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Summary 

Let ~ be a distributive lattice of quotient spaces of a vector space V 

and for K € ~ let PK:V -+ K be the projection onto K. The statistical 

model ~V(~) is defined to be the set of all normal distributions on V 

such that for every pair L,M € ~, PL and PM are conditionally independent 

given PU\M" Statistical properties of ~V(~) are studied, eg., maximum 

likelihood inference, invariance. and the problem of testing HO: ~V(~) vs 

H: ~V(~) when ~ is a distributive sublattice of ~. The set J(~) of join

irreducible elements of ~ plays a central role in the analysis of ~V(~). 

This class of statistical models appears to generate all mul tivariate 

normal conditional independence models for which complete and expl ici t 

likelihood inference is possible. 

AMS 1980 subject classification: Primary 62H12. 62H15; Secondary 62H20, 

62H25. 

Key words and phrases: Distributive lattice, quotient spaces, join

irreducible elements, pairwise conditional independence, multivariate 

normal distribution, invariance, generalized block-triangular matrices, 

maximum likelihood estimator, likelihood ratio statistic. 
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§1. INTRODUCTION. 

In recent years the study of conditional independence (Cl) models in 

multivariate normal distributions has received increasing attention. 

Prominent references include Dempster (1972), Kiiveri, Speed, and Carlin 

(1984), Lauri tzen (1985, 1989), Lauri tzen, Dawid, Larsen and Leimer 

(1988), Lauritzen and Frydenberg (1988), Lauritzen and Wermuth (1984, 

1987), Speed and Kiiveri (1986), and Wermuth (1976, 1980, 1985, 1988). In 

most of these studies the Cl assumptions are equivalent to the occurrence 

of certain patterns of zeroes in the precision matrix L-1 of a multivari

ate normal distribution, hence the models are linear in L-1. These condi-

tions are similar to those occurring in certain multiplicative or log-

linear models for categorical data - cf. A. H. Andersen (1974), E.B. 

Andersen (1980), Darroch, Lauritzen, and Speed (1980), Darroch and Speed 

(1983), Goodman (1970, 1971), Haberman (1974), Sundberg (1975), Wermuth 

and Lauritzen (1983) and many others. Dawid (1979, 1980) has presented a 

useful summary of general properties of Cl. 

An interesting general class of Cl models is the class of multivariate 

graphical chain models recently introduced by Lauri tzen and Wermuth 

(1987). Although this class of models may have extensive applications, it 

appears to be too large to permit a complete and explicit statistical 

analysis, eg., explicit likelihood inference. 

In the present paper we shall define and study a somewhat smaller but 

still very rich class of Cl models, namely those determined by the re

quirement of pairwise Cl with respect to a distributive lattice 'j{ of 

quotient spaces of the observation space V. Under the added assumption of 
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mul tivariate normality, every such statistical model admi ts a complete 

and explicit likelihood analysis which parallels that in classical multi

variate analysis where 2 is unrestricted. This class of models includes 

many if not all of the Cl models that have been studied in detail in 

multivariate analysis, eg., Das Gupta (1977), Banerjee and Giri (1980), 

Marden (1981), and appears to generate all Cl models for which complete 

and explicit likelihood inference is possible. 

This class of models arose in the following way. Many investigators 

have realized that in a balanced ANOVA design, the lattice structure of 

the collection of linear subspaces that comprise the design plays a fun

damental role in its analysis. In fact, the design is balanced if and 

only if this lattice is distributive. In this case Andersson (1987) ex

plici tly demonstrated the central role played by the poset of join

irreducible elements of this lattice for the analysis of the design, eg., 

for the construction of the ANOVA table. 

During the course of Andersson's investigation it was realized that the 

dual notion of a distributive lattice of quotient spaces may be applied 

in a natural way to define a rich class of Cl models that is amenable to 

explici t analysis. This analysis is facili tated by the fact that each 

such model is invariant under a group of generalized block-triangular 

linear transformations A that acts transitively on the model. 

These models are defined as follows. Let V be a real finite-dimensional 

vector space and let ~ be a distributive lattice of quotient spaces of V 

(cf. Section 2). For each K € ~ let PK:V ~ K denote the projection onto 

K. Then the model NV(~) is defined to be the set of all normal distribu

tions N on V such that for every pair L,M € ~, PL and PM are Cl given 
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PLAM. (For simplicity we shall always assume that each N has mean vector 

° and nonsingular covariance matrix denoted by ~). 

