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Summary 

A class of additive processes is studied that typically arise as 

stochastic integrals from s to t when both arguments are allowed to 

vary. A Skorohod-type topology is introduced on the space of paths for 

such twosided integrals and the matching theory of weak convergence is 

developed and related to usual weak convergence in Skorohod spaces. As an 

application some asymptotic results, due to M. Woodroofe, for estimators 

based on left truncated survival data, are reformulated and rederived. 

This work is based on the thesis written by M. Davidsen for the degree of 

cand.scient at the University of Copenhagen, with M. Jacobsen as 

supervisor. 
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O. Introduction 

The main purpose of the paper is to discuss convergence in distribution 

of twosided additive stochastic processes. Such processes arise for 

instance as stochastic integrals from s to t say, when both s and 

t are allowed to vary. Of course the twosided integral is completely 

determined by the onesided integral obtained by keeping one argument 

fixed and alloWing the other to vary. Typically this onesided process has 

sample paths belonging to some Skorohod space - right continuous with 

left limits. However, as will be shown below, the topology on the space 

of twosided integral paths inherited from the Skorohod space, will in 

general depend on the value of the fixed argument. Hence the need for a 

new approach, to be developed below in the case where s ~ t vary in an 

open interval so that there is no outstanding candidate, such as an 

interval endpoint, for a fixed argument value. 

In Section 1 we introduce the topology on the space of paths for 

additive processes. Section 2 treats the matching weak convergence of 

probabilities on this space. Finally, Section 3 contains an application 

involving non-parametric estimators of a survival distribution based on 

left truncated survival data. 
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I. The space D(A) 

Let A = {(s,t): 0 < s ~ t} and let D(A) denote the space of all 

functions w: A ~ ffi with the following two properties: 

(i) w(s,u) = w(s,t) + w(t,u) (0 < s ~ t ~ u) 

(ii) w(s,t) is right continuous with left limits in either variable s 

or t. 

Taking t = u in (i) shows that 

(iii) w(t,t) = 0 (t > 0). 

It is critical that only strictly positive arguments s and tare 

allowed. The applications we have in mind involve cases, where 

expressions like w(O,t) are meaningless. 

For an obvious example of D(A)-functions, let ~ be a a-finite 

measure on ffi++ = (0,00) and let f: ffi ~ ffi be a function which is 
++ 

locally ~-integrable in the sense that flfld~ < 00 for any compact 
K 

K C ffi Then 
++ 

(1.1) w(s,t) = f f(u)~(du) 
(s,t] 

belongs to DCA). Note that since we only consider s,t > 0, we allow 

for f Ifld~ to diverge. 
(O,t] 
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If w E D(A) it is possible to define w(s,t) also if s > t > 0 

and still retain properties (i) - (iii), viz. as (1.1) suggests, define 

(1.2) w(s,t) = - wet,s), 

if 0 < t < s. So from now on we assume w(s,t) to be defined for all 

o < s,t and use (i) - (iii) and the antisymmetry (1.2). 

Our task in this section is to define a Skorohod type topology on 

D(A). First the reader is reminded about the following standard facts 

and notation. 

Let I c rn be an arbitrary (bounded or unbounded) interval and let 

D(I) denote the space of all functions v: I ~ rn, right continuous with 

left limits everywhere. The time deformation group for I is the 

collection AI of bijections A: I ~ I which are strictly increasing 

and continuous. Then v ~ v in the Skorohod D(I)-topology (Skorohod 
n 

[5J, Billingsley [lJ, Lindvall [4J, Whitt [6J) if there exists a 

sequence An E AI such that 

(1.3) 

(b) /Iv 0 A - v/lK ~ 0 for all compact intervals K Cl. 
n n 

Here denotes the identity eI(t) = t on I, and if J is an 

interval and f is a real valued function, defined on a domain 

containing J, we write 

= sup I f ( t) I . 
tEJ 
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If I = ffi++, we omit index I. In particular A is the time deformation 

group on ffi++ Also for I = [to'oo), we write index to instead of 

[to'oo). 

Recall that (1.3a) may be replaced by 

(1.3a') IIAn - e I ilK -7 0 for all compact intervals KC!. 

Recall also that D(I) with the Skorohod topology is metrizable as a 

Polish space. 

