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ABSTRACT 

The purpose of this paper is to present the maximum likelihood 

estimators and likelihood ratio tests for a series of hypotheses about 

cointegration vectors and their loadings in a Gaussian vector 

autoregressive model. which includes seasonal dummies and a constant 

term. We find the asymptotic distribution of the likelihood ratio test 

for the hypothesis of r cointegration vectors, and it turns out to depend 

on the relation between the constant term and the loadings to the 

cointegration vectors. We then show that asymptotic inference about the 

cointegration vectors and their loadings can be performed by the usual x2 

methods. We find an asymptotic representation of the maximum likelihood 

estimator, which is used to derive its asymptotic distribution and the 

distribution of some simple Wald tests. 

Keywords: Cointegration. error correction models, maximum likelihood 

estimation, likelihood ratio test, Gaussian vector autoregressive 

processes 



2 

1. Introduction and summary 

A large number of papers are devoted to the analysis of the concept 

of cointegration defined first by Granger (1981), Granger and Weiss 

(1983), and studied further by Engle and Granger (1987). Under this 

heading the topic has been also been studied by Stock (1987), Phillips 

and Ouliaris (1986), (1987), Phillips (1988), Johansen (1988b), Johansen 

and Juselius (1988), (1989). The main statistical technique that has 

been applied is Regression with integrated regressors, which has been 

studied by Phillips (1987), Phillips and Park (1986a), (1986b), (1987) 

and Sims, Stock and Watson (1986). Similar problems have been studied 

under the name commom trends see Stock and Watson (1987). 

The purpose of this paper is to present some new results on the 

maximum likelihood estimators and likelihood ratio tests for 

cointegration in Gaussian vector autoregressive models which allows for a 

constant term and seasonal dummies. This brings in the technique of 

reduced rank regression, see Velu, Reinsel and Wichern (1986), and Ahn 

and Reinsel (1987) as well as the notion of canonicaL anaLysis Box and 

Tiao (1981) Velu, Wichern and Reinsel (1987). Pena and Box (1987), and 

the very elegant paper by Tso (1981). In Johansen (1988b) the likelihood 

based theory was presented for such a model without the constant term and 

the seasonal dummies, but it turns out that this term plays a crucial 

role for the interpretation of the model, as well as for the statistical 

and the probabilistic analysis. 



3 

A detailed statistical analysis illustrating the techniques by data 

on money demand from Denmark and Finland is given in Johansen and 

Juselius (1989), and the present paper deals with the underlying 

probability theory that allows one to make asymptotic inference. 

The structure of the paper is the following: The next Section 

describes very briefly the estimators and test statistics studied in the 

subsequent Sections. A more detailed account can be found in Johansen 

and Juselius (1989) together with some illustartive examples. Section 3 

gives a simple proof of Granger's representation theorem which clarifies 

the role of the constant term and gives a condition for the process to be 

integrated of order 1. We also state in rather condensed form the basic 

results on the processes as can be derived by the results of Phillips and 

Durlauf (1986) by applying the methods in Johansen (1988b). In Section 4 

the asymptotic distribution of the likelihood ratio test statistic for 

the hypothesis of r cointegration vectors is derived. It turns out that 

the presence of the trend gives rise to some new limit distributions. 

Section 5 gives an asymptotic representation of the maximum likelihood 

estimator suitably normalized. and the results are then applied in 

Section 6 to show that asympotic inference about linear restrictions on 

the cointegration vectors and loadings can be performed using the X2 

distribution. and in Section 7 we apply the asymptotic distribution of 

the maximum likelihood estimators to derive some very simple Wald tests. 
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2. The statistical analysis of cointegration 

Consider a general VAR model with Gaussian errors written on the form 

(2.1) 
k-1 

AXt =.2 TiAXt _ i - ITXt - k + ~Dt + ~Ct + tt' (t = 1 .... ,T), 
1=1 

where c t = 1 and Dt are seasonal dummies orthogonal to the constant term, 

such that they sum to zero over a year. say. Further tt' t = 1, .... T are 

independent p-dimensional Gaussian variables with mean zero and variance 

matrix A. The values X1- k , .... XO are considered fixed and the likelihood 

function is calculated for given values of these. 

The model (2.1) is denoted by HI and we formulate the hypothesis of 

(at most) r cointegration vectors as 

(2.2) 

where a and ~ are pxr matrices. Sometimes we shall compare models with 

different number of cointegration vectors, and we shall then use the 

notation H2 (r). We shall also investigate a series of models expressed 

in terms of the cointegration vectors ~ and the loadings a. 

Linear restrictions on ~ are expressed as 

where H(pxs) is known and ~(sxr) is the parameter to be estimated. 

Similarly linear restrictions on a are expressed as 

were A(pxm) is known and ~(mxr) is to be estimated. It is convenient to 

formulate a general model 

(2.3) 

which contains the previous as special cases. 
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It turns out that the role of the constant term is crucial for the 

statistical analysis as well as for the probabilistic analysis. It is 

proved in Theorem 3.1 that under certain conditions the process given by 

(2.1) is integrated of order 1 with a linear trend which is essentially 

determined by a~~, where a~ is a px(p-r) matrix of rank p-r consisting of 

vectors orthogonal to the vectors in a. The presence of the linear 

trend changes the analysis and it is therefore convenient to define a 

series of models H~ where 
1. 

the * indicates that apart from the 

restrictions imposed under H. 
1. 

we also impose the restriction ~ = a~O' 

where the parameter ~O has the interpretation as an intercept in the 

cointegration relation. In this case clearly a~~ = 0, and the linear 

trend is absent. 

We shall treat the models H. in detail and mention the results for 
1. 

the models H*., and sometimes comment on the proofs when they require 
1. 

special attention. 

In order to formulate the main result of this section we shall 

introduce some notation. In Johansen (1988b) it was shown how one can 

estimate the parameters in the model H2 , see (2.2). 

We define ZOt = AXt , Zlt = (AX~_I'··· ,AX~_k+l,D~,ct)' and ~t = Xt - k ', 

and we let T consist of the parameters (Tl , ... ,Tk-l'@'~)' Then the model 

becomes 

(2.4) 

With this notation define the product moment matrices 

(2.5) 
-1 T 

M. . = T 2: Z. t Z '. t ' 
1.J t=1 1. J 

(i,j = O,l,k), 

the residuals 

(i=O,k). 
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and the residual sums of squares 

(2.6) -1 
S .. = M .. - M. 1M11M1 .• IJ IJ 1 J 

(i,j = O,k). 

Then the estimate of r for fixed values of a, ~ and A is found to be 

(2.7) 

Thus the residuals are found by regressing AXt and Xt - k on the lagged 

differences. the dummies and the constant. This gives the concentrated 

likelihood function with respect to the parameters rl ..... rk_l.~. and~: 

(2.8) 

This function is easily minimized for fixed ~ to give 

(2.9) 

(2.10) 

~ -1 
a(~) = - SOk~(~'Skk~) , 

A = SOO - SOk~(~'Skk~)-l~'SkO' 
together with 

(2.11) L~(~) = /sool /~'(Skk - SkOS~~SOk)~//~'Skk~/' 
~ ~ "'-

This again is minimized by the choice ~ = (v1 .... ,vr ). where vI'" .. vp 

are the eigenvectors of the equation 

(2.12) 

normed by v·Skkv = I. The maximized likelihood function is found from 

-2/T r ~ 
L = /sool IT (I-A.). 

max i=l 1 
(2.13) 

This procedure is given in Johansen (1988b), and consists of well known 

multivariate techniques from the theory of partial canonical 

correlations. see Anderson (1984) and Tso (1981). 