For example, suppose that V = rn{1,2,3} and that 

(1.1) 

Then NV(~) consists of all normal distributions on V such that (xl ,x2 ) 

and (x1 ,x3 ) are Cl given xl' i.e., x2 and 

ly. the precision matrix ~-l must satisfy 

x3 are Cl given xl. Equivalent-

-1 -1 
the condition (~ )23 = (~ )32 

= 0, so in this example the model is linear in ~-1. (This need not hold 

in the case of a general lattice ~, however - cf. Examples 3.6. 3.7. and 

3.8 in Section 3.) This model is invariant under nonsingular linear 

transformations of rn{1,2,3} of the form 

x== == Ax. 

It is easily verified that the set of all such nonsingular matrices A 

forms a subgroup of the group of all 3x3 lower triangular matrices. 

It will be seen in Section 4 that for a general distributive lattice ~, 

the partitioning of the matrix A and the location of its zeroes is deter-

mined by J(~). the poset of join-irreducible elements of ~. As in the 

case of a balanced ANOVA design, this poset completely determines the 

structure and analysis of the model NV(~). 

This paper is organized as follows. Section 2 contains the basic Decom-

position Theorem (Theorem 2.1) which shows that the observation space V 
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can be represented as a product of vector spaces indexed by J(~) in such 

a way that for each K E~, the projection PK:Y ~ K becomes simply a coor

dinate projection (cf. Remark 2.1). By means of this representation one 

may choose a ~-adapted basis for Y (cf. Remark 2.2) which is later shown 

to yield natural matrix representations for the model Ny(~) and its in-

variance group. 

In Theorem 3.1 it is shown that N E Ny(~) if and only if the members of 

~ are geometrically orthogonal (GO) with respect to the inner product 

determined by the precision operator 0 of N. This reduces the statistical 

problem of characterizing the distributions in Ny('j{) to the algebraic 

problem of determining those positive definite forms 0 which render the 

members of ~ GO. 

Thus the model Ny('j{) may be parametrized either by a constrained set of 

precision operators 0 on Y or, equivalently, by the corresponding con-

-1 
strained set of covariance operators a = 0 on the dual space of y. Once 

a ~-adapted basis for Y has been selected, the model may be parametrized 

either by a constrained set of precision matrices 2-1 or by the corres-

ponding constrained set of covariance matrices 2. It is shown in Sections 

3.2 and 3.3, however, that these parameter sets can be represented as 

products of smaller unconstrained parameter sets, again indexed by J(~), 

from which the maximum likelihood (ML) estimators and the 1 ikelihood 

ratio (LR) test statistics may be readily determined. These alternative 

parametrizations are called the ~-parametrizations of the model Ny(~)' 

For example, if 'j{ = {K,Y} is a simple chain (K < Y) and a ~-adapted 

basis for Y is chosen. then 2 is unconstrained and its ~-parametrization 

under Ny(~) reduces to the well-known 1-1 correspondence 
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When ~ is given by (1.1), however, the Cl constraints imposed upon 2 are 

non-trivial and its ~-parametrization under NV(~) is given by 

(cf. Example 3.6). The ranges of the components of these ~-parametriza-

tions are unconstrained (except for the trivial requirement that 211' 

22201 , and 233 0 1 be positive definite). 

A step-wise algorithm for reconstructing 2 from i ts ~-parameters is 

presented in Remark 3.6. 

The group of generalized block-triangular transformations A that leave 

the model NV(~) invariant is defined and studied in Section 4. In par

ticular, it is shown that this group acts transitively on the model. 

The normal statistical model NV(~) is formally defined in Section 5. 

The likelihood function is decomposed as a product of conditional den-

sities involving only the ~-parameters of 2 (cf. (5.5)), from which the 

maximum likelihood estimators of the ~-parameters are easily derived and 

used in turn to obtain the ML estimator ~ by means of the step-wise re-

construction algorithm. In Remark 5.4 it is noted that the model NV(~) is 

determined by a system of linear recursive equations with lattice struc~ 

ture (cf. Wermuth (1980), Kiiveri, Speed, Carlin (1984)). 

Section 6 treats the problem of testing one such model against another, 

eg., testing 
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(1.2) 

where ~ is a distributive sublattice of ~. (Note that ~ C ~ => NV(~) ~ 

NV(~)') The LR statistic Q is easily expressed in terms of the ML estima-

tes of the ~-parameters and ~-parameters of 2. The central distribution 

of Q is then derived by means of the invariance of the testing problem. 

