; all other initial samples 
have conditional probability zero. 

Let v denote the effective sample size, that is, the number of distinct 
units included in the sample. Since the units of the initial sample are 
included in the v distinct units in D, only C~) combinations or v n1 se­
quences need be considered conditional on D. An initial sample which 
gives rise through the design to the given value of D will be termed com­

patible with D. 

A sample edge unit is a unit in the sample which does not satisfy the 
condition but is in the neighborhood of one or more units in the sample 
which does satisfy the condition. Let I); denote the number of distinct net­
works represented in the sample exclusive of sample edge units. Because 
of the way the sample is selected, an initial sample of nl units gives rise to 
the given value of D if and only if the initial sample contains at least one 
unit from each of the I); distinct networks exclusive of sample edge units 
in D. Letting x j denote the number of units in the sample from the j-th 
of these networks, an initial sample of nl units from the v distinct units 
in D is compatable with D if and only if Xj ~ 1 for j = 1, ... ,1);. 

The conditional expectation of Yl, given D, is therefore the average of 
the means of all initial samples which are compatible with D. Indexing the 
combinations or sequences of nl units from v in any arbitrary way, let Ylg 
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denote the mean of the y-values of the g-th combination or sequence, and 
let the indicator variable 19 be one if the g-th combination or sequence 
is compatible with D and zero otherwise. The number of compatible 
combinations or sequences is e = ~;=l 19 , where T/ = C.:'J if the initial 
sample is selected without replacement and T/ = v n1 if it is selected with 
replacement. The Rao-Blackwell estimator can then be written 

Next consider E[tHH* IDJ, the application of the Rao-Blackwell method 
to t H H *. The resulting estimator turns out to be precisely iJ, the estimator 
obtained by application of the method to the initial sample mean. To see 
that this is the case, it is helpful to consider the statistic D* consisting 
of the unordered set of labelled observations together with information 
about the number of times each unit is included in the sample. That is, 
D* = {(k,Yk,rk),k E s}, where s is the set of distinct units included 
in the sample and rk is the number of times unit k was included in the 
sample. The statistic D* is sufficient but not minimal sufficient. 

An initial selection of nl units giving rise the statistic D* determines 
nl networks, some of which may be repeats, contained in D*. Let /'i,* 

be the number of distinct networks among these. (Note that a sample 
edge unit forms one of these groups only if it was included in the initial 
selection; /'i,* ::::: /'i" since no sample edge unit forms one of the /'i, groups 
defined earlier.) Because ofthe way the sample is selected, the same value 
of the statistic D* will arise from any initial sample of nl units having 
exactly the given numbers of units in each of the /'i,* groups. 

Let 'l1k denote the network which includes unit k, mk the number of 
units in it, and y'k the average of the observations in it. Let Wk be the 
number of times 'l1 k is represented in the initial sample. (If the unit k in 
the sample is not a sample edge unit, then Wk = rk. If unit k is a sample 
edge uni t, then W k equals r k less the number of times the networks of which 
it is an edge unit are included in the sample.) Let Uk be the number of 
times unit k is in the initial sample. 

Conditional on D* (which fixes Wk), the distribution of Uk for any unit 
k included in the above /'i,* networks is Bernoulli with expected value 
Wk/mk if the initial sample is selected by simple random sampling with­
out replacement. If the sampling is with replacement, the distribution is 
binomial with expectation Wk/mk' For any unit i not included in the /'i,* 

networks with initial representation in D*, Ui = O. 
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Writing ill = nIl I::~1 UiYi, the conditional expectation is E[;ih ID*) = 
-1 ~K* ~ / -1 ~nl -*.. . n 1 L..tk=l L..tjE1Jt k WjYj mj = n 1 L..ti=l Yi' SInce Wj IS constant for J E 

\]I k. Thus, EUh ID*) = tHH*· Since D is a function of D*, E[:ih ID*) = 
EUhID*,D). Therefore, E[tHH*ID) = E{EUhID*,D)ID} = E[thI D ) = fj. 

Thus, the Rao-Blackwell method applied to either ill or tHH* leads 
to the same improved estimator fj. Notice that observations in the data 
that were ignored in computing the estimators ill or tHH* are utilized in 
forming the estimator fj. 