Under the hypothesis H5 we shall 
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transform the matrices S.. some 
IJ 

more. Together with A we shall consider B(px(p-r)) = A~, and introduce 

the notation 

Shh.b = H'SkkH - H'SkOB(B'SooB)-lB'SOkH, 

Saa.b = A'SOOA - A'SOOB(B'SOOB)-lB'SooA, 

and similarly for Sha.b' Sah.b' Vab,Sbb etc. 

THEOREM 2.1: Under the hypothesis R5: ~ = R~ and a = A~ where R is 

pxs and a is pxm, the maximum LikeLihood estimators are found as foLLows: 

First soLve 

(2.14) 

to give eigenvaLues Al ) ... ) As' and eigenvectors vI , .. . ,vs Then 

(2.15 ) 

(2.16) 

A A A 

~ = R(v1 , ... ,vr ) 

A , -1 A 

a = -(A A) Sak.b~. 

The estimate of A is found from 

(2.17) Abb = Sbb' 
A 

(2.18) Aab = Sab + A'aWSkb , 

(2.19) A b = S - A'aa'A 
aa. aa 

The estimate for r is found from (2.7) and the maximized LikeLihood 

function is 

(2.20) 
-2/T r A 

L = /sool IT (I-A.). 
max i=l L 
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PROOF: We insert the value ~ = H~ and a = A~ in the concentrated 

likelihood function (2.8), and find 

L-2/T(~,~.A) = 
max 

1 T 1 
IAlexp{T- 2 (ROt + A~~'H'Rkt) A- (ROt + A~~'H'Rkt)}· 

t=1 

We shall use the properties of the density of a multivariate Gaussian 

distribution to decompose this likelihood function into the marginal 

density of Rbt = B'ROt ' which does not contain the parameters of interest 

~ and ~, and the conditional density given Rbt . The first factor gives 

the contribution 

L- 2/T(A) lA I { T-1~ R' A-1 R }/IB'B/ max bb = bb exp .L, bt bb bt ' 
t=1 

where Abb = B'AB. Maximizing we find 
A 

Abb = Sbb = B'SOOB. 

which proves (2.17). The relevant part of the maximized likelihood 

function is 

The conditional likelihood function becomes 

T 
-2/T -1 I I -1 ,-1 I ' I L (~,~,A b,A bAbb) = A b exp{T 2 RtA bRt}/ A A , max aa. a aa. t=1 aa. 

where 

Minimizing with respect -1 
the parameter AabAbb gives rise to yet another 

regression of Rat and Rht on Rbt , which gives the estimate 
A A_1 -1 
AabAbb(~'~) = (Sab + A'A~~'Shb)Sbb· 

This proves (2.18) and gives the new residuals 

-1 
Ra .bt = Rat - SabSbbRbt' 

and 



-1 
~.bt = ~t - ShbSbbRbt' 
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If we now define the new parameter ~ = A'A~. then the likelihood function 

is reduced to the form (2.8) in terms of Ra . bt , ~.bt' ~, ~ and A. b' aa. 

Hence the solution can be found from the relations (2.9),(2.10),(2.13) 

and (2.7). 

If the equation (2.1) is multiplied by A' and B' respectively the 

second equation does not contain the parameters of interest, since B'a = 

B'A~ = O. Hence it appears natural to estimate these equations first and 

then analyse the conditional model for A'AXt given B'AXt and the past 

values of the process. Since also ~ = H~, then a~'Xt_k = a~'H'Xt_k' 

which shows that the levels of the process appear only through the 

transformation H. It is these two operations of conditioning and 

transformation that form the basis for the proof of Theorem 2.1. We can 

now easily derive the various likelihood ratio tests using the relation 

(2.20) for the maximized likelihood function, since for r = p we have 

H2 (p) = HI' and since the factor ISool cancels in all the ratios. 

(x)ROLLARY 2.2: The LikeLihood ratio test statistic for the 

hypothesis H2 versus HI is given by 

p 
(2.21) = -T 2 Ln(I-A.), 

i=r+1 1.. 

whereas the LikeLihood ratio test statistic for H2 (r) versus H2 (r+l) is 

given by 

(2.22) - 2Ln(Q;rlr+l) 
A 

= - TLn(I-A ). r+1 

In order to express the likelihood ratio test statistics of the various 

hypotheses about restrictions on ~ and a, we shall indicate by a 
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subscript the model under which the eigenvalues are calculated. Thus 

A3 . 1 is the largest eigenvalue calculated from (2.14) under the model H3 , 

i.e. under the assumption that a = A~ and H = I. We can then formulate 

the resul ts about the test statistics for the hyptheses about 

restrictions on ~ and a. 

COROLLARY 2.3: The LikeLihood ratio test statistic of the 

restriction ~ = H~ under the assumption that a = A~ is given by 

T A A 

(2.23) - 2Ln(Q;HS /H4 ) = - T 2 Ln{(l-AS .)/(1-A4 ,)}, 
t=l .L .L 

and the LikLeihood ratio test of the hypothesis a = A~ under the 

assumption that ~ = H~ is given by 

T A A 

(2.24) - 2Ln(Q;HS /H3 ) = - T 2 Ln{(l-AS .)/(1-A3 .)}. 
t=l .L .L 

We shall conclude this section by pointing out how one can analyse 

* the models Hi' First we note that if ~ = a~O' then 

- a~'Xt_k + ~Ct = - a~'Xt_k + a~Oct = - a~*'X~_k' 

for ~* = ( R',_ RO')' and X*t-k (X' )' ,.,,., = t-k,c t . In these new variables the 

model looks like 

k-1 
AXt =.2 fiAXt _ i - a~*'X~_k + ~Dt + et' (t = 1, .... T). 

1=1 

The analysis is now easily performed as in the Theorem 2.1 by defining 

* A * ( 7~t * ZOt = aXt , Zlt = AX~_l'" .. AX~_k+1,D~)·, and -k = Xt - k , as well as the 

* * moment matrices M .. and S .. , see (2.5) and (2.6). In order to keep the 
1J 1J 

same meaning of the matrix H in these hypotheses we extend H to the 
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* (p+1}x(s+1) matrix H by defining 

d d f S* H*'S* H* an e ine hh = kk etc. 

* With this notation exactly the same results hold for the models H. as 
1 

given by Theorem 2.1, Corollary 2.2 and Corollary 2.3, with proper change 

* of notation to allow for the 

3. Grangers representation theorem and the limiting 

behaviour of the process 

When we want to investigate the distributional properties of the 

estimates and the test statistics we have to make more assumptions about 

the process. The basic assumption is that for the characteristic 

polynomial 

(3.1) 
k 

- ITkz , 

we have 

IT(z} = I - IT1z -

that IIT(z} I = 0 implies that either Izl > 1 or z = 1, which 

guarantees that the non-stationarity of Xt 

differencing. 