For example, if ~ is given by (1.1) and ~ = {ffi{1.2.3}}. then NV(~) is 

the unrestricted normal model and (1.2) becomes the problem of testing 

that x2 and x3 are Cl given xl' i.e. ,testing 

(1.3) 

where L = (a . . Ii,j = 1,2,3). If, however, ~ is given by (1.1) while 
IJ 

(1.4) 

then (1.2) becomes the problem of testing 

(1.5) 

Notice that when ~ is given by (1.4) then NV(~) = NV(~')' where 

and that this model is equivalent to the hypothesis that (x1 ,x2 ) and x3 

are independent. Thus two different lattices ~. ~' may determine the same 
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Cl model. The question of characterizing a minimal determining lattice 

for a given Cl model is currently under study. 

A series of examples is presented in Section 3 and continued in Sec

tions 4-6 to illustrate these concepts and results. Several possible 

extensions of this class of lattice models for Cl are suggested in Sec

tion 7. 

Finally, it is important to mention that the Cl models NV(~) play an 

important role in the analysis of non-nested missing data models. Under 

the assumption of multivariate normality it is well known that a nested 

missing data model with unrestricted covariance matrix L admits a comple

te and explicit likelihood analysis. remaining invariant under the appro

priate group of block-triangular transformations. which acts transitively 

on the unrestricted set of covariance matrices (cf. Eaton and Kariya 

(1983), Andersson, Marden. and Perlman (1988)). If the missing data pat

tern is non-nested, however. then explicit analysis is not possible in 

general. 

If, however. the missing data pattern is non-nested but is determined 

by a distributive lattice ~ of quotient spaces of V, then a complete and 

explicit likelihood analysis is possible under the additional assumption 

that NV(~) holds, or, more precisely, that the covariance structure L 

satisfies the Cl restriction determined by ~ (cf. Andersson. Marden, and 

Perlman (1989)). (The theory developed in the present paper allows one to 

test the validity of this assumption.) Under this assumption. the non

nested missing data model determined by ~ remains invariant under the 

group of generalized block-triangular transformations A studied in the 

present paper, which group acts transitively on the restricted set of 
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covariance matrices that determine the model NV(~). Thus, the results in 

the present paper open the possibility of applying classical multivariate 

techniques to a class of missing data models much larger than the nested 

class. 

Throughout this paper frequent reference will be made to the papers 

Andersson (1982) and Andersson (1987) - these will be abbreviated as [A] 

(1982) and [A] (1987), respectively. 

§2. THE LATTICE OF QUOTIENT SPACES OF A VECfOR SPACE. 

~ The lattice structure of quotient spaces. 

Let V be a finite dimensional real vector space with zero element O. A 

quotient space (or simply a quotient) of V is formally defined to be a 

pair (K,p) consisting of a vector space K and a surjective linear mapping 

p:V ~ K. For ease of notation, (K,p) usually is abbreviated to K. Some-

times the mapping p is written as PKV or simply PK when V is understood. 

Let L and M be two quotients of V. If there exists a linear mapping 

PLM: M ~ L such that PL = PLM 0 PM then PLM is necessarily surjective and 

unique, hence (L,PLM) is a quotient of M. In this situation we write 

(L,PL) ~ (M,PM)' or simply L ~ M. This relation is equivalent to the 

-1 -1 
condition that PL (0) ~ PM (0). The relation ~ on the set of all quoti-

ents of V is not anti symmetric , hence one defines an equivalece relation 

~ on this set by L ~ M if p~I(O) = p;I(O). The collection of equivalence 

classes is denoted by ~(V). Equipped with the relation induced by ~ (also 

denoted by ~), ~(V) becomes a partially ordered set (= poset - cf. [A] 

(1987), Section 1.1). 
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We identify a quotient (K.PK) of V with its equivalence class in ~(V). 

A convenient representive for this equivalence class is the canonical 

-1 -1 
quotient space (V/PK (O).p). where p:V ~ V/PK (0) is the canonical map-

ping given by p(x) = x+p~I(O). x E V. 