Returning now to the space D(A), fix So > 0 and consider the map 

(~ w)(t) = w(so,t) 
So 

It is immediately checked that ~ is a bijection from D(A) onto 
So 

Ds (ffi++) = {v E D(ffi++): v(sO) = O} with inverse 
o 

(~-lv)(s,t) = vet) - v(s) 
So 

At a first glance it would appear natural to equip D(A) with the 

topology obtained by using on D (ffi ) the topology it inherits as a 
So ++ 

subspace of the Skorohod D(ffi++)-space, and then demanding that ,/, be 
'1's o 

a homeomorphism. A quick check reveals however, that this topology 

depends on the choice of sO. We therefore take a different approach and 

present the following basic 
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1.4 Definition A sequence (w ) of D(A)-functions converges to 
n n~l 

w E D(A) in the Skorohod-D(A) topology if and only if there exists a 

sequence 

(1.5) 

(A ) 
n 

(a) 

(b) 

of time deformations in A such that 

/lA -ell ~ 0 
n 

sup Iw (A s,A t) - w(s,t)/ ~ 0 
sEK,tEL n n n 
for all compact intervals K,L C ffi++. o 

Various equivalent forms are available: in (b) it suffices to take 

K = L and (a) may be replaced by (1.3a') (with I = ffi++). 

For convenience we shall write IIwn 0 A - wllK,L for the supremum in 

(1.5b) . 

It should be clear that Definition 1.4 defines a topology on D(A): 

indeed, a subbase of neighborhoods of w E D(A) is given by the 

collection of sets of the form 

U(t,K,L,w) = {w' E D(A): 3 A E A such that 

I/A - ell < t, /lw' 0 A - wllK,L < t} 

for arbitrary t > 0 and K,L C ffi++ compact intervals. 

Note that s,t are treated symmetrically in (1.5b). This is not the 

case with the topology on D(A) described above, which was derived from 

the Skorohod topology on D (ffi). So ++ 

Before listing some properties of the Skorohod D(A)-topology, we need 

to discuss the discontinuities of D(A)-functions. 
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Let w E D(A). For So > 0 fixed, ~ w has at most countably many 
So 

points of discontinuity. Furthermore, since 

the discontinuity set does not depend on sO' and we are allowed to 

define the set of continuity points for w E DCA) as 

(1.6) C(w) = {t E IR ++ 
is continuous at t} 

for any So > O. 

It is immediate that w E DCA) is continuous at (s,t) E A iff 

s,t E C(w). 

1.7 Proposition (a) The following three conditions are equivalent: 

(i) 

(ii) 

(1.8) 

(i ii) 

w ~ w in D(A); 
n 

for some, and then automatically for all to > 0, there 

exists a sequence of A-functions such that 

IIA - ell ~ 0, n 

II(~AntoWn) 0 An - ~toWIlL ~ 0 for all compact 

intervals L C IR . ++' 

for some, and then automatically for all to E C(w), 

~toWn ~ ~tOW in D(IR++). 
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(b) For any to > 0, the mapping ~t : D(A) ~ Dt (ffi++) is continuous 
o 0 

-1 
at w E D(A) provided to E C(w). The inverse mapping ~t : Dt (ffi++) ~ 

o 0 

D(A) is everywhere continuous. 

Proof (a) Taking K = {to} in (1.5b) shows that (i) ~ (ii) for all 

to' Conversely. if (ii) holds for some to > 0, find (A) such that 
n 

(1.8) is true. Since by additivity and antisymmetry 

Iw (A S,A t) - w(s,t) I n n n 

~ IWn(AntO.AnS ) - w(to's)/ + /Wn(AntO,Ant ) - w(tO·t)/. 

(1.5b) and (i) follows. 

Assume now that (ii) holds. and take an arbitrary to E C(w). Find 

(An) such that (1.8) holds for this to' To establish (iii) we must 

show that for all L compact. 

(1.9) II(~t w ) 0 A - ~t wilL ~ O. o n n 0 

But for all t. 

((~t w ) 0 A )(t) - (~t w)(t) o n n 0 

= (~~ t w (A t) - (~t w)(t)) + w (to,A to)' 
/'nOn nOn n 

But since 

using (1.8) and the assumption that to E C(w), it follows easily that 

Wn(tO,AntO) ~ w(tO.tO) = O. 
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That (iii) for one to E C(w) implies (i), follows trivially from 

the last assertion in (b) proved below. The proof of part (a) is 

complete. 

(b). The first assertion is just the implication (i) ~ (iii). For the 

second. let 

vn -+ v in D(ffi++). 