Now write the model defined by (2.1), as 

(3.2) ITXt + IT1 (L}AXt = et + MC t + ~Dt' 

where IT = I - IT1 - ... - ITk = IT(1}. 

can be removed by 

The first result that we want to prove is the fundamental result 

about error correction models of order 1 and their structure. The basic 

result is due to Granger (1981), see Engle and Granger (1987) or Johansen 
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(1988a), but we shall give a very simple proof here, which contains a 

condition for the process to be integrated of order 1 and also clarifies 

the role of the constant term. We shall define the px(p-r) matrices aL 

and {3 L such that {3 ~(3 = 0 and such that 

(3.3) a a' = A-1(I - a(a'A-1a)-la 'A-1). 
L L 

Note that a~a = 0 and that a~AaL = I. This choice of will 

simplify the calculations later in the proofs. 

THEOREM 3.1: (Grangers representation theorem). If 

(3.4) II = a{3' , 

for a and (3 of dimension pxr and rank r and if 

has fuLL rank p - r, then we can write the process in the moving average 

form AXt = C(L)(c t - MC t - ~Dt) and the foLLowing representation hoLds: 

(3.6) C = C(l) = {3L(a~II1(1){3L)-la~. 

It foLLows that 

(3.7) 

(3.8) 

(3.9) 

AXt is stationary, 

Xt is non-stationary, with Linear trend ~t = QMt, 

{3'X t is stationary, 

and hence (3.2) can be interpreted as an error correction modeL. If in 

particuLar a'M = 
J. 

o the Linear trend disappears and {3' X has mean 
t 

-1 
(a'a) a'M and AXt has mean zero, apart from terms invoLving the seasonaL 

dummies. 

Strictly speaking the processes AXt and {3'Xt _k equal a stationary 

process plus the term involving the seasonal dummies, but we shall call 
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such a process stationary. Note that the relation between (3.4) and 

(3.6) shows that for this type of process there is a very nice symmetry 

between the singularity of the "impact" matrix IT for the autoregressive 

representation and the singularity of the "impact" matrix for the moving 

average representation, in the sense that what is the null space for C' 

is the range space for IT and what is the range space for IT' is the null 

space for C. It is this symmetry that allows the results for this type 

of process to be exceptionally simple. 

PROOF: 

equations 

If we multiply the equation (3.2) by a' and a~ we get the 

a'a~'Xt + a'IT1 (L)AXt = a'(c t + MC t + ~Dt)' 

a~ITl(L)AXt = a~(Ct + MC t + ~Dt)' 

To discuss the properties of the process Xt we shall solve the 

equations for Xt and express it in terms of the Ct's. We therefore 

introduce the variables Zt = (~,~)-l~'Xt and Yt = (~~~~)-l~~AXt as new 

variables. from which AXt can be recovered: 

This gives the equations 

(3.10) 

(3.11) 

a'a~'~Zt + a'ITl(L)~AZt + a'rrl(L)~~Yt = a'(ct + MC t + ~Dt)' 

a~rrl(L)~AZt + a~rrl(L)~~Yt = a~(Ct + MC t + ~Dt)' 

The matrix function defining this new system, consisting of Zt and Yt , 

takes the form: 



A(z) 
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= [a ' a{3 , (3 + a '111 (z) {3 ( 1-z ) 

a~111(z){3(1-z) 

For z = 1 this has determinant 

a ' 111 (z) (3 J.] 

a~111(z){3J. . 

which is non-zero by assumption (3.4) and (3.5), hence z = 1 is not a 

root. For z # 1 we use the representation 

~ -1 
A(z) = (a,aJ.)'11(z)({3,{3J.(l-z) ), 

which gives the determinant as 

IA(z) I = I (a,aJ.) I /11(z)/ 1({3,{3J.)/(l-z)-(p-r), 

which shows that all roots of IA(z)1 = 0 are outside the unit disk, by 

the assumption about 11(z), see (3.1). 

This shows that the system defined by (3.10) and (3.11) is invertible 

and that Yt and Zt are stationary processes, and hence that AXt is 

stationary apart from the contribution from the centered dummies. This 

proves (3.7) and (3.9). From the representation of the processes Zt and 

Yt we can get a representation ofAXt by multiplying by the matrix 

((3A,{3J.)' Hence 

eeL) = ({3A,{3J.)A(L)-l(a,aJ.), 

For L = 1 we get (3.6). By summation ofAXt we find that Xt contains the 

t 
non-stationary component {3~ ~ Ys together with a linear trend ~t = ~t, 

s=O 

which proves (3.8). 

Note that ~ enters the linear trend only through a~~ , and that the 

linear trend ~ is contained in the span of {3J.' and hence cancels if we 

consider the components {3'Xt . The seasonal dummies are so constructed 

that they remain bounded even after summation over t and hence do not 
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contribute to the linear trend. 

Since we have proved that AXt and ~'Xt are stationary the stochastic 

components of Zl~ = (AX~_1, ... ,AX~_k+1,D~,ct) are stationary. We define 

From the equation (2.7) 

(3.12) 

one finds immidiately the results of the next Lemma. 

LEMMA 3.2: The following relations hold 

(3.13) 

(3.14) 

and hence 

(3.15) 

200 = -a~'~O + A, 

20k~ = - a~'~~, 

These relations imply that 

(3.16) 

and 

(3.17) 

( ,~ -1 )-1 ,~ -1 __ (a'A-1a)-1a'A-1, a .L.OO a a .L.OO 

The following technical results are essentially given in Johansen 

(1988b) based on the results by Phillips and Durlauf (1986). The results 

have been modified to allow for the linear trend in the process. We let 

W be a Brownian motion in p dimensions with covariance matrix A and 

define W = fW(u)du. where all such integrals here and in the following 
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are from 0 to 1. One can then prove that ~'Xt is approximately linearly 

increasing. whereas if ~ is chosen such that ~'~ = 0 and sp(~.~) = 

sp(~~). then ~'Xt is non-stationary but with a constant mean. The 

results of the asymptotic behaviour of the process are summarized in 

LEMMA 3.3: As T ~ co we have 

(3.18) 

(3.19) 

Furthermore WX t is stationary. 

Using these results one can describe the asymptotic properties of the 

various moment matrices M .. and S .. which are basic for the properties of 
IJ IJ 

the estimators and tests. We shall not give these in detail here since 

the proofs mimic the proofs in Johansen (1988b) but we shall rather 

summarize the results in two Lemmas. 

LEMMA 3.4: 

(3.20) 
ID 

o 
~'Cf(W-W)(W-W)'duC'~ 

'VxfJf(u: 1/2) (W-W)' duC'~ 

~'Cf(U-1~2)(W-W)du~'~] 
(~,~)2/12 



Further 

FinaLLy a.s. 
~ 
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[ 
N(O,~'~~®A) 1 
~'CJ(W-W)dW' . 

~'~J(u-1/2)dW' 

If ~ = 0, then the resuLts 

(3.20) and (3.21) sho~Ld be modified by choosing ~ = ~L and deLeting the 

terms invoLving ~. 

Since = 1 is included in the regressors the process Xt is 

corrected for its mean in the preliminary regressions. This is seen to 

be reflected in the asymptotics by the subtraction of W and 1/2. Since 

the process contains a linear trend only p-r-1 components (~'C) of the 

process Wenter the result. The trend is described by replacing the last 

component of W by u. 