The poset ~(V) is in fact a lattice: if L,M E ~(V) then their minimum 

and maximum exist and are given by 

LAM 
-1 -1 

:= V/(PL (O)+PM (0)) 

LVM 
-1 -1 

:= V/(PL (O)npM (0)) 

respectively (cf. [A] (1987). Section 1.3.). Since V is finite dimensio-

nal. the lattice ~(V) has finite length. The minimal and maximal elements 

exist and are given by {O} and V respectively. If dim(V) l 2 then ~(V) is 

not distributive and I~(V) I = 00 (cf. [A] (1987). Section 1.4.). 

2.2. Distributive lattices of quotient spaces. 

As stated in the Introduction. the covariance models studied in this 

paper are those determined by pairwise Cl with respect to a distributive 

sublattice ~ ~ ~(V) of quotient spaces of V. Since ~(V) and therefore 

also ~ is of finite length. if ~ is distributive it must be finite (cf. 

[A] (1987). Proposition 1.1). A particular class of distributive sublat

tices ~ ~ ~(ffiI) is described in the following example. 

Example 2.1. For a finite index set I. let ~ be a ring of subsets of I. 

For each R E ~ define the mapping PR:ffiI ~ ffiR by PR((xiliEI)) = (xiliER). 
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Since ~ is a ring, it follows that ~(~) := {(ffiR'PR)IRE~} is a distribu-

I I 
tive lattice of quotients of the vector space ffi =: V. If I E ~, then ffi 

E ~(~). Thus, by the classical theorem of Birkhoff and Stone, every fini-

te distributive lattice is isomorphic to a distributive lattice of quo-

tients of a finite-dimensional vector space. o 

It will be shown in Remark 2.2 that in fact every distributive sublat-

tice ~ ~ ~(V) can be represented in the form ~ = ~(~) for some ~ as in 

Example 2.1. 

Let J(~) denote the poset of all join-irreducible elements in~, i.e., 

J(~) = {KE~I V(K'E~IK'<K) < K} U {O~} 

where O~ denotes the minimal element in ~ (cf. [A] (1987), Section 1.5). 

If K E J(~) and K # O~, then define 

J(K) .- V(K'~IK' < K ) < K; 

also, define J(O~) = {O}. Note that J(O~) need not be an element in ~. 

In the following theorem the space V is represented as a product of 

vector spaces indexed by the poset J(~) of join-irreducible elements of 

~, such that the space with index K E J(~) has dimension dim(K) -

dim(J(K)). This decomposition is applied in Section 3 to characterize the 

structure of the covariance model determined by pairwise Cl with respect 

to ~. Thus the reader should be aware of the fundamental role of the 

poset J(~) in this theory. 
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Theorem 2.1. (Decomposi tion Theorem). Let ':f{ ~ ':f{(V) be a distributive 

-1 
lattice such that V E ':f{. For each K E J(':f{) , let rK:K ~ PJ(K).K(O) be any 

surjective linear mapping. Then the linear mapping 

(2.1) -1 / ~V:V ~ X(PJ(K),K(O) K E J(':f{)) 

x ~ (rK(PK(x))/ K E J(':f{) 

is bijective. 

Proof: For K E ':f{ the set ':f{K = {K'E'j{/K'SK} is a distributive lattice of 

quotients of K with K itself as the maximal element and J(~) = J(':f{) n 

':f{K. We shall prove the theorem by using induction on the cardinali ty 

/J(':f{)/ of J(':f{). If /J(':f{)/ = 1 or 2, the result is trivial. Suppose that 

the result is true when /J(':f{) / s n-1, and assume that /J(':f{) / = n. First, 

if V E J(':f{) then the mapping 

J(V) ~ X( PJ~K),K(O) /K E J(':f{J(V))) 

x ~ (rK(PK,J(V) (x)) /K E J(':f{J(V))) 

is bijective because /J(':f{J(V))/ = n-1. Since the linear mapping 

-1 
V ~ J(V) x PJ(V)(O) 

x ~ (PJ(V)(x),rV(x)) 

is bijective and PK.J(V)oPJ(V) = PK for every K E J(':f{J(V)), the mapping 

(2.1) is bijective in this case. 
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If, on the other hand, V ~ J(~), i.e., V = L V M, where L < V and M < 

V, then it follows from [A] (1987) (Lemma 1.2 and the proof of Theorem 

2.1) that IJ(~L) I < n and IJ(~M) I < n. By the induction assumption it 

then follows that the mapping 

V ~ X(PJ~K),K(O)IKEJ(~L)) 
x ~ (rK(pK(x))IKEJ(~L)) 

is (equivalent to) the quotient L in V. Furthermore, M and L A M can be 

represented in an analogous way. Therefore, 

-1 -1 I 
PLAM,L(O) = X(PJ(K),K(O) KEJ(~L),K1LAM) 

-1 -1 I 
PLAM,M(O) = X(PJ(K),K(O) KEJ(~),K1LAM). 