IIv 0" - vllK -+ 0 n n 

compact 

and assume v, v 
n 

are 

Find " E A n 

for all compact 

such that 

KCffi ++ 

Dt (ffi )-functions such that o ++ 

"" - ell -+ 0 and n 

Then for K,L C ffi++ 

1I("'~~vn) 0 "n - "'~~vIlK'L 
= sup I(v (" t) - v (" s») - (v(t) - v(s»1 -+ o. 0 

sEK,tEL n n n n 

From the proposition it follows in particular that if 

w (s,t) -+ w(s,t) if s,t E C(w). 
n 

w -+ w, 
n 

then 

1.10 Proposition The Skorohod space D(A) is metrizable as a Polish 

space. 0 

We shall only outline the proof. For 0 < s < t define a distance 

between the restrictions to [s,t] of two D(A)-functions w1 ,w2 by 

where st is short for [s,t] and 
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Then (cf. [6. Section 2]). 

defines a metric for the Skorohod-D(A)-topology. Thus DCA) is 

metrizable and it is then readily seen. that it is separable: convert a 

countable. dense subset A of D(ffi++) to a countable. dense subset A' of 

that since 

by subtracting from any v € A the constant vetO)' and note 

~~1 is continuous (Proposition 1.7b) and onto. ~-l(A') is 
o to 

countable and dense in D(A). 

Finally. to prove completeness. one must modify the metric d by 

considering only timedeformations that are not too steep. exactly as in 

[1, p.1l3]. 

2. Weak convergence 

Let P for n L 1 and P be probabilities on a metric space. We write n 

P ~ P if P converges weakly to P as n ~ 00. i.e. 
n n 

ffdP ~ ffdP 
n 

for all bounded and continuous f. 

We shall now discuss weak convergence of probabilities on D(A). 

Since DCA) is Polish, Prohorov's theorem applies and consequently 

P ~ P iff there is weak convergence of all finite-dimensional 
n 
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distributions corresponding to continuity points for P (see below) and 

the family (P ) 
n 

is tight. 

We shall not here discuss conditions for tightness, but instead 

relate weak convergence of probabilities on D(A) to the standard case 

of weak convergence of probabilities on D(ffi++) (or rather D[to'ro) for 

almost all to > 0). 

Let t > 0, let r t denote the map that restricts a function with a 

domain containing [t,ro) to [t,ro), e.g. rtv = (v(u»v~t for 

v € D(ffi++). Also, write ~t = r t 0 ~t' so that ~t: D(A) ~ D[t,ro) and 

(2.1) (u ~ t). 

If P is a probability on D(A), introduce T as the points of p 

continuity for P, i.e. 

where 

Ct = {w € D(A): t € C(w)}. 

Recalling that t € C(w) iff t is a continuity point for one (and then 

all) ~ w So (see (1.6)), and using standard properties of probabilities 

on D(ffi++), it follows that Tp is dense in ffi++ 

The main result we shall prove is the following. 



2.2 Theorem For (Pn)n~l' 

only if ~t(Pn) ~ ~t(P) 

11 

P probabilities on D(A), P ~ P 
n 

for all t E Tp. 

if and 

Proof Whitt [6, Theorem 2.8] showed that weak convergence on D(ffi++) 

amounts (essentially) to weak convergence on D[s,t] for all ° < s < t. 

We follow his proof in order to obtain the non-trivial half of the 

theorem. 

~t = r t 0 ~t is P-a.s continuous, since ~t is a.s. continuous by 

Proposition 1.7 b, and is continuous at v E D(ffi++), whenever v 

is continuous at t. 

Suppose conversely that ~t(Pn) ~~t(P) for all t E Tp. In order 

that P ~ P it is necessary and sufficient that 
n 

(2.3) lim sup P (F) ~ P(F) 
n 

n-lOO 

for any closed set F C D(A). 

For t > 0, write 
-1-

Ht = ~t (~tF) where ~tF is the closure in 

D[t,oo) of the image of F under ~t· Since Tp is dense, we can choose 

a sequence tk ~ ° of points in Tp. Write 

since ~t (P ) ~~ (P) as n ~ 00, for all k 
k n tk 
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li:~UP Pn(F) ~ li:~UP Pn(Hk) = li:~UP rytk(Pn)(rytkF) 

~ ryt (P)(ryt F) = P(Hk)· 
k k 

Thus (2.3) will follow, if we show that 

(2.4) 

(2.5) 