3.4 A modified Horvitz-Thompson type of estimator. For sam­
pling designs in which the probabilities ai are known for all units, the 
Horvitz-Thompson estimator t HT = N-1 I::~=1 Yk / a k is an unbiased es­
timator of the population mean. The summation is over the v distinct 
units in the sample. 

With the adaptive designs of this paper, the inclusion probabilities are 
not known for all units included in the sample. An unbiased estimator 
can be formed by modifying the Horvitz-Thompson estimator to make use 
of observations not satisfying the condition only when they are included 
in the initial sample. Then the probability that a unit is included in the 
estimator can be computed, even though its actual probability of inclusion 
in the sample may be unknown. If the initial sample is selected by simple 
random sampling without replacement, define a~ = 1 _ (N :";k) / (~), 
where mk is the number of units in the network which includes unit k. 
If the initial selection is made with replacement, define a~ = 1 - (1 -
mk/N)n1. For any unit not satisfying the condition, mk = 1. Let the 
indicator variable h be zero ifthe k-th unit in the sample does not satisfy 
the condition and was not selected in the initial sample; otherwise, h = 1. 
The modified estimator is 

1 LV Yk 
tHT* = - -Jk · 

N a* 
k=l k 

To see that tHT* is unbiased, let Zi = 1 if unit i is utilized in the estimate 
and Zi = 0 otherwise. For any i, Zi is a Bernoulli random variable with 
expected value ai- Writing the estimator as tHT* = N-1 I::~1 ziyd ai it 

follows that E[tHT*) = N-1 I::~1 Yi, the population mean. 

3.5 Improvement upon tHT* through the Rao-Blackwell meth­
od. The estimator t HT* is not a function of the minimal sufficient statistic 
D because it depends on the order in which the observations are obtained, 
incorporating an observation which does not satisfy the criterion only if 
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it is included in the initial part of the sample. The estimator t HT* can 
therefore be improved upon using the Rao-Blackwell method to give the 
unbiased estimator i) = E[tHT* IDJ having lower variance. 

Because of the random sampling of the initial sample, the estimator i) 
will, by an argument similar to that of 3.3, be the average of the values of 
tHT* associated with the selections, compatible with D, of nl units from 
the v units in D. Letting tHT* denote the g-th compatible combination 
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or sequence of nl units from those in D, and with the notation used in 
3.3, the Rao-Blackwell estimator can be written 

The estimator i), obtained by the Rao-Blackwell method from tHT*, is 
not identical with y, obtained by the Rao-Blackwell method from either 
ill or t H H*. (The difference between the two estimators is demonstrated 
in the following small example.) The reason for this lack of uniqueness 
is the lack of completeness of the minimal sufficient statistic D. The 
incompleteness of D in the finite population sampling situation is due 
basically to the presence of the unit labels in D. Yet good use is made of 
these labels in constructing estimators for use with the adaptive designs 
in this paper-of the five unbiased estimators in this section, all but the 
initial sample mean depend on the labels in the data. 

4. A small example 

In this section the sampling strategies are applied to a very small pop­
ulation in order to shed light on the computations and properties of the 
adaptive strategies in relation to each other and to conventional strate­
gies. The population consists of just five units, the y-values of which 
are {1,0,2,10,1000}. The neighborhood of each unit includes all adjacent 
units (of which there are either one or two). The condition is defined by 
C = {x : x2=:5}. The initial sample size is nl = 2. 

With the adaptive design in which the initial sample is selected by 
simple random sampling without replacement, there are (~) = 10 possible 
samples, each having probability 1/10. The resulting observations and 
the values of each estimator are listed in Table 1. (If the initial sample is 
selected with replacement, the corresponding table is most conveniently 
made in terms of the 52 = 25 possible ordered initial samples, each with 
equal probability.) 
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In this population, the 4-th and 5-th units, with the y-values 10 and 
1000 respectively, form a network, while the 3-rd, 4-th, and 5-th units, 
with y-values 2, 10, and 1000, form a cluster. In the fourth row of the 
table, the 1-st and 5-th units, with y-values 1 and 1000, were selected 
initially; since 1000 2: 5, the single neighbor of the fifth unit, having y­
value 10, was added to the sample. Since 10 also exceeds 5, the neighboring 
unit with y-value 2 is also added to the sample. The computations for 
the estimators are tHH* = (1 + (10 + 1000)/2)/2 = 253 and tHT* = 
(1/.4 + 10;'7 + 1000;'7)/5 = 289.07, in which a~ = 1 - (~)/G) = 0.4 
and a~ = a; = 1 - G) / G) = 0.7. The classical estimator fj = 253.25 
is obtained by averaging all four observations in the sample, while y = 
(1 + (10 + 2 + 1000)/3)/2 = 169.67. 