If we want * to discuss the hypotheses H. which also restricts ~ to 
I 

have no trend component, i.e. ~ = 0 or ~ = a~O' then we get different 

asymptotic results. We shall calculate the estimates using the matrices 

* * S .. , see Section 2, and define ~ , = (~' '-~O'), and choose f' = (0,1) and 
IJ 

* ~ = Then if full rank the vectors * * (~ ,~ ,f) are 

. p+1 r+(p-r)+l = p+l linearly independent vectors spannIng R . We can then 

prove 
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LEMMA 3.5: 
1 2 1 T a.s. * - / * -= (~,T ~ ,~), then T ~ ~'Xt-k ~ ~O' and 

t=l 

o 
W efWW' due' ~ 

.1 .1 

fW'due'~ 
.1 

Further 

[N(O'~'~~ ® A)] 
wefWdW' 

.1 

!dW' 

* * a.s. * a s F · Ll R '8 R'~O and 800 ~. ~OO. "tna !J I-' kO ~ I-' -k .L, 

By moving the constant term to the vector Xt - k , we no longer correct 

for the mean in the process Wand the added 1 gives an extra dimension to 

* the matrix Skk' It is seen that the constant term plays an important 

role for the formulation of the limiting results, either because it 

implies a linear trend for the non-stationary part of the process, or 

because it enters the cointegration vector. The two cases require a 

different normalization. The seasonal dummies do not play an equally 

important role once they have be orthogonalized to the constant term. 

T 
The reason for the is that quantities like T-1 ~ D AX' 

t=l t t 
and 

T 
T-1 ~ D X' 

t t-k 
t=l 

remain bounded as T ~ 00. The crucial property, which is applied to see 

this, is that the partial sums of Dt remain bounded. 
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4. Asymptotic properties of the Likelihood ratio tests for 

cointegration 

In Johansen (1988b) the likelihood ratio test of H2 , i.e. of r 

cointegrating vectors, was discussed in the model with no constant term. 

It turns out, as will be shown below, that when a constant is included in 

the model not only the test statistics are changed, but also their 

asymptotic distributions are changed. Furthermore the analysis also 

depends on whether or not the processes are allowed to contain a linear 

trend in the non-stationary part, that is whether or not a~~ = O. 

THEOREM 4.1: Under the hypothesis H2 IT = a~' the statistic 

- 2ln(Q;H2IH1) has a Limit distribution which, if a~~ # 0, can be 

expressed in terms of a p-r dimensional Brownian motion B with i.i.a 

components as 

(4.1) 

where 

(4.2) 

and 

(4.3) 

tr{fdBF'[fFF'du]-l fFdB ,}, 

F.(u) = B.(u) - fB.(u)du, 
L L L 

F.(u) = u - 1/2 , 
L 

(i = 1, .. . ,p-r-i), 

(i = p-r). 

If in fact a~~ = 0, then the asymptotic distribution 

is given by (4.1) with F = B - B. 

PROOF: The likelihood ratio test statistic of H2 in H1 is given in 

the form (2.21) 

P A 

= - T 2 In(1-A.), 
i=r+1 1 
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where the eigenvalues A 1' ... ,A are the smallest eigenvalues in the 
r+ p 

equation 

(4.4) 

see (2.12). or (2.14) with H = A = I. We now multiply (4.4) by the 

matrix AT and Ay. see Lemma 3.4 and let T ~ 00. We then use the result 

that the ordered eigenvalues are continuous functions of the coefficient 

matrices and find that they converge to the ordered eigenvalues of the 

equation 

where ~ is a notation for 

(4.5) cp = 
r~'Cf(W-W)(W-W)~duC'~ ~'CJ(u-l/2)(W-W)du~'~ 1 
l~'~f(u-l/2)(W-W)'duC'~ (~,~)2/12 . 

This shows that the r largest solutions of (4.4) converge to the 

solutions of 

(4.6) 

and that the rest converge to zero. Now define p = TA and let A ~ O. 

then we multiply by (~,~,T-l/2~) and its transposed, see Lemma 3.4, and 

find that the p-r smallest solutions of the equation (4.4), multiplied by 

T, will converge to the solutions of the equation 

I [ 0 0J -1/2, -1 -1/2 I 
p 0 cP - (~,~,T ~) SkOSOOSOk(~,~,T ~) = 0, 

and hence to the solutions of 

(4.7) 

where N is a notation for 

This converges by Lemma 3.4 to the same expression with S replaced by L. 

It follows from Lemma 3.2 and the choice of ai' see (3.3), that this 

limit equals aia~. Hence, from (4.7) it follows that in the limit p must 
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be a solution to 

(4.8) 
r~'Cf(W-W)(W-W)'duC'~ ~'Cf(U-1/2)(W-W)dU~'~] 

Ipl~'~f(u-1/2)(W-W)'duC'~ (~,~)2/12 

r~·cf(W-W)dW'aJ.. ] r~'Cf(W-W)dW'aJ.. ]. = 
- l~'~f(u-1/2)dW'aJ.. l~'~f(u-1/2)dW'aJ.. I o. 

Now C = ~J..Ta~ for a non-singular (p-r)x(p-r) matrix T. see (3.6), such 

that we can introduce the (p-r)-dimensional process U = a~W with variance 

matrix a~AaJ.. = I. and the (p-r+1)-dimensional process F with the first 

p-r components equal to those of U - IT and the last component equal to 

u-1/2. We can then write (4.8) as 

where the (p-r)x(p-r+1) matrix M has the form 

M = [~'~J..T 0], 
o ~'~ 

The expression can be simplified by noting that ~'~ cancels. Still the 

process U enters into the integrals with the factor ~'~J..T which are p-r-1 

linearly independent combinations of the components of U. By multiplying 

by (~'~J..TT,~~~)-1/2 we can turn these into orthonormal components and by 

supplementing these vectors with an extra orthonormal vector, which is 

we can transform the process U by an orthogonal matrix 

o to the process B = OU. Then the equation can be written as 

(4.9) /pfF'F'du - fF'dB' fdBF" = 0, 

where F is given by (4.2) and (4.3). This equation has p-r roots. Thus 

we have seen that the p-r smallest roots of (4.4) decrease to zero at the 

-1 
rate T and that TA converge to the roots of (4.9). From the expression 
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for the likelihood ratio test statistic we find that 

PAW 
- 2In(Q;H2 /H1)) ~ T.2 Ai ~ 

1=r+1 
P 
2 p. = tr{fdBF'[fFF'duJ-1jFdB'}. 

i=r+1 1 

Note that if ~ = 0, i.e. the linear trend is missing, then again 

applying Lemma 3.4 we can choose ~ = ~~, and the results have to be 

modified by leaving out the terms containing~. This means that if a~~ = 

o holds, then the test of H2 in H1 is distributed as 

(4.10) T2 = tr{fdU(U-U)'[f(U-U)(U-U)'duJ-1f(U-U)dU'}. 

This completes the proof of Theorem 4.1. 

COROLLARY 4.2: The LikeLihood ratio test statistic - 2Ln(Q;rlr+1) 

of the hypothesis H2 (r), of r or Less cointegrating vectors, in H2 (r+1), 

see (2.22), is asympoticaLLy distributed as the maximum eigenvaLue of 

(4.9), where F is given by (4.2) and (4.3) if a~~ # 0, and F = B - B if 

a~~ = O. 

Next we shall investigate the test of H~ in H1 . 

* THEOREM 4.3: Under the hypothesis H2 : IT = a~' and ~ = a~O' the 

LikeLihood ratio statistic - 2Ln(Q;H;/H1 ) is distributed as (4.1), but 

with the process F given by 

(4.11) 

(4.12) 

SimiLarLy 

F.(u) = B.(u) 
L L 

F.(u) = 1 
L 

the asymptotic distribution of 

(i = 1, .. ,p-r), 

(i = p-r+l). 