By Lemma 2.1 below, the linear mapping 

is bijective. Note that the above equali ty follows from the relations 

o 

If V ~ ~, the theorem may be applied to the extended lattice ~ U {V} 

(also distributive). Thus, for the remainder of this paper it is assumed 

that V E ~. 
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Remark 2.1. The representation (2.1) shows that Y can be identified with 

a product of vector spaces indexed by J(~); similary, each L € ~ can be 

identified with the product X(P~~K),K(O) IK€J(~), K~L) through the bijec

tive linear mapping ~L defined by ~L(x) = (rK(pK(x))IK€J(~), K~L), x € L; 

Under these identifications, each mapping PLM' L ~ M ~ y, is simply a 

canonical projection mapping. o 

Remark 2.2. For each K € J(~), let DK be a set with 

-1 
= dim(PJ(K),K(O)). 

For L €~, define 

(2.2) 

and define I = I y . The set ~(~) := {ILIL~} of subsets of I is a ring, 

i.e., a distributive lattice under the usual operations U and n, and it 

is isomorphic to ~ through the lattice isomorphism L ~ IL , L € ~. From 

Remark 2.1 it follows that there exists a basis (e. li€I) for Y such that 
1 

the elements (K,PK) in ~ can be represented as 

(2.3) 

for i€IK 

for i€ I\.IK. 
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We shall say that a basis with the property (2.3) is adapted to ~. Thus, 

when V is identified with ffiI through an adapted basis (e.liEI), the dis-
1 

tributive lattice ~ ~ ~(V) is identified with ~(~(~)) (cf. Example 2.1).0 

Remark 2.3. For K E J(~), note that 

(2.4) 

and 

(2.5) 

In particular, if K = O~ then J(K) = {O}, IJ(K) = 0, and IK = DK. o 

Remark 2.4. From the isomorphism ~L in Remark 1.1 one obtains directly 

that 

(2.6) dim(L) = 2(dim(K)-dim(J(K)) IKEJ(~), K~L), L E ~; 

equivalently, 

(2.7) dim(K)-dim(J(K)) = 2(~(K,L)dim(L) ILEJ(~)), L E J(~), 

where ~ is the Mobius function for the poset J(~) (cf. [A] (1987), Lemma 

1.1) . o 

The following lemma is needed to complete the proof of Theorem 2.1. 
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-1 
Lemma 2.1. Let L.M E ~(V) with LVM = V and let rL:L ~ PLAM.L(O) and rM:M 

-1 
~ PLAM,M(O) be surjective linear mappings. Then the linear mapping 

(2.8) -1 -1 
~:V ~ (LAM) x PLAM,L(O) x PLAM,M(O) 

x ~ (PLAM(X) ,rL(PL(x)) ,rM(PM(x))) 

is bijective. 

Proof: Suppose that ~(x) = o. Then PLAM(x) = 0 and we obtain that PL(x) E 

-1 
PLAM,L(O). In fact PL(x) = 0 since rL is surjective. Similarly PM(x) = 0, 

-1 -1 
hence x E PL (0) n PM (0) = O. The linear mapping ~ is thus injective and 

a simple dimension argument shows that ~ is also surjective. o 

Remark 2.5. The lattice ~(V) of quotients of V is isomorphic to the dual 

(cf. Gratzer (1978), pp.2-6) of the lattice ~(V) of subspaces of V studi-

ed in [A] (1987) under the correspondence 

(2.9) ~(V) ~ ~(V) 

-1 
K ~ PK (0) 

V/L ~ L. 

Note that the operations V, A in ~(V) correspond to n, + in ~(V). Thus by 

the Duality Principle (Gratzer (1978), p 6), all results for ~(V) may be 

obtained from corresponding results for ~(V). For example, Theorem 2.1 

above may be obtained from an appropriate reformulation of Theorem 2.1 of 

[A] (1987). o 
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2.3 Geometrically orthogonal lattices of quotient spaces. 