The six distinct values of the minimal sufficient statistic D are indicated 
by the distinct values of the estimators fj and f), which are obtained by 
averaging tHH* and tHT* respectively over all samples with the same 
value of D. The seven distinct values of the statistic D* correspond to 
the distinct values of the estimator t H H* . 

The population mean is 202.6, and the population variance (defined 
with N - 1 in the denominator) is 198,718. One sees from the table that 
the unbiased adaptive strategies indeed have expectation 202.6, while the 
estimators fj and y, used with the adaptive design, are biased. 

With the adaptive design, the effective sample size v varies from sam­
ple to sample, with expected sample size 3.1. For comparison, the sample 
mean with a simple random sampling design (without replacement) and 
a sample size of 3.1 (assuming the reader is not disturbed by the artifi­
ciality of a noninteger sample size) has, by the standard formula, variance 
(198,718)(5 - 3.1)/(5(3.1)) = 24,359. 

From the variances and mean square errors given in the last row of 
the table, one sees that, for this population, the adaptive design with 
the estimator f) has the lowest variance among the unbiased strategies 
[note, however, the extra digit of reporting precision necessary in the 
table to show that var(f)) is slightly less than var(tHT*)]' and that all of 
the adaptive strategies are more efficient than simple random sampling. 
Among the five unbiased adaptive strategies, the four which make use of 
labels in the data have lower variance than the one which does not. 

5. Variances and estimators of variance 

In this section, variance formulae are given for each of the unbiased 
adaptive strategies, and unbiased estimators for each of those variances 
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are given as well. The variance of an estimator is defined in the design 
sense. If t is an unbiased estimator of the population mean, the variance 
of t is var(t) = I:(ts - ,uip(sIY), where ts is the value of the estimate 
when sample s is selected, p( sly) is the design, and the summation is over 
all possible samples. 

5.1 The initial mean. Some familiar results about ih, the sample mean 
of a simple random sample of n1 units, are given here to help establish 
notation that will be used in succeeding sections. With the population 
variance defined as (72 = (N - 1)-1 =[:l(Yi - p)2, the variance of ih 
is (72(N - n1)/(Nn1) if the sampling is without replacement and (72/n1 
if the sampling is with replacement. An unbiased estimator of variance 
is 'iJO:r(jh) = a-i(N - n1)/(Nn1) in the case of without replacement and 
a-Un1 with replacement, where the initial sample variance is a-r = (n1 -
1 )-1 I:~~1 (Yk - Y1)2. 

5.2 The estimator tHH*' The estimator tHH* = nIl I:~~1 Yk can be 
viewed as a sample mean, based on a simple random sample, in which 
the variable of interest associated with the i-th unit in the population is 
yi, the mean of the y-values in the network which includes unit i. The 
variance of t H H* is thus 

N N (-* )2 - n1 '" Yi - P 
var(tHH*) = Nn1 f;;{ (N -1) 

if the initial sample is selected without replacement, and var(tHH*) = 

nIl I:[:lWi - p)2/(N - 1) if the initial sample is selected with replace­
ment. 

An unbiased estimator of this variance is 

N nl (-* t )2 'iJO:r(tHH*) = _-_n_1 L Yk - HH* 
Nn1 k=l (n1 - 1) 

if the initial sample is selected without replacement, and 'iJO:r( t H H*) = 

nIl =~~1 (iJk - tHH*)2 /(n - 1) if the initial sample is selected with re­
placement. 

