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Abstract 

A technique for obtaining asymptotic expansions for complex hypergeometric functions is 

demonstrated. The method is used to find an asymptotic expansion for the function 2Fl. 
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1. Introduction. 

Several papers give asymptotic expansions for real hypergeometric functions, for ex-

ample, Muirhead (1978) and Srivastava (1980). However, only a few papers on asymptotic 

expansions for complex hypergeometric functions have appeared, which seems strange since 

the two kinds of functions formally look very much the same. One would expect that the 

methods used for the real functions also would work for the complex functions. This is 

not so, however, because certain functions appearing in the integral representations for 

the complex hypergeometric functions obtain their maximum on a whole subspace of iR m, 

and not just at isolated points. In this paper it is shown how it is possible to solve this 

problem by reducing the number of variables using the lemma found.in Section 3. Li et 

al. (1970) had to solve the same problem but their way of doing this was not explained 

in detail. We have chosen to consider the complex hypergeometric function 2Fl for an 

example; this function appears in the density for the distribution of complex canonical 

correlation coefficients (James (1964), (112)). Furthermore, we have chosen to apply the 

method used for the real function 2Fl by Glynn (1980). 

2. Notations. 

In this paper we consider matrices with complex elements. 1i+(p, <D) denotes the set 

of positive definite hermitian p x p matrices, U(p) the group of unitary p x p matrices and 

V(p, q) the set of q x p matrices Q for which Q' Q = I, where Q' is the conjugate transpose 

of Q and p ~ q. The normed invariant measure on V(p, q) is called dQ. We let 

v(p, q) = 7rp(q-l) . fp(q)-l, where 
p 

fp(q) = 7rtp(P-I) ITr(q - i + 1) 
i=1 

For A = Al + iA2 E 1i+(p, <D) the notation dA will be used for dA I dA2, where 

dAl = IT daij,1 and dA2 = IT daij,2 . 
i~j i>j 
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If A E 1i+ (p, ~) we can find a non-singular hennitian matrix B so that A = B2, and in 
1 

this case B is called A 2'. The set of diagonal matrices with diagonal elements u 1, -, Up is 

denoted D(U). 

·3. Integral representation of 2Ft. 

Let p2 and R2 be diagonal matrices. p2 = diag(p7) and R2 = diag("d), where 

1 > PI > ... > Pp > 0 and 1 > 11 > ... > IP > O. The complex hypergeometric function 

2FI (N, N, qj p2, R2) (which in the following will be called 2Fd can be expressed as 

(1) rp(N)-2 r IABIN-p exp (tr( -A - B + 2Re([A~ B~ PQ'R: O]F))) dAdBdQdF 
In(l) . 

where n(l) = 1i+(p, ~) X 1i+(p, ~) x U(p) X V(p, q), and q ~ p (see James (1964), (86) 

and 91-92)). 

We shall derive the asymptotic behavior of 2Fl for large N using the following: if 

the function f(x) = f(x!"" ,xm ) has an absolute maximum at an interior point e of a 

domain S in a real m-dimensional space, then under suitable conditions, as N ---+ 00 

(2) 

where a'" b means that limN-->oo a/b = 1 and . 

This result is due to Hsu (1948). 

To be able to apply (2) we first make the substitutions A ---+ N A and B ---+ NB in (1); 

then 2Fl can be expressed as 

(3) Cl r g(A,B,P,Q,R,F)N'IABI-PdAdBdQdF 
In(l) 
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where Cl = rp(N)-2 . N 2pN, and 

g(A, B, P, Q, R, F) = IABI exp (tr( -A - B + 2 Re([A t B~ PQ' R : OJF») 

2-1 ) We can write a matrix A E 1i+(p, ~) on the form A = GU G , where G E U(p and 

U E D(U). Using (93) of James (1964) we can express (3) as 

(4) C2 r f(U,G, V,H,P,Q,R,F)Nh(U, V)dUdGdVdHdQdF 
in(2) 

where 51(2) = D(U) x U(p) x D(V) x U(p) x U(p) x V(p,q), 

feU, G, V,H,P, Q,R,F) = luvI2 exp (tr( _U2 - V 2 + 2 Re([UGVHPQ'R : O]F») 

h(U, V) = IUVI-2p+l IT (u; - u;)2( v; - v;)2 
i<i 

and C2 = Cl . v(p,p) ·22p 

The asymptotic behavior for the real hypergeometric function 2Fl was obtained by 

applying (2) to an integral of the form (4) after making a proper parametrization of the 

compact groups. That does not work in the complex case since f does not have an isolated 

maximum. In order to solve this problem we will now show how it is possible to reduce 

the number of parameters. 

Let Ul (p) be the manifold consisting of matrices in U(p) with real positive diagonal 

elements; let U2(p) be the subgroup of U(p) consisting of diagonal matrices. 