* I * 2Ln(Q;r r+1) of H2 (r) in 

* H2 (r+1) is given by the maximum eigenvaLue of (4.9) with F as in (4.11) 

and (4.12). 
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PROOF: The estimation under involved the solution of the 

equation 

(4.13) 

the S .. 
IJ 

replaced * by S ... 
IJ 

Now multiply by BT = see (2.12) with 

(/3*, T-1/ 2'Y *, f) , and BT , see Lemma 3.5, and let T ~ 00. The roots of 

(4.13) converge to the roots of the equation 

[A~'~~ - ~'~OL~~LOk~ 
I 0 

o 
A~~efWW'due·~.L 

AfW'due'~ .L o 

which shows that the r largest solutions of (4.13) converge to the roots 

of the same limiting equation as before, see (4.6). Now multiply instead 

by ( R*,'V*,T1/2l:)' d' d d 1 T'" d '" 0 h ~, ~ an Its transpose an et p = ~ an ,,~ , t en we 

obtain, by an argument similar to that given in the proof of Theorem 4.1, 

that in the limit the p-r smallest roots normalized by T will converge in 

distribution to the roots of the equation 

[ ~ ~ efWW' due ' ~.L ~ ~ efWdu ] _ [~ ~ efWdW ' a.L] [ ~ ~ efWdW' a.L] , 
Ip fW'due'~ 1 JdW'a JdW'a I = O . 

.L .L.L 

Again we can introduce the p-r dimensional process U = a~W and cancel the 

matrices ~~~.LT to see that the test statistic has a limit distribution 

which is given by 

( 4.14) 
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which completes the proof of Theorem 4.3. The result for the maximal 

eigenvalue follows similarly. 

CX>ROLLARY 4.4: The asymptotic distribution of the LikeLihood ratio 

test 2Ln(Q;H;IH2 ) for the hypothesis H; given the hypothesis H2 , i.e. 

a'~ = 0, when there are r cointegration vectors, is asymptoticaLLy 
.1 

distributed as x2 with p-r degrees of freedom. 

PROOF: From the relation 

it follows that T; = U(1) 'U(1) + see (4.10) and (4.14). The 

* likelihood ratio test statistic of H2 in H2 is the difference of the two 

test statistics considered in Theorem 4.1 and Theorem 4.3. They 

furthermore have the same variables entering the asymptotic expansions 

and hence the distribution can be found by subtracting the above random 

variables T2 and T;. The test statistics T2 and T; can be considered 

multivariate versions of the Dickey-Fuller test statistics, see Fuller 

(1976). 
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5. Asymptotic properties of the estimators under the 

assumption of cointegration and linear restrictions 

We shall choose to give the asymptotic properties of the estimators 

under the hypothesis H5 where restrictions are imposed on both a and ~, 

since the other hypotheses are special cases. We shall in this section 

denote the maximum likelihood estimators under H5 by A Under the 

hypothesis H5 : a = A~ and ~ = H~ . where A is pxm and H is pxs of full 

rank the estimates are found as follows: 

For fixed ~ we 

(5.1) a(~) = 

find, see (2.9) and (2.16) 

-A(A·A)-lA·SOk.b~(~·Skk.b~)-l, 

where B = Ai' whereas ~ is found from (2.15) 

The distribution of ~ is clearly concentrated on the sp(H) , and we 

shall in the proof use the natural coordinate system in that space. We 

choose. apart from ~. the projection of ~ onto sp(H). ~ = H(H·H)-lH·~. 

which is orthogonal to ~, since ~ = ~iTa~M' and supplement with the s-r-1 

vectors ~ € sp(H). such that (~.~,~) consists of s mutually orthogonal 

vectors which span sp(H). We can then decompose the estimator ~. = Hv .. 
1 1 

see (2.15), as follows 

~. = ~b. 
1 1 

+ ~c. + ~f .• 
1 1 

where, for instance, b. = (~.~)-1~.~ .. 
1 1 

Since the parameter is not 

identified we can not hope to find a reasonable estimator without some 

arbitrary normalization. A general type of normalization can be found as 

follows: Take a pxr matrix c such that c'~ has full rank r, and· define 

the normalized estimator 
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A ,"-1 
f3c = f3(c (3) . 

It is seen that this estimator is independent of the choice of maximum 

likelihood estimator. If we choose c = (I,O)', where I is rxr then f3 is 

normalized such that the first r rows constitute an identity matrix. We 

shall in the following choose c = (f3'f3)-1 f3 , which gives a convenient 

formulation of the theory. The results for other normalizations can then 

easily be deduced. With this choice of normalization we find that we 

shall divide f3 by b = (f3'f3)-1(f3'~), and we find the following 

A -1 
representation for f3b : 

PROPOSITION 5.1: If ~ # 0, then it hoLds that under the hypothesis 

HS : a = A~ and f3 = H~ the maximum LikeLihood estimator f3 has the 

representation 

(5.2) 
[ 

-1 
3/2 (f3b - (3) ~ 

T(~'~) ~'] A -1 

T ~' 

where 
_ -1 T 
Xk = T ~ X -k. The right hand side converges in distribution to 

t=1 t 

(5.3) (fFF'du)-1 fFdV ' , 

where F and V are independent processes defined by 

(5.4) 

(5.5) 

and 

F.(u) = ~:C(W- W), 
l., l., 

F. (u) = u - 1/2, 
l., 

-1 -1 
with variance given by var(V) = (a'A a) . 

(i = 1, ... ,s-r-1), 

(i = s-r), 
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If ~ = 0, then the above resuLts have to be modified by deLeting the 

terms contaning ~ and by choosing ~ such that (~,~) span sp(H) hence 

(5.3) hoLds with 

(5.6) F = ~'C(W - W). 

PROOF: With the notation SeA) = ASkk . b - Ska.bS~.bSak.b we have 
A A 

that the vector ~. is the solution to the equation S(A.)~. = 0. 
1 1 1 

In the 

new coordinates (~,~,~) this implies that 
A A A 

~'S(A.)~b. + ~'S(A.)~C. + ~·S(A.)~f. = 0, 
1 1 1 1 1 1 

A A A 

~'S(A.)~b. + ~·S(A.)~C. + ~·S(A.)~f. = 0. 
1 1 1 1 1 1 

and hence 

~. - ~b. = (~.~)(c:,f:)· = 
1 1 1 1 

A A -1 A 

_ ( )[~'S(A.)~ ~'S(A.)~] [~'S(A')~]b ~. ~ Al Al Al •. 

rJ'S(A.)~ ~·S(A.)~ ~'S(A.W 1 
III 

The normalization is different for ~ in the direction ~ and in the 

direction ~ due to the trend in the process. Hence we shall multiply 

both sides of the equation by (T~.T3/2~),. Now note for instance that by 

Lemma 3.4 the term 

~ T-1~.~'Skk~ ~ ~.~'Cf(W-W)(W-W)'duC'~. 
1 1 
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Thus the conditioning on B'ROt is not relevant for this part of the 

asymptotics. We can then apply Lemma 3.4 and find 

The second factor converges in distribution to @, see (4.5), and we shall 

evaluate the third factor. We begin by 

(5.7) 

We shall first evaluate 

(5.8) ~'Ska.b = ~'(Ska.b+ Skk~a'A) - ~'Skk~a'A 

~ ~'(Ska.b + Skk~a'A) + ~'Skk~(~'Skk.b~)-1~'Ska.b 

~ ~'(Ska.b + Skk~a'A) + ~'Skk.b~(~'Skk.b~)-1~'Ska.b' 
where we have applied the expression (5.1) for a and replaced Skk.b~ by 

Skk~' since Sbk~ ~ B'~Ok = 0, when B'a = 0, see (3.14). Now insert the 

last term of (5.8) into (5.7) and we find 

~'Skk.b~(~'Skk.b~)-1~'S(~i)~bi ~ O. 