5.3 The estimator y. Since y = E[tHH*], where D is the minimal suf­
ficient statistic, the variance of tHH* can be decomposed as var(tHH*) = 

E[var(tHH* ID)] + var(E[tHH* ID)), so that the variance of y can be writ­
ten 

var(y) = var(tHH*) - E[var(tHH* ID)]. 
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An unbiased estimator of var(tHH*) is va:r(tHH*), given in the preced­
ing subsection. But by the Rao-Blackwell Theorem, a better unbiased 
estimator of var(tHH*) is E[va:r(tHH* )ID]. This conditional expectation 
is obtained as the average, over all compatible selections of n1 observa­
tions from D, of the variance estimates as given in the preceding section. 
An unbiased estimator of the variance of fj is thus provided by 

The second term on the right is computed from the sample as 
var(tHH*ID) = e-1 ",£(tHH* - fj)2, where tHH* denotes the modified 
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Hansen-Hurwitz estimate obtained from the g-th compatible selection, 
and the summation is over the e compatible selections of n1 observations 
from D. 

Although unbiased, this estimator of variance can, with some sets of 
data, take on negative values. 

5.4 The estimator tHT*. To obtain the variance of tHT*, it will be 
most convenient to change notation to deal with the networks into which 
the population is partitioned, rather than individual units. Let ( denote 
the number of networks in the population and let W j be the set of units 
comprising the j-th network. Let mj be the number of units in network j. 
The total of the y-values in network j will be denoted Yj· = "'£iEWj Yi. The 
probabilityai (from 3.4) that the unit i is utilized in the estimator is the 
same for all units within a given network j; this common probability will 
be denoted 7r j. Define the indicator variable Vi to be one if the initial sam­
ple contains one or more units from the j-th network and zero otherwise. 
For any network j, Vj is a Bernoulli random variable with expected value 
E[vj] = 7rj and var(vj) = 7rj(l - 7rj). For two networks j and h, the co­
variance of the indicator variables is cov(Vj, Vh) = E[VjVh]- E[Vj]E[vhl = 
7rjh - 7rj7rh, where 7rjh is the probability that the initial sample contains 
at least one unit in each of the networks j and h. This joint inclusion 

probability is 7rjh = 1- {(N:;'j) + (N:;'h) - (N-m~l-mh)} / (~) when 

the initial sample is selected without replacement and 7rjh = 1 - {[I -
mj/Nt1 + [1 - mh/N]nl - [1 - (mj + mh)/N]n1 } when the initial selec­
tion is with replacement. 

With the above notation, the estimator tHT* can be written tHT* = 

N-1 "'£]=1 VjYj./7rj. The variance of the estimator is, with the convention 
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that 7rjj = 7rj, 

An unbiased estimator of the variance of t HT* is 

where summation is over the ",* distinct networks represented in the initial 
sample. 

To see that VG:r(tHT*) is unbiased, let Vjh be one if units from both 
networks z and j are selected in the initial sample and zero otherwise. 
Then 

( ( 
-----( ) 1 ~ L (7rjh - 7rj 7rh) Yj·Yh, var tHT* = - --Vjh, 

N2 7r'7rh 7r'h 
j=l h=l J J 

and unbiasedness follows since E[Vjhj = 7rjh. 
Just as the estimator tHT* differs from the usual Horvitz-Thompson 

estimator in that some observations in the data are not used in tHT*, 
the above variance expressions differ from the usual ones for the Horvitz­
Thompson estimator in that the variables Yj' in the above expressions are 
network totals, ignoring sample edge units not in the initial part of the 
sample. 

5.5 The estimator y. Since y = E[tHT* ID], where D is the minimal 
sufficient statistic, the variance of y can, by decomposition of the variance 
of tHT*, be written 

var(y) = var(tHT*) - E[var(tHT* )IDj. 

An unbiased estimator of var( t HT* ) is VG:r( t HT* ), given in the preceding 
subsection. By the Rao-Blackwell Theorem, a better unbiased estimator is 
E[VG:r(tHT* )ID], which is the average, over all compatible selections of nl 

observations from D, of the variance estimates as given in the preceding 
subsection. An unbiased estimator of the variance of y is 

VG:r(y) = E[VG:r(tHT* )IDj- var(tHT* ID). 
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The second term on the right is the vanance of the values of t HT 
over all compatible selections of n1 initial observations from D. That 
is, var(tHT*) = ~-1 "2:.(tHT* - [))2, where tHT* denotes the value of the 
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modified Horvitz-Thompson type estimator obtained from the g-th com-
patible selection, and the summation is over the ~ compatible selections 
of n1 observations from D. 