Let 0 be an inner product on V and let (K,PK) be a quotient of V. Let 

-1 i -1 
PK (0) denote the orthogonal complement of PK (0) with respect to (wrt) 

o and let qK:V ~ V be the orthogonal projection onto p~I(O)i wrt o. 

Definition 2.1. Two quotients L and M of V are said to be geometrically 

orthogonal (GO) wrt 0 if the orthogonal projections qL and qM commute. 0 

Remark 2.6. It is seen from Definition 2.1 of [A] (1987) that L and M are 

GO quotient spaces wrt 
-1 -1 o if and only if PL (0) and PM (0) are GO subspa-

ces wrt o. o 

Theorem 2.2. Let 0 be an inner product on V and let ~ ~ ~(V) be a lattice 

of quotients of V. If the elements in ~ are geometrically orthogonal wrt 

o then ~ is distributive. Conversely, if ~ ~ ~(V) is a distributive lat-

tice then there exists an inner product 0 such that all elements in ~ are 

geometrically orthogonal wrt o. 
-1 I Proof: Since ~ = {PK (0) KE$} is a lattice of GO subspaces in V, it fol-

lows from Proposition 2.1 of [A] (1987) that ~ is distributive. By the 

duality between ~(V) and ~(V) (cf. Remark 2.5), it follows that ~ is 

distributive. Conversely, if ~ is distributive, then also ~ is distribu-

tive and it follows from Proposition 2.2 of [A] (1987) that there exists 

an inner product 0 on V such that all elements in ~ are GO wrt o. By 

Remark 1.6, all elements in ~ are GO wrt o. o 



17 

§3. COVARIANCE STRUCTURE DETERMINED BY PAIRWISE CONDITIONAL INDEPENDENCE 

WITH RESPECT TO A DISTRIBUTIVE LATTICE OF QUOTIENT SPACES. 

In this section the covariance structure determined by pairwise condi-

tional independence (Cl) with respect to a distributive lattice of quo-

tient spaces is characterized in a multivariate normal distribution. 

~ Algebraic conditions for conditional independence. 

Let V be a real finite-dimensional vector space, 0 an inner product (= 

positive definite form) on V, and No the multivariate normal distribution 

on V with mean 0 and precision1 O. Since 0 E P(V) := the set of all posi

tive definite forms on V. its inverse 0-1 = a E P(V*), where V* is the 

dual space of V. When 0 is a positive definite form on V, we abbreviate 

o(x,x) to o(x) for x E V. 

t * * Let (K,PK) be a quotient of V, PK:K ~ V the dual mapping of PK' and oK 

the precision of the transformed normal distribution PK(No) on K. Then oK 

-1 t t -1 -1 t t = (0 o(PKxPK)) , since 0 ° (PKxPK) is the covariance of PK(No)' (Here K 

** and K are identified through their natural isomorphism.) Furthermore. 

note that 0Ko(PKxPK) = oo(qKxqK)' where qK:V ~ V is the orthogonal pro

jection onto p~1(O)~ wrt 0, (cf. Section 2.3), hence 0Ko(PKxPK) does not 

depend on the representation of K in its equivalence class of quotients. 

The following important fact often has appeared in the literature in 

other forms. 

1In a mul tivariate normal distribution, conditional distributions are 

more easily expressed in terms of the precision 0 than in terms of its 

. ..::-1 - (h .) Inverse u = ate covarlance . 
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Proposition 3.1. For any pair of quotients L,M of V, the following three 

conditions are equivalent: 

(i) Under the distribution No' PL and PM are conditionally independent 

(Cl) given PLI\M' 

(ii) 0LVMo(PLVMxPLVM) = 0Lo(PLxPL) + 0Mo(PMxPM) - 0Ll\Mo(PLl\MxPLI\M)' 

(iii) L and M are geometrically orthogonal (GO) wrt 0. 

Proof: Let (e. liEI) be a basis for V adapted to the distributive lattice 
1 

~ = {LI\M,L,M,LVM,V} (cf. Remark 2.2 and Figure 3.6) and let R = IL, C = 

IM. If the index set I is partioned as the disjoint union I = (RUC) U 

(I\'(RUC)) then the matrix for 0LVMo(PLVMxPLVM) wrt (eiliEI) takes the 

form 

is the (RUC)x(RUC) matrix for 0LVM wrt (eiliERUC), and where subscripts 

1, 2, and 3 correspond to the partitioning RUC = (RnC)U(R\'C)U(c\'R). Simi-

L_ 



A13 0 
M 
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o 0 
A33 0 ' where AM 
M 

o 0 

is the CxC matrix for oM wrt (eiliEC); and the matrix for 

[
ALJ\M 0 0 0] 
o 000 
o 000' 
000 0 

h A .-A -(A A )[A22A23]-I[A21] 
were LAM 11 12 13 A32 A33 A31 

is the (RnC)x(RnC) matrix for 0LJ\M wrt (eiliERnC). 