The first term of (5.8) inserted into (5.7) gives 

~'S(~.)~b. ~ - ~'(Ska b + Skk~a'A)S -1bSak b~b .. 1 1 . aa.. 1 

From the relation (2.4) it follows that 

Hence 

(5.9) 

, -1 T -1, 
SkO + Skk~a = T ~ (Xt - k - Mk1M11Z1t)tt· 

t=1 
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The limit of this is found from Lemma 3.4 and summing up we find that 
A 

~'SCA.)~b. has the same limit distribution as 
1 1 

Similarly we find 

T-1/2~'SC~.)~b. ~ 
1 1 

. ,-1-1 
- ~ ~JCu-1/2)dW CA-B~b~a)2aa.b2ak.b~bi. 

Combining these results we obtain the asymptotic representation and the 

limiting expression 

- [~'~ 0 ]-1 r~'CJ(W -W) dW'] -1 -1 A -1 
o ~'~ ~ l~'~JCu-1/2)dW' CA - B~b ~a)2aa.b2ak.b~bD(A)b , 

A A A 

where D(A) = diag(A1 , ... ,Ar ). and ~ is given by (4.5). Now 

A -1 P 
~'Skk.b~bD(A) - ~'Ska.aSaa.bSak.b~b ~ 0 

which shows that 

say. We shall now reduce this expression. From (3.14) we find that 

since B'a = 0 it follows that ~k~ = 0, which shows that ~.b~ = ~k~ -

-1 
~b~b~~ = ~~, and that 2ak.b~ = 2ak~· With these simplifications we 

now have 
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Finally we have that 

This relation is checked by first mUltiplying from the left by A'200 to 

get an identity and then by B'200 to get zero. 

expression for K given by 

Thus we have the 

Now apply (3.14) to replace ~'~O by an expression in a and we find that 

. I ~ -1 ( ,~ -1 )-1 h' h b (3 16) I A-1a(a'A-l a)-1 from lt equa s ~OO a a ~OO a ,w lC y. equa s 

which the expression for the variance follows. Notice that it is at this 

point that the condition (3.5) becomes crucial, and that the definition 

of a L turns out to be convenient. 

Note that the limiting distribution for fixed F is Gaussian with mean 

zero and variance 

(JFF'du)-l @ (a'A- la)-l. 

Thus the limiting distribution of ~b-l - ~, which lies in sp(H) and is 

orthogonal to ~, is a mixture of Gaussian distributions, see also 

Jeganathan (1988) for a general theory of locally asymptotically mixed 

normal models. Note also that the restrictions on a, as expressed by a = 

A~, do not enter into the asymptotic representation for the estimate of 

~. This is the key to the asymptotic results for the test statistics in 

the next section. 

A* * 
We shall now find the distribution of ~ in the model H5 , i.e. when ~ 

= = H~ and a = A~. We introduce ~ such that ~ and ~ span Hand 

define ~*, = (~',O) and f' = (0.1), which together with * ~ gives a 

convenient coordinate system to work with in the description of the 

limiting distribution. 
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PROPOSITION 5.2: * Under the hypothesis H5 : a = A~, ~ = H~, and ~ = 
A* 

a~O the maximum LikeLihood estimator ~ has the representation 

(5.10) 

The right hand side converges in distribution to (5.3) with 

F. = U., 
1. 1. 

F. = 1, 
1. 

(i = 1, ... ,p-r), 

(i = p-r+1). 

The estimate of ~ is superconsistent, see Stock (1987), whereas the 

estimate of ~O is consistent with the usual rate. If we estimate ~ under 

the further restriction that ~O = 0, i.e. the coefficients to the 

constant term are restricted to zero, the result (5.2) holds with the 

term involving f deleted and the limiting distribution is given by (5.3) 

with F = U, see Lemma 8 in Johansen (1988b). 

PROOF: The proof of this result follows the lines of the proof of 

Proposition 5.1 applying the results in Lemma 3.5. 

Next we shall find an asymptotic representation and the asymptotic 

distribution of the estimate of a suitably normalized. 
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PROPOSITION 5.3: Under the hypothesis HS: a = A~ and ~ = H~ the 

estimator a has the representation 

which converges weakLy to a Gaussian distribution of dimension pxr with 

mean zero and variance matrix 

'" A '" 

PROOF: In the definition (5.1) of a = a(~) we can, by (5.2), replace 
A -1 
~ by ~b ,which shows 

and hence 

,'" ,-1,-1-1 
A a = - Sak.b~(~ Skk.b~) b + 0p(T ), 

T1/2A'(~b' - a) ~ - T1/2(Sak.b~ + A·a~·Skk.b~)(~·~~)-l 

~ - T1/2(Sak.b~ + A·a~'Skk~)(~·~~)-l. 

Similarly to (5.9) we can prove 

, -1 T -1.-1 
~·(Ska.b + Skk~a'A ) = ~ {T 2 (Xt - k - ~lM11Z1t)}ct(A-BSbbSba)' 

t=l 

The asymptotic distribution now follows from Lemma 3.4. 

PROPOSITION 5.4: * Under the hypothesis HS: a = A~. ~ = H~ and a~~ = 
"'* o the estimator a has the representation 

which converges weakLy to a Gaussian distribution with mean zero and 

variance matrix 
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PROOF: We have 

A'~* = - S ~*C~*'S ~*)-1. 
ak.b kk.b 

A* * *-1 and again we want to replace {3 by {3 b The expansion 

{3A* -_ (3*b* + * * * 
'Y g + Ef . 

together with Lemma 3.5 shows that g*€ OpCT-1) while f*€ 0pCT-1/2). Thus 

dropping the term involving * g involves an error of 

. d T-1 h' h d' hI' 1 by Tl/2 magnltu e . w IC Isappers even w en we mu tIP y 

that 

What remains to investigate is the term 

* * * *-1 * 
Sak.bE = SakE - SabSbb SbkE , 

the order of 

It is seen 

* * , * *-1 * where for instance SakE = A'MOkE - A MOIMll MIkE. Under the hypothesis 

* * * H2 ,where AXt has a mean zero, the terms SakE and SbkE converge to zero 

in probability of the order T-1/ 2 , hence 

* * -1 Sak.bEf € OpCT ). 