This estimator of variance, although unbiased, can sometimes take on 
negative values. 

6. Expected sample size and cost 

Under any sampling design, the expected value of the effective sample 
size v is the sum of the inclusion probabilities: E[v] = "2:.[:1 Cti. For the 
adaptive cluster sampling designs of this paper, the inclusion probabilities 
Cti are given in Section 2. 

In the examples in this paper, comparisons of adaptive strategies with 
simple random sampling are made on the basis of expected (effective) 
sample size. In classical cluster sampling, comparisons are often made 
on the basis of cost, since it is often less expensive, in terms of time 
or money, to sample units within a cluster than to select a new cluster. 
The same may be true in applications of adaptive cluster sampling. A 
reasonable cost equation might then be C = n1 Cl + n2 C2, where c is total 
cost, n1 and n2 are the initial and subsequent sample sizes respectively, 
and Cl and C2 are constants. In addition, there may in many applications 
be lower cost associated with observing a unit which does not satisfy 
the criterion than one that does, in which case the cost equation can be 
modified accordingly. (For example, if the y-variable is biomass of a plant 
species on sample plots, the measurement is easier on plots with zero.) 
When the above conditions apply, the relative advantage of the adaptive 
to the nonadaptive strategy would tend to be greater than in comparisons 
based on expected sample size. 

7. Adaptive vs. nonadaptive sampling 

It was pointed out earlier that the unbiasedness of the adaptive designs 
in this paper does not depend on the type of population being sampled, 
because the unbiasedness is design-based. Whether an adaptive design is 
more efficient or less efficient than a nonadaptive design such as simple 
random sampling does, however, depend on the type of population being 
sampled. 
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Consider adaptive cluster sampling with the initial sample of n1 units 
selected by simple random sampling without replacement and with the 
estimator tHH*. Since tHH* = E[:ih ID*], where D* is the unordered 
collection of labelled observations with repeat frequencies, the variance of 
tHH* can be written 

var(tHH*) = var(fh) - E[varUh ID*)]. 

Thus the variance of t H H* will always be less than or equal to the variance 
of th, which is a2(N - n1)/(NnJ). 

The variance of the sample mean of a simple random sample of fixed 
size n will, by comparison, have variance a 2 (N - n )/(N n). Comparing 
this quantity with the above expression for the variance of tHH*, gives the 
following result: The adaptive strategy will have lower variance than the 
sample mean of a simple random sample of size n if and only if 

(~ - .!.) a 2 < E[varUh ID*)]. 
n1 n 

The expression for the variance of tHH* given in §5 can be rewritten in 
terms ofthe ( distinct networks in the population as follows: var(tHH*) = 

b L~I (Yi - f-l)2 = b L]=l LkE'lF j (Y'k - f-l)2, where b is the constant term 
(N -nI)/(Nn1(N -1)) and Wj is the j-th network in the population. Sim­

ilarly, the variance of YI can be written var(Y1) = b L;=l LkE'lFj (Yk - f-l)2. 
Decomposition of the total sum of squares into terms between and within 
networks then shows that E[var(y1ID*)] is the within-network variance, 
that is, 

( 

E[var(YIID*)] = Nl~(~ n~ 1) ?= L (Yk - Yj)2. 
)=1 kE'lFj 

Thus, adaptive cluster sampling with the estimator iHH* will be more 
efficient than simple random sampling if the within-network variance of 
the population is sufficiently high. This principle is similar to the one 
that holds in classical cluster sampling, but the adaptive design seeks to 
find the high variance areas during the survey to most efficiently sample 
populations in which the locations and shapes of such clusters are not 
known or can not be predicted ahead of time. 