Hk J Hk+1 P-a.s. for all k, 
00 

n Hk C F. 
k=l 

For (2.4), because t k , t k+1 € Tp ' it is enough to show that if 

w € Hk+l is such that t k , t k+1 € C(w), then w € Hk . First note that 

for any w' € D(A), 

(2.6) ryt w· 
k 

Since ryt w € ry F we can find a sequence 
k+l tk+l 

(w ) from F such that 
n 

ry w ~ ry w in D[tk+1 ,(0) as n ~ 00. Because tk € C(w), in 
t k+1 n t k+1 

particular ryt w is continuous at 
k+l 

and therefore 

continuous at ryt w. 
k+l 

From (2.6) it follows that as n ~ 00, 

i.e. ryt w € ryt F, which is exactly to say that w € Hk · 
k k 

is 
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To show (2.5), assume that w € n Hk . We shall exhibit a sequence 

(wk ) from F such that wk ~ w. Since F is closed, w € F then 

follows. By assumption, for any k, ~t w € ~t F, and we can find a 
k k 

sequence from F such that as n ~ 00. By the 

definition of convergence in D[tk,oo), this implies that there exists 

. t and A' € A such that In egers ~ k tk 

(2.8) 

Using Proposition l.7a, we show that wkn ~ w in D(A) by showing 
k 

that ~t wkn. ~ ~ w in D(ffi++) as k ~ 00. 

1 ---k tl 

k = 1,2, ... 

To this end, define for 

Clearly Ak € A and I/Ak - ell = IIAk - et lit ~ 0 by (2.7). It remains 
k k 

to show uniform convergence on compacta of ~t wkn to ~t w. Since any 
1 k 1 

compact set is contained in [tk,k] for k large enough, for this it 

clearly suffices to show that 
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But the supremum is 

The first term is ~ ~ by (2.8). The second equals 

Because of (2.7), so by (2.8) the first term is 

k large. The second ~ 0 because tl € C(w). 

< 1. for - k 

o 

Suppose now that (Xn)nLl' X are real valued stochastic processes, 

Xn = (Xn(s,t))s,t>O' X = (X(s,t))s,t>O with 

Write P, P for the distribution of X, X 
n n 

sample paths in D(A). 

respectively and X ~ X 
n 

Xn converges in distribution to X, i.e. if Pn ~ P. With TX = Tp 

the theorem may be restated as follows: X ~ X (in D(A)) 
n 

iff 

We shall conclude this section with a discussion of when it is 

if 

possible to include to = 0 so as to deduce weak convergence on D[O,oo) 

from weak convergence on D(A). 

For this problem to make sense at all. it is necessary that the X 
n 

and X in a natural fashion extend to processes defined also at time O. 

More specifically, assume that for some (and then as seen below, 

automatically for all) to > O. the limits 
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(2.9) x (to) = lim X (h,tO) 
+n hJ.O n 

(n ~ 1), 

(2.10) X (to) = lim X(h,tO) 
+ hW 

exist almost surely. 

Using additivity it follows immediately that if (2.9) holds, then 

a.s. X (t) = lim X (h,t) exists simultaneously for all t. Also 
+n hW n 

X (t) - X (s) = X (s,t), +n +n n 

lim X (h) = 0 a.s. 
hW +n 

Thus we may define processes X+n = (X+n(t))t~O' X+ = (X+(t))t~O with 

paths in D[O,oo), always taking the value ° for t = 0, and may then 

ask when X .1x +n + (in D[O,oo)), d assuming that X ~ X. 
n 

First, consider the following simple example: P , P are degenerate 
n 

with unit mass at w, w € D(A) respectively, where 
n 

w == O. 

No matter what are the constants a, W ~ w in D(A) and thus 
n n 

P ~ P. Also, (2.8), (2.9) hold and almost surely 
n 
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0 (t ~ ~) 
1 (1. < < ~) a (t - -) t 

X (t) 
n n n - n 

X+(t) O. = 3 (~ < < l) 
; = +n 

a (- - t) t nn n - n 

0 (t > ~) n 

From this it is clear that the finite-dimensional distributions of X +n 

converge to those of X+' but it is also clear that X need not +n 

converge in distribution to X+' indeed X +n 
~X + iff a /n ~ O. 

n 

Thus, to obtain the desired D[O,oo)-convergence, one must be able to 

control all process values close to O. The precise formulation as given 

in condition (2.12) below, may be referred to as "tightness close to 0". 