The rest of the proof now follows as in Proposition 5.3. The results 

about a and {3 are mostly of a technical nature, since there does not seem 

to be a natural normalization. The one chosen is convenient for 

expressing the results. The more useful results on the estimation of the 

parameters are collected in the next Theorem. 
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THEOREM 5.5: Under the hypothesis H5: a = A~ and ~ = H~ the 

asymptotic distribution of Tl/2(IT - IT) is Gaussian in pxr dimensions with 

mean 0 and a variance matrix given by 

which is consistentLy estimated by 

The parameters A,rl , ... ,rk-l'~' and M are consistentLy estimated. A 

simiLar resuLt hoLds for the estimate of the parameters under the modeL 

PROOF. The results about IT follow directly from Proposition 5.3 by 

A AA A A -1 A -1 
noting that IT = a~' = ab'(~b )', where we can replace ~b by ~ without 

changing the asymptotic distribution. This implies that the asymptotic 

distributions of IT is not influenced by the restrictions on~, and that 

the asymptotic variance comes from a exclusively. The consistency of the 

parameters in r come from (2.7) together with the properties of the 
A 

moment matrices M ... 
IJ 

The consistency of A can be derived from 

(2.17),(2.18) and (2.19) by noting that, for instance, 

A a.s. 
Aab = Saa+ A'a~'Skb ~ 2aa + A'a~'~b' 

but (3.14) implies that ~'~OB = O. 
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6. The asymptotic distribution of the HkeHlwod ratio 

test statistics of restrictions on a and p. 

We shall now find the limiting distributions of the likelihood ratio 

test statistics for the various hypotheses discussed in Section 2. 

We shall first give a useful approximation to the test statistic of a 

simple hypothesis for p. 

LEMMA 6.1: The LikeLihood ratio test of a simpLe hypothesis about p 

in Hg has the representation 

(6.1) I -1 A -1 A -1 
- 2Ln(Q;p Hg) ~ Ttr{var(V) (Pb -P)'Skk(Pb -P)}, 

which is and has asymptoticaLLy distributed as 

(6.2) 

where F is given by (5.4) and (5.5) if ~ = H(H'H)-1H'~ ~ 0 and by (5.6) 

if ~ = o. The distribution of (6.2) is 2 )( (r(s-r)). A simiLar 

representation and the same Limit resuLt hoLds for - 2Ln(Q;pIH;). 

PROOF: By a Taylors expansion of the partially maximized likelihood 

function we obtain (6.1) and Proposition 5.1 now implies the result about 

the limit distribution. 

We shall give the asymptotic distribution of the test statistics for 

testing H5 versus either H3 or H4 , and H; versus either H; or H:. 
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THEOREM 6.2: The LikeLihood ratio test - 2Ln(Q;HS /H4 ) of the 

hypothesis ~ = H~ in the modeL H4 : a = A~, where A is pxm and H is pxs, 

is asymptoticaLLy distributed as x2 (r(p-s)). The same resuLt hoLds for 

PROOF: If L(~) denotes the concentrated likelihood function after 

maximizing with respect to all other parameters, then 

Q(HS/H4) = L(~S)/L(~4) = 
A A 

{L(~s)/L{~)}/{L(~4)/L(~)} = QS/Q4' 

where Q4 and QS are the tests of a simple hypothesis about ~ in H4 and HS 

respectively. We can now apply Lemma 6.1. and find that - 2In(Q;H4IHS) 

is the difference between two expressions like (6.1) with different 

estimates ~4 and ~S respectively. Let the ~ chosen under HS' see (S.2), 

be denoted ~H' then ~H is chosen orthogonal to both ~ € sp(H) and to ~ = 

H(H'H)-lH'~ € sp(H). This implies that there is a matrix h such that ~H 

= ~h. The rest of the proof now follows the proof of Theorem 4 in 

Johansen (1988b). The proof assumes that in fact ~ # 0, but the same 

technique works if ~ = 0, since then one should only work with the 

alternative form of the limiting distribution as discussed in Proposition 

41 Th I f H* I .. e resu t or S is proved similar y. 

THEOREM 6.3: The asymptotic distribution of the LikeLihood ratio 

test statistic - 2Ln(Q;HS /H3 ) of the restriction a = A~ in the modeL H3: 

~ = H~ is asymptoticaLLy distributed as x2 (r(p-m)). The same resuLt 

*/ * hoLds for - 2Ln(Q;HS H3 ). 
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A 

PROOF: Let us introduce the notation a3(~) = - SOk~(~'Skk~) and 

A -1 -1 
a5(~) = -A(A'A) Sak.b~(~'Skk.b~) ,see (2.9) and (5.1), and let L(a,~) 

denote the concentrated likelihood function. As before consider the 

decomposition 

Q(H5 IH3) = L(~5(~5)'~5)/L(~3(~3)'~3) = Q1Q2/Q3' 
A A A A A A 

where Q1 = L(a5(~),~)/L(a3(~)'~)' Q3 = L(a5(~),~)/L(a5(~5)'~5)' and Q2 = 
A A A 

L(a3(~),~)/L(a3(~3)'~3)· 

Now the first factor, Q1' is just the test of the restrictions a = A~ 

for a fixed value of~. Such a hypothesis is just a hypothesis on the 

parameters of the stationary process (AXt,~'Xt) and is therefore 

asymptotically distributed as x2 (r(p-m». It is shown in Lemma 6.1 that 

the two other test statistics Q2 and Q3' which correspond to simple 

hypotheses about ~ and which only differ in the restrictions on a, have 

the same asymptotic representation. Hence their ratio tends to 1 and the 

resul t follows. 

7. Wal.d tests for hypotheses about a and P 

The asymptotic distribution of the estimators are expressed in an 

arbitrary normalization. The proper way to exploit such a result is to 

ask questions about the parameters which are invariant under such 

normal izations. One way of doing this is to ask for the distribution of 

the Wald test statistics. 

We shall consider Wald tests which are very easy to calculate once 

the eigenvectors and eigenvalues have been calculated under the hypo-

thesis H2 . Let us first consider a test for the hypothesis concerning a 
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and let us express it as 

H4 : B'a = o. 

Note that the hypothesis is invariant to different normalizations of a. 

A Wald test can be constructed from the statistic B'a. 

THEOREM 7.1: Under the hypothesis H4 : B'a = 0 where B is px(p-m) of 

fuLL rank the asymptotic distribution of 

(7.1) 

is 2 X with (p-m)r degrees of freedom, where a is the maximum LikeLihood 

estimator of a under H2 . 

PROOF: In view of the results about the asymptotic distribution of 

a, see Proposition 5.3, we can consider the statistic 

Ttr{Ab~IB'~b'(~'2kk~)~'B}, 

which is asymptotically distributed as X2 with (p-m)r degrees of freedom. 

To apply the test we need consistent estimates for the variance matrices, 

and we thus insert the consistent estimates for ~'2kk~ 

b,-I~'Skk~b-l = b,-lb-l, 

and for Abb 

and the result follows. 

Let us next consider the hypothesis H4 but expressed as 

H4 : K'~ = O. 

where K is px(p-s) of full rank. This suggests a Wald test on the sta-

tistic K'~ and the problem is again how to normalize it. 
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We shall first prove an intermediate result. Let (~.~.t) be as in 

Lemma 3.4 and let v be the eigenvectors of (4.4) corresponding to the 

eigenvalues A 1 ..... A. r+ p 

LEMMA 7.2: If K'~ = 0, K'~ # 0, and t # 0, we have 

(7.2) TK'~~'K ~ TK'(~,t){(~,t)'Skk(~,t)}-1(~,t)'K, 

which converges in distribution to 

-1 
(7.3) K'~[~'CfGG'duC'~J ~'K, 

where G = W-W - a(t-1/2) and a = fW(u)(u-1/2)du/f(u-1/2)2du , i.e. G is W 

corrected for constant and trend. If t = ° then (7.2) and (7.3) hoLd 

with ~ = ~ and G = W - W. If, however, K'~ = ° and t # 0, then 
L 

~K'~~'K ~ K't[t'tf(u-1/2-a(W-W»2t 'tJ- 1t'K, 

where a = f(u-1/2)W(u)du/f(W-W)2du , i.e. the process that appears is the 

trend corrected for the mean and the Brownian motion. 