With adaptive cluster sampling, the improved estimator fj is more effi­
cient than iHH*. Since fj = E[y1ID], the variance of fj can be written 

var(fj) = var(yI) - E[var(ylID)], 
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and a corresponding result obtained: The adaptive strategy with fj will 
have lower variance than simple random sampling with Y if and only if 

(~ + ~) (72 < E[Var(fJIID)]. 
nl n 

Comparing the decompositions of var(fj) and var(tHH*) and using the 
relation var(fj) :::; var(tHH*), the expected conditional variances satisfy 
E[var(YIID)] ~ E[var(YIID*)]. 

8. Examples 

In this section, adaptive cluster sampling is examined using three ex­
amples, in a spatial setting, of populations exibiting "clustered" patterns. 
The first example is the population illustrated in Figure 1 of the Introduc­
tion. The second example, based on the first, is a population in which the 
y-values are either zero or one, and hence the within-network variance is 
zero. The third example, having few units that satisfy the condition and 
high within-network variability, is what one might call a "rare, clustered 
population. " 

The population of each example is contained in a square region par­
titioned into N = 20 x 20 = 400 units. The neighborhood of each unit 
consists, in addition to itself, of all adjacent units (i.e., that share a com­
mon boundary line). A unit satisfies the condition for additional sampling 
if the y-value associated with the unit is greater than or equal to one. Be­
cause of the two dimensional arrangement of the units, it is convenient to 
label them with two index variables, corresponding to the position of each 
unit in a two-dimensional array, and to display the population y-values in 
array form. 

For each example, variances are computed for the estimators t H H* and 
t HT' under the design adaptive cluster sampling with the initial sample 
of nl units selected by simple random sampling without replacement. (In 
fact, with the populations of the examples, the estimator fj is identical to 
tHT* as a result of all edge units having y-value zero.) Results are listed 
for a selection of initial sample sizes, from nl = 1 to nl = 200. 

For comparison, the variance is also computed for the sample mean of 
a simple random sample (without replacement) with sample size equal to 
the expected (effective) sample size E[v] under the adaptive design. For 
each adaptive strategy, the relative variance-the variance of the adap­
tive strategy divided by the variance of the nonadaptive strategy-is also 
listed. 
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8.1 Example 1. The population of point objects illustrated in Figure 1 
was produced as a realization in the unit square of a Poisson cluster process 
(cf. Diggle, 1983) with five "parent locations" from a uniform distribution 
and random Poisson (mean=40) numbers of point objects dispersed in 
relation to the parent locations with a symmetric Gaussian distribution 
having standard deviation 0.02. The population mean is 190/400=0.475. 
The following array contains the y-values giving the number of point­
objects in each of the units of the population: 

o 0 0 0 5 13 3 0 0 0 000 0000000 

000021120 0 0 o 0 0 0000000 

o 0 000 o 0 0 0 0 000 0000000 

o 0 0 0 0 o 0 0 0 0 000 0000000 

o 0 0 0 0 o 0 0 0 0 000 0000000 

o 0 0 0 0 o 0 0 0 0 000 0000000 

o 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 0 

o 0 0 0 0 0 o 0 0 0 0 0 0 0 000000 

o 0 0 0 0 o 0 0 0 0 000 0000000 

o 0 0 0 0 0 o 0 0 0 0 0 0 0 000000 

o 0 0 0 0 0 o 0 0 0 0 0 0 0 000000 

o 0 000 o 0 0 0 0 000 0000000 

000000 o 0 0 0 0 o 0 0 o 0 0 0 0 0 

o 0 0 0 0 o 0 0 0 3 1 o 0 0 000000 

o 0 0 0 0 o 0 0 5 39 10 0 0 0000000 

o 0 0 0 0 o 0 0 5 13 4 0 0 0000000 

o 0 000 o 0 2 22 3 o 0 0 0000000 

o 0 0 0 0 o 0 0 0 0 o 0 10 8 000000 
o 0 0 0 0 0 o 0 0 0 o 0 722000000 

o 0 0 0 0 0 o 0 0 0 0 o 0 0000000 

Table 2 lists the expected sample sizes, variances and relative variances 
for the different sampling strategies for a selection of initial sample sizes. 
With an initial sample size of 1, the variances of the adaptive strategies 
are about equal to that obtained with simple random sampling. The 
relative advantage of the adaptive strategies increases with increasing nl. 