2.11 Theorem Let (Xn)n~l' X be processes with sample paths in D(A) 

such that X ~ X and (2.9), (2.10) hold almost surely. In order that 
n 

X ~ X (in D[O,oo)) it is necessary and sufficient that the following +n + 

condition holds: 

(2.12) 

Pr( sup Ix (s,t) I > c) < ~. 
O<s~t~o n 

Notation The processes X , X may be defined on different probability 
n 

spaces, but we always write Pr for the relevant probability and E for 

the relevant expectation. 

Proof Assume first that X ~X (inD[O,oo)). +n + In particular, for a 
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given 0 < to € TX' there is weak convergence (in D[O,tO]) of the 

restrictions of the X +n to [O,tO]' towards the restriction of X+ 

particular, by (15.8) in [1, Theorem 15.3], 

Pr( sup Ix (t) - x (s)/ > c) <~. 
O~s~t~o +n +n 

Since X (t) - X (s) = X (s,t), this is precisely (2.12). +n +n n 

Suppose now that we have tightness close to O. In order to show 

d 
X ~ X, we must show that for all to € TX' +n + 

d 
(X+n(t))O<t<t ~ (X+(t))O<t<t (in D[O,tO]). For this. by [1, Theorem 

- - 0 - - 0 

In 

15.4], it is enough to show that (i) the finite-dimensional distributions 

of X converge to those of X+ when all timepoints involved belong to +n 

TX; and (ii) the following condition holds for any to € TX: 

(2.13) 

Pr( sup Ix (t) - X (t1)1 A Ix (t2 ) - X (t)1 > c) <~. +n +n +n +n 
0~t1~t~t2~tO 

It2-t11~o 

Proof of (i). Because X (0), X (0) both = 0 a.s., we need only show +n + 

that for any choice of k and 0 < t1 ~ ... ~ tk € TX' 

(2.14) 
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Given e, ry > 0 find 0 < 0 < t 1 , 0 € TX such that (2.12) holds for n 

d sufficiently large. Because X ~X, 
n 

(2.15) 

By (2.12) the random vector on the left hand side of (2.14) is close to 

the vector on the left of (2.15) with high probability. Because X+(t) = 

lim X(o,t), the same is true for the two right hand sides if 0 is 
o~o 

small, and (2.14) follows easily. 

Proof of (ii). Since Xn 1 X. by Theorem 2.2, given 0 < So < to' so,to 
d 

(Xn(so,t))s <t<t ~ (X(s,t))s <t<t (in D[sO,tOJ). so by (15.7) 
0- - 0 0- - 0 

in [1, Theorem 15.3J, 

(2.16) 

Pr( sup IXn(so,t) - Xn (so,t1)/ A IXn (so,t2 ) - Xn(so,t)I >~) <~. 
sO~tl~t~t2~tO 

t2-tl~o 

Note that since e.g. X+n(t) - X+n (t1) = Xn(so,t) - Xn (so,t1) = Xn (t1 ,t), 

(2.12) formally emerges from (2.16) by replacing So by O. 

Write S for the supremum appearing in (2.16) and introduce 
n 

R = n 
sup Ix (s,t)/. 

n 
O<s~t~so 
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Then whenever o ~ t1 ~ t ~ t2 ~ to' t2 - t1 ~ 0 the minimum of 

differences in (2.13) equals 

{:> 
if t ~ So 

(2.17) IXn (t1 ' t) I " IXn (t,t2)I ~ S if t1 ~ So < t, n 
if So < t1 n 

and therefore is always ~ R + S Thus to prove (2.13) for to € TX' n n 

given c, Yj > 0 first use (2.12) to choose o < So < to' So € TX' so 

that c < !l. for sufficiently large. Then pick 0 Pr(Rn > 2") 2 n in 

accordance with (2.16) and use (2.17) to arrive at (2.13). o 

3. An application to models for left truncated survival data 

In this section we review some results due to Woodroofe [7], using the 

theory of the preceding sections. 

Let F, G denote two distribution functions for probabilities on 

ffi++ and consider n i.i.d. pairs of ffi++-valued random variables 

(X1 .Y1)' .... (Xn 'Yn )' where the distribution of 

pair (U,V) conditionally on the event (V < U) 

(X.,Y.) is that of a 
1 1 

with U, V independent 

and having distribution functions F and G respectively. We assume of 

course that 

Thus in particular Y. < X. 
1 1 

a = Pr(V < U) > o. 

a.s. 

Referring to each i as an item, x. 
1 

is the failure time and Y. 
1 

the truncation time for item i. We say that i is at risk at time 
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corresponding to I.(t) = 1 where 
1 

Now consider the process N 
n 

counting the number of observed 

failures, 

n 
N (t) = L 1 

n i=l (Xi~t) 

and denote by ~t the a-algebra generated by all observations before t, 

i.e. (Nn(s))s~t and the events (Yi ~ s) for i = l, ... ,n, s ~ t. 