PROOF: We first expand 

(7.4 ) v = ~e + ~g + tf 

and then note that from 
A -1 A A A -1 
v'SkOSOOSOkv = diag (Ar +1 ..... Ap ) € 0p(T ). 

A -1/2 
it follows that v and hence also the coordinates (e,g,f) are 0p(T ). 

From the normalization v'Skk; = I, it even follows that f € Op(T-1) and 

p 
that, since e ~ 0, we have 

(7.5) 

Note finally that from (7.4) we have, since K'~ = 0, that 
A 

(7.6) K'v = K'(~g+tf) = K'(~,t)(g',f')'. 

Now insert (7.5) and (7.6) into TK'vv'K and we get 



(7.7) 

40 

-1 
TK'(~g+~f){(~g+~f)'Skk(~g+~f)} (~g+~f)'K 

= TK·(~.~){(~.~)·Skk(~·~)}-l(~'~)'K 

= K'(~,T-l/2~) kk kk (~.T-l/2~)'K. [ 
T-l~·S ~ T-3/2~·S ~1-1 

T-3/2~'Skk~ T-2~'Skk~ 

If K'~ # 0 then the term involving T-l/2~ are of smaller order of 

magni tude and what remains is 

which converges as stated by application of Lemma 3.4. If ~ = 0 we can 

drop the terms involving ~ and choose ~ = ~L and apply Lemma 3.4 again. 

If instead K'~ = 0, then we must normalize by T2, and then the result 

follows from (7.7). 

We * shall also need a result for the model H2 where restrictions have 

been placed on both IT and ~. "'* Let v denote the eigenvectors of (4.13) 

"'* A* 
corresponding to A l' .... A l' r+ p+ 

LEMMA 7.3: If K'~ = 0. then we Let K*=(K' ,0)', such that K*'f = 0, 

then it hoLds that 

(7.8) * "'*A* * -1 TK 'v v 'K ~ TK'~ (~'S ~) ~'K 
L LkkL L 

which converges in distribution to 

(7.9) K'~ (~'CfFF'duC'~ )-1~'K 
L L L L' 

where F = W-W. 

PROOF: The proof is almost the same as for Lemma 7.2 but differs 

since the smallest eigenvalue of (4.13) is always equal to O. We apply 

the coordinate system given by ~* = (~·.-~O)'. ~*= (~~.O)' and f = (0.1)' 

and find 

A* * * * * v = ~ e + ~g + §f . 
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A* * A* A* * * * 
We now use the equation v 'Skkv = I to note that v and also Ce,g,f) 

are bounded. Further 

A*. * *-1 * A* A* -1 
vi CSkOSOO SOk)Vi = Ai E OpCT ). 

implies * * -1/2 that the coordinates e and g are OpCT ) and that 

C~*g* + ff*)'S~C~*g* + ff*) g I. 

By an argument similar to C7.7) we find 

* * *. * * -1 * ,* TK 'C~ ,f){(~ .f) SkkC~ ,f)} (~.f) K = 
* * * * * , * -1. * *-1 

TK'~~(~ 'Skk~ - ~ 'Skkf(f Skkf) f Skk~) ~~K. 

since K*'f = 0 and K*'~* = ~~. Now the proof is as before using that 

~*'S~~* - ~*'S~f(f'S~f)-lf'S~~* = ~~Skk~~. 

THEOREM 7.4: Under the hypothesis H3 : K'~ = 0, where K is px(p-s) 

of full rank, the asymptotic distribution of 

(7.9) 

or 

(7.10) 
A A A 2 

where D = diag(A1 , ... ,Ar ), is X with (p-s)r degrees of freedom. 

PROOF: It follows from Proposition 5.3 that if K'~ # 0, and ~ # 0 

the asymptotic distribution of TK'(&b-1 - ~) = TK'&b-1 for given F, see 

(5.4) and (5.5) is Gaussian with mean zero and covariance matrix 

K'~(~'CfGG·duC·~)-l~'K ® (a'A- 1a)-l, where G is W corrected for mean and 

trend. By Lemma 7.2 this can be estimated by 

TK'~'K ® (b~'(SOO-~,)-l~b,)-l. 

Hence the asymptotic distribution for given G of 
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2 is X ((p-s)r)). Since this result does not depend on G, the result holds 

unconditionally. 

The alternative form of the test statistic, which is very convenient 

to calculate once the eigenvalues and the eigenvectors from (4.4) have 

been found, is derived as follows: We insert the estimates into the 

identity 

If ~ = 0 the same result holds, by applying the limit results that 

hold under this assumption, see (5.2). 

Finally if K'~ = 0 then K'~ # O. In this case Proposition 5.1 

. 1 . ha T3/~L '(3"b-1 h . d . . b' h· h f . F lmp les t t -K as an asymptotlc lstrl utlon, w lC or glven 

is Gaussian with mean zero and variance matrix 

K'~(~'~f(u-1/2-a(W-W))2du~,~)-1~'K @ (a'A-1a)-l, 

where a = f(u-1/2)W(u)du/f(W-W)2du . This, however, can be estimated by 

T~'~'K @ (~'(SOO - aa,)-l~'b), 

see Lemma 7.2, and then the proof is as before. 

Next we shall give the result for testing the restrictions on (3 when 

there is no trend. 

THEOREM 7.5: Under the hypothesis H; : K'(3 = 0 and a~~ = 0, where K 

is px(p-s) of fuLL rank, the asymptotic distribution of 

(7.9) 

or 

(7.10) 

"* "* "* 2 * where D = diag(~l". "~r)' is X with (p-s)r degrees of freedom, here K 

= (K',O)' and fI* = a(3*'. 
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PROOF: The proof is the same as for Theorem 7.4. Note that since 

K*,~ 0 K*,A* ~ = , then ~ only involves the estimate of the cointegration 

vector and not the constant term. * A* A similar remark holds for K 'v . 

We shall apply the result to the special case when r = 1 and we have 

only one cointegration relation where we want to test some linear 

constraint on the coefficients. We shall formulate the result as a 

Corollary. 

COROLLARY 7.6: If onLy 1 cointegration vector ~ is present (r = 1). 

and if we want to test the hypothesis 

K'~ = 0 

then • the test statistic 

(7.12) 

is asymptoticaLLy normaLized Gaussian. Here A1 is the maximaL eigenvaLue 

and ~ the corresponding eigenvector of the equation 

The remaining eigenvectors form v. A simiLar resuLt hoLds for the modeL 

with no trend. 

The normalization v'Skkv = I implies that v'v is of the order of 

which shows that ~ is really normalized by T. 

-1 
T 

Thus if there is only one cointegration vector ~ one can think of the 
A 1 AA 

matrix (A~ -l)vv'/T as giving an estimate of the asymptotic "variance" of 
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This result should be interpreted with care since K'~ is not asymp­

totically Gaussian and may not have an asymptotic variance. but one can 

still normalize a linear combination of the components of ~ in such a way 

that it becomes asymptotically Gaussian. 
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