(i) <=> (ii): From the relations PL = PL,LVMoPLVM' PM = PM,LVMoPLVM' 

and PLAM = PLAM,LVMoPLVM it is clear that (i) is equivalent to the condi

tion that under the marginal distribution PLVM(No) on LVM, PL,LVM and 

PM,LVM are Cl given PLAM,LVM. Since PLVM(No) has precision 0LVM' (i) is 

t thus equivalent to A23 (= A32) = O. It is seen from the above matrix 

representations, however, that A23 = 0 <=> (ii) is valid. 

(ii) <=> (iii): Both formulas are purely algebraic and so is the proof 

of their equivalence. Clearly (ii) holds if and only if 

Since qLVM and qLAM are the orthogonal projections onto (p~I(O)np;I(O))~ 

and (p~I(O)+p;I(O))~, respectively, this relation is equivalent to 
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oo(qLVMxqLVM) = 

oo((qL-qLAM)x(qL-qLAM)) + oo((qM-qLAM)x(qM-qLAM)) + oo(qLAMxqLAM)' 

-1 L -1 L which holds if and only if PL (0) and PM (0) are GO, i.e .. L and M are 

GO wrt o. o 

For every sublattice ~ ~ ~(V) such that V E~. let ~(V) denote the set 

of all positive definite forms 0 on V such that L and M are GO wrt 0 for 

~ -1 all L.M E ~. Also. let P~(V) = [P (V)] ,the corresponding set of posi-

tive definite forms on the dual space V*. If 0 E ~(V) represents the 

-1 
precision of a mul tivariate normal distribution on V. then a == 0 E 

P~(V) is its covariance. 

It follows from Theorem 2.2 that ~(V) # 0 if and only if ~ is distri-

butive. Therefore. in the remainder of this paper we shall consider only 

lattices ~ ~ ~(V) that are distributive (hence finite). 

Remark 3.1. If V = IRI where I is a finite set, then we identify P(IRI ) 

with P(I). the set of all positive definite IxI matrices. in the usual 

way. If ~ is a ring of subsets of I such that I E ~ (cf. Example 2.1) 

then. under this identification. p~(~) (IRI) becomes a subset F'i(I) of 

P(I). For the purpose of Section 3.3. we also define P~(I) := [F'i(I)]-1. 0 

Remark 3.2. For R E ~ define R' = I~R and set ~' = {R' IR~}. Then~' is 

also a ring of subsets of I and F'i'(I) = P~(I), P~,(I) = F'i(I). 0 
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By Proposition 3.1. iH(V) is the set of all precisions 0 for which. 

under No' PL and PM are cr given PLAM for every pair L.M € ~. The follow

ing theorem characterizes iH(V): 

Theorem 3.1. Let 0 be a positive definite form on V. Then the following 

three conditions are equivalent: 

(i) o € iH(V). 

(ii) o(x) = L(oK(PK(x))-oJ(K)(PJ(K)(x)) IK€J(~)), x € V. 

(Hi) 0L(PL(x)) = L(OK(PK(X))-OJ(K)(PJ(K)(x)) IK€J(~),K~L), x € V, L €~. 

Proof: That (iii) =) (ii) is trivial. To show that (ii) =) (iii). first 

note that (ii) can be rewritten as 

(3.1) O(X) = L(o(qK(x))-o(qJ(K)(x))IK€J(~)) 

= L(O(qK(X)-qJ(K) (x)) IK€J(~)). 

-1 L -1 L where the second equality follows from the relation PJ(K)(O) ~ PK (0) . 

-1 LI when K € J(~). By Theorem 2.1 of [A] (1987) with ~ = {PK (0) K~} and VL 
-1 L -1 -1 L = PK (0) n PJ(K)(O) for L = PK (0) € J(~), 

(3.2) -1 L -1 I V = ~(PK (0) n PJ(K)(O) K€J(~)). 

-1 L -1 
Since qK-qJ(K)is the orthogonal projection onto PK (0) n PJ(K)(O) wrt O. 