Assume from now on that F is absolutely continuous with hazard 

function ~, so that 

F(t) = 1 - exp(- f~ ~(s)ds). 

Also, for convenience assume that f~ ~ < 00 and that G(t) > 0 for all 

t € ffi 
++ 

It is standard (e.g. Keiding and Gill [2J), that with respect to the 

filtration 

where R (s) 
n 

n 
= L 

i=l 

the increasing process N has compensator 
n 

I.(s). 
1 

Also then, the integrated hazard f~ ~ may be 

estimated by the Nelson-Aalen estimator 
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f3 (t) = n 
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1 
f R ( _) N (ds) 

(O,t] n s n 

and in particular, defining 

A 

f3 - f3 is a martingale. n n 

Now introduce the process X, 
n 

x (s,t) = {ll((P (t) - f3 (t)) - (P (s) - f3 (s))) n n n n n 

with paths in D(A). Woodroofe [7, Theorem 3] showed that for any 

(3.1) 

where Xt = (Xt (t))t>t is the mean zero Gaussian 
o 0 - 0 

process with independent increments and variance function EX~ (t) = 
o 

2 
a (to,t), where 

2 It 1 
a (to,t) = a to G=(~u~)~(l~-=F~(u~)~) ~(u)du. 



22 

(Recall that 

a = PreY ( U) = J~ G(u)(l - F(u))~(u)du). 

In (3.1) the asymptotics are given for the stochastic integrals ~n - ~n 

from to and out. By Theorem 2.2, Woodroofe's result may immediately be 

restated as follows: 

(3.2) d X ~ X, 
n 

with X = (X(s,t))O(s,t the continuous mean zero Gaussian process, 

uniquely determined by the requirements that it has paths in D(A), that 

X(s,t), X(u,v) are independent whenever s ~ t ~ u ~ v and that the 

variance function is 

2 2 EX (s,t) = a (s,t) ((s,t) € A). 

(3.1) is proved easily via a suitable functional martingale central limit 

theorem. In particular, for the martingale 

[to' 00) has quadratic characteristic 

converging in probability to 2 
a (to,t) as n ~ 00. 

TIt 
o 

o X 
n 

on 

(To argue this, note 

that by the law of large numbers, the integrand in (3.3) converges 

pointwise to 
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I -1 
~(u)/Pr(V ~ u < U v < U) = OM(U)(G(u)(l - F(u») . 

Gill's [2J useful concept of convergence, boundedly in probability, now 

allows us to change the order of taking limits in probability and 

integrating). 

Assuming that 

(3.4) f~ ~ dF < 00, 

Woodroofe [7, Theorem 5J showed that (3.1) holds, even for to = O. Here 

we shall derive the same result by verifying the condition for tightness 

close to 0 from Theorem 2.11. 

Clearly (2.9) is satisfied for all n, while (2.10) holds iff 

lim a 2 (s,t) exists and is finite for some t > O. It is immediately 
s~O 

verified that this condition is equivalent to (3.4). So assume that (3.4) 

holds and let t, ~ > 0 be given. Our aim is to find 0, nO such that 

(2.12) holds for n ~ nO' But 

(3.5) Pr( sup Ix (s,t) I > t) = 
n 

s,t:O<s~t~o 

lim Pr( sup Ix (s,t)/ > t), 
s~O t:s~t~o n 

and by Doob's inequality applied to the martingale 

probability on the right is dominated by 

~ 0 X , s n the 
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4 = :2 E < ~s 0 Xn > (0) 
E. 

cf. (3.3). Now R (u) is binomial with probability parameter 
n 

p = G(u)(l - F(u))/a and therefore the expectation in the integral above 

becomes 

yielding via (3.5) the estimate 

I I 8 ro J.L(u) 
Pr( sup X (s,t) > E.) ~ :2 aJO G(u)(l-F(u)) du, 

s,t: O<s~t~o n E. 

which is a bound that applies uniformly in n and by (3.4) tends to 0 

as 0 ~ O. We have established tightness close to O. 

Woodroofe's result (3.1) is local in the sense that it applies only 

to a restricted time domain. The global formulation (3.2) appears more 

satisfactory and in principle at least allows one to study the behaviour 

of estimators of J.L, even at timepoints close to O. 
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