With an initial sample size of 200, the adaptive design leads on average 
to observing a total of about 224 units. The simple random sampling 
strategy with that sample size has a variance 1/0.065 = 15.4 times as 
large as that obtained with the adaptive strategy and the estimator tHT*. 

8.2 Example 2. The y-values for this population are either zero or one. 
The population was obtained from that of Example 1 (Figure 1), letting 
the y-value of each unit indicate the presence or absence of point-objects 
in that unit. Thus, the pattern of the "1 's" in the population is identical 
to the pattern of nonzero entries in the array above for Example 1. 

For such a population, the within-network variance is low-zero, in 
fact-since every network in the population consists either of a unit with 
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Yi = 0 or a group of one or more units each with Yi = 1. Therefore, by the 
results of Section 7, the adaptive strategy with the estimator t H H* can not 
do better than simple random sampling in this situation; the additional 
observations made after the initial nl add to the expected sample size but 
do not change the value of t H H*, which is based on the averages of the 
observations in each of the nl networks associated with the initial sample. 

The variance computations in Table 3 reveal, however, that the estima­
tor t HT* used with the adaptive design does turn out to be more efficient 
than simple random sampling for initial sample sizes of 50 or larger. 

8.3 Example 3. This example has approximately the same population 
mean (f-l = 189/400 = .4725) as Example 1, and was produced by the 
same type of process, but with parameters leading to tighter clustering 
of the population (2 parent locations, Poisson means 100 and dispersion 
standard deviation 0.01). The population exemplifies a "rare" population 
in the sense that few units in the population satisfy the condition-only 
9 out of the 400 units, or 2.25 percent, satisfy the condition by having 
y-value greater than zero. The y-values are given in the array below: 

o 0 0 0000000000 0000000 
o 0 0 0000000000 000 0 000 
o 0 2 o 0 0 0 0 0 0 0 0 00000000 

o 1 82 1 0 0 0 0 0 0 0 0 0 o 0 0 0 000 
o 0 2 0000000000 000 000 0 
00000000000000000000 
00000000000000000000 
00000000000000000000 
o 0 0 00000000000000000 

o 0 0 o 0 0 0 0 0 0 0 0 86 4 0 0 0 0 0 0 
o 0 o 0 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 0 
o 0 0 000 0 0 0 0 0 0 0 0000000 

o 0 0 o 0 0 0 0 0 0 0 0 0 000 0 000 
o 0 0 0000000000 0000000 
o 0 0 0000000000 0000000 
o 0 00000000000 0000000 
o 0 0 000000000 0 0000000 
o 0 0 000 0 0 0 0 0 0 0 o 0 0 0 000 
o 0 00000000000 0000000 
00000000000000000000 

As listed in Table 4, the relative variance of tHT* with the adaptive 
design to that obtained with simple random sampling ranges from 0.357 
to 0.072. In other words, the adaptive cluster sampling strategy is 2.8 to 
13.9 times as efficient as simple random sampling with this population. 
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Figure 1. Adaptive cluster sampling to estimate the number of point 
objects in a study region of 400 units. An initial random sample of 10 
units is shown in (a). Adjacent neighboring units are added to the sample 
whenever one or more of the objects of the population is observed in a 
selected unit. The resulting sample is shown in (b). 
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Figure 113 
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Figure :ib 
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Table 1 

observations YI tHH* Y tHT* Y Y Y 

1,0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

1,2 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

1,10; 2,1000 5.50 253.00 253.00 289.07 289.07 253.25 169.67 

1,1000;10,2 500.50 253.00 253.00 289.07 289.07 253.25 169.67 

0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0,10;2,1000 5.00 252.50 252.50 288.57 288.57 253.00 168.67 