Ul(p) can be identified with the coset space U(p)jU(l) x ... x U(l). As a group of 

transformations on this coset space U(p) is transitive and we let dG l denote the normed 

invariant measure on the coset space. 

For G E U(p) we have a unique decomposition G = G1 G2 with G1 E U1 (p) and 

G2 E U2(p). Let dGi be the normed invariant measure on Ui(p)(i = 1,2). 

Lemma. Let R be a diagonal matrix and let r.p be a function of the elements of a p x p 

matrix, then 

(5) r r.p([QR: O]F)dQdF = r r.p([QIR: O]F)dQ1dF 
iU(p)xv(p,q) JU1 (p)XV(p,q) 
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Proof. Write the left side of (5) as 

(6) 

Now for fixed Q1 and Q2 use the invariance of dF to write (6) as 

where Q2 = (~2 ~) is a q x q matrix. 

But Q2RQ2 = R from which the lemma follows. o 

Using the lemma three times we can replace G, H, and Q in (4) by G1 , Hll and Qb 

all three belonging to U1 (p), to get an integral representation of 2Fl which will be denoted 

2ft, and to which we can apply (2). 

4. Asymptotic representation of 2FI' 

We are now ready to prove 

Theorem 1. Let p2 = diag(pf) and R2 = diag( In, where 1 > PI > ... > Pp > 0 and 

1 > 11 > ... > IP > 0, then for large N 

(7) 

i=l i<j 

where 

(8) 

Proof. We follow Glynn (1980) and concentrate upon results which are not found in his 

paper. For fixed U and V the function f occurring in 2L has a unique maximum given by 



5 

G1 = HI = Ql = I and F = (i ~); this follows from Corollary 4.1 in Glynn (1980). 

To see this, write any complex matrix Al + iA2 on the real form 

(9) 

and take into account that when a diagonal matrix is written on real form all the diagonal 

elements appear twice. Then maximizing over U and V it follows that the maximum value 

of f is 

p 

(10) e-2p IT (1 -1iPi)-2 
i=l 

and the maximum is obtained at 

We have to use a parametrization of the compact groups to be able to apply (2), since 

n(2) is not an open subset. 

A matrix G1 E Ul (p) can be expressed as G1 = exp( is), where S' = S. We are, 

however, only going to use the part 1 + is - tS2 of exp(iS), so we can assume that the 

diagonal elements of S are O. The jacobian of this transformation has the form 

(This follows from Li et al. (1970)). Similarly HI = exp(iT) and Ql = exp(iW). 

Finally F E V(p, q) is parametrized by writing 

[F: -] = exp( iZ) = exp (i (~~~ -~;l)) 

where [F: -] is a q x q unitary matrix whose first p columns are F,Zll is p x p hermitian 

and Z21 is a (q - p) x p matrix. The jaco bian is 
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Using this we can apply (2). The maximum value of f is obtained at the point e defined 

by 

The number of variables to be integrated is m = p(2p + 2q - 1). 

We have to find the Hessian of -log(J). Fortunately we can use the calculations done 

by Glynn (1980) for the corresponding Hessian related to 2Fl; to see this write (once more) 

any complex matrix Al + iAz on real form (9). We find 

(11) 

~ = 2m 2'P IT (1 -'ipi)( ,iP';(l -'iPi))'-P+~ ) , 

P 

x IT ((,iPi -,iPi)4(1-,iPi)-4(1-,iPi)-4(Pt - p])(,; _,J))2 
i<i 

Inserting in (2) and reducing the expression proves Theorem 1. 0 

Without proof we state the following theorem. The steps of the proof are exactly the 

same as for Theorem 1. 

Theorem 2. Let pZ = cliag(p7) and R2 = cliagCll) , where 1 > Pi > ... Pk > Pk+l 

... = Pp = 0 and 1 > ,I > ... > IP > 0, then for large N 

(12) i=l i<i 
k P 

x IT IT (Cl; - ,J)pD-1 

;=1 i=k+1 

where 

(13) 
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5. Numerical comparisons. 

For p = 1 and p = 2 it is possible to calculate the exact values of 2Fl from the series 

expansion in complex zonal polynomials (James (1964), (88)). Below is the result obtained 

on a computer for some values of N, q,p, P and R. The asymptotic values of 2Fl obtained 

from (7)-(8) are also given. 

p = 1, q = 3, I = 0.45, P = 0.35 

N 25 50 100 200 

exact 51.5 5.11 . 104 2.57.104 3.54.1025 

asymptotic 57.4 5.36.104 2.63.104 3.58.1025 

p = 2, q = 3, 11 = 0.3, 12 = 0.1, PI = 0.4, P2 = 0.2 

N 

exact 

asymptotic 

25 

6.9 

11.9 

50 

565 

640 

100 

5.36.107 

5.50.107 

200 

1.25.1019 

1.25.1019 
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