0,1000;10,2 500.00 252.50 252.50 288.57 288.57 253.00 168.67 

2,10;1000 6.00 253.50 337.33 289.57 289.24 337.33 337.33 

2,1000;10 501.00 253.50 337.33 289.57 289.24 337.33 337.33 

10,1000;2 505.00 505.00 337.33 288.57 289.24 337.33 337.33 

Mean: 202.6 202.6 202.6 202.60 202.60 202.75 169.17 

Bias: 0 0 0 0 0 0.15 -33.43 

MSE: 59,615 22,862 18,645 17,418.4 17,418.3 18,660 18,086 

Table 1. All possible outcomes of adaptive cluster sampling for a popu­
lation of five units with y-values 1,0,2,10,1000, in which the neighborhood 
of each unit consists of itself plus adjacent units. The initial sample of two 
units is selected by simple random sampling without replacement. When­
ever an observed y-value exceeds 5, the neighboring units are added to the 
sample. Initial observations are separated from subsequent observations 
in the table by a semicolon. For each possible sample, the value of each 
estimator is given. The bottom line of the table gives the mean square 
error for each estimator. The sample mean of a simple random sample of 
equivalent sample size has variance 24,359. 
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Table 2 

nl E[v] Var(tHH* ) Var(tHT* ) var(j}; srs) 
Var(tHH* ) Var(tHT* ) 

var(j}; srs) var(j}; srs) 

1 1.92 4.29705 4.29705 4.28364 1.0031 1.0031 

2 3.82 2.14314 2.12386 2.14420 0.9995 0.9905 

10 18.26 0.42001 0.38655 0.43240 0.9714 0.8940 

20 34.66 0.20462 0.17097 0.21805 0.9384 0.7841 

30 49.56 0.13282 0.10030 0.14627 0.9081 0.6857 

40 63.26 0.09693 0.06587 0.11012 0.8802 0.5982 

50 76.00 0.07539 0.04593 0.08819 0.8548 0.5208 

60 87.97 0.06103 0.03322 0.07338 0.8317 0.4528 

100 130.80 0.03231 0.01096 0.04258 0.7588 0.2575 

200 223.86 0.01077 0.00106 0.01628 0.6616 0.0650 

Table 2. Example 1: Variances of tHH* and tHT* with adaptive cluster 
sampling and initial sample size nl for the population illustrated in Figure 
1. The variance of j} with simple random sampling is calculated for sample 
size E[v], the expected sample size with the adaptive design. Relative 
variances of the adaptive to nonadaptive strategies are in the last two 
columns. 
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Table 3 

nl E[v] Var(tHH*) Var(tHT*) var(y;srs) 
Var(tHH* ) Var(tHT* ) 

var(y; srs) var(y; srs) 

1 1.92 0.04974 0.04974 0.02581 1.9270 1.9270 

2 3.82 0.02481 0.02459 0.01292 1.9200 1.9028 

10 18.26 0.00486 0.00448 0.00261 1.8659 1.7181 

20 34.66 0.00237 0.00198 0.00131 1.8027 1.5074 

30 49.56 0.00154 0.00116 0.00088 1.7443 1.3183 

40 63.26 0.00112 0.00076 0.00066 1.6909 1.1495 

50 76.00 0.00087 0.00053 0.00053 1.6420 0.9997 

60 87.97 0.00071 0.00038 0.00044 1.5976 0.8675 

100 130.80 0.00037 0.00012 0.00026 1.4577 0.4843 

200 223.86 0.00012 0.00001 0.00010 1.2709 0.1050 

Table 3. Example 2: Variance comparisons with the y-variable indicating 
presence or absence of objects in the population of Figure 1. 
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Table 4 

nl E[v] Var(tHH") Var(tHT*) var(f};srs) 
Var(tHH* ) Var(tHT* ) 

var(y; srs) var(f}; S7's) 

1 1.26 10.02437 10.02437 28.07236 0.3571 0.3571 

2 2.52 4.99962 4.97852 14.01104 0.3568 0.3553 

10 12.45 0.97983 0.94253 2.76158 0.3548 0.3413 

20 24.58 0.47735 0.43892 1.35488 0.3523 0.3240 

30 36.42 0.30986 0.27172 0.88559 0.3499 0.3068 

40 47.99 0.22611 0.18865 0.65065 0.3475 0.2899 

50 59.32 0.17587 0.13924 0.50945 0.3452 0.2733 

60 70.43 0.14237 0.10668 0.41511 0.3430 0.2570 

100 113.03 0.07537 0.04392 0.22523 0.3346 0.1950 

200 211.74 0.02512 0.00569 0.07887 0.3185 0.0722 

Table 4. Example 3: Variance comparisons with a highly clustered pop-
ulation. 
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