K € J(~), it follows from (3.1) that the direct sum is orthogonal wrt O. 

Thus for L € ~ we have that 
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(3.3) -1 1. -1 1. -1 I PL (0) = ffi(PK (0) n PJ(K)(O) K€J(~), K~L) 

(cf. (2.5) of [A] (1987)) and this direct sum is again orthorgona1. It 

then follows that 

hence 

DL(PL(X)) = D(qL(x)) 

= D(~((qK-qJ(K))(x) IK€J(~),K~L) 

= ~(D(PK(x))-D(PJ(K)(x)) IK€J(~),K~L). 

so (ii) => (iii). 

It was seen in the above argument that when (ii) holds, the direct sums 

(3.2) and (3.3) are orthogonal wrt D, hence ~ consists of GO subspaces, 

i.e., D € ~(V). Conversely, if D € ~(V) then the direct sum (3.2) is 

orthogonal wrt D (cf. Theorem 2.1 of [A] (1987)), hence 

D(X) = ~(D(qK(x)-qJ(K)(x))IK€J(~)) 

= ~(D(qK(x))-D(qJ(K)(x))IK€J(~)) 

= ~(DK(PK(x))-DJ(K)(PJ(K)(x))IK€J(~)). o 

Remark 3.3. Condition (iii) in Theorem 3.1 is equivalent to 

(iii)' 

K€J(~). where ~ is the Mobius function for J(~). (cf. Lemma 1.1 of [A] 

(1987).) Condition (ii) of Proposition 3.1 is a special case of (iii)'. 0 
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':fl 3.2. The ':fl-parametrization of P CV) and P~~ 

Let Pen) be the cone of all nxn positive definite real matrices and let 

M(nxm) be the vector space of all nxm real matrices. For any partition-

ing n = n1+n2 it is well known that Pen) can be parametrized by the pro

duct P(n1)xM(n1x n2 )xP(n2 ) under the 1-1 correspondence 

(3.4) 

It will be seen from Theorem 3.2 and (3.13) that (3.4) is an example (in 

matrix formulation) of the ':fl-parametrization of P':fl(V) for a general 

-1 
distributive lattice ':fl ~ ':fl(V); in this example (211 , 221211' 222 •1) are 

the ':fl-parameters of 2. The ':fl-parametrization is central for the statis-

tical analysis of the normal model with parameter space P':fl(V). (cf. Sec

tions 5 and 6). 

-1 
For K € J(':fl) , let rK:K ~ PJ(K),K(O) be a projection, i.e., a surjective 

linear mapping with the property rK(rK(x) = rK(x) , x € K. If also 0 € 

¥'i(V) , o 
let qJ(K) ,K:K ~ K denote the orthogonal projection of K onto 

-1.l 0-1 
PJ(K),K(O) wrt oK' let rK:K ~ PJ(K),K(O) denote the mapping defined by 

000 
rK(x) = x - qJ(K),K(x), x € K, and let ~K denote the restriction of oK to 

-1 -1-1 
PJ(K),K(O). Furthermore, let PROJ(K,PJ(K),K(O)) and P(PJ(K),K(O)) denote 

-1 
the set of all projections of K onto PJ(K),K(O) and the set of all posi-

-1 
tive definite forms on PJ(K),K(O), respectively. Finally, let idK:K ~ K 

denote the identity mapping. 
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Theorem 3.2. (~-parametrizations of ~(V) and P~(V)). The mappings 

(3.5) 

(3.5a) 

(3.5b) 

~(V) ~ X(PROJ(K'PJ~K),K(O))xP(PJ~K),K(O)) IKEJ(~)) 
001 o ~ ((rK'~K) KEJ(~)) 

(x~~(~K(rK(pK(x)))IKEJ(~)) ~ ((rK'~K)IKEJ(~) 

define a 1-1 correspondence, called the ~-parametrization of ~(V). The 

~-parametrization of P~(V) is determined by (3.5) through the inverse 

mapping 0 ~ 0-1 = a. (See Section 3.3 for the ~-parametrization of P~(V) 

in matrix formulation.). 

Proof: Clearly the image of the mapping (3.5a) lies in the product set in 

(3.5). To show that the image of (3.5b) lies in ~(V), define the posi-

tive semidefinite form 0 on V by 

(3.6) 

It follows from (2.1) that ~(~KIKEJ(~))o(~Vx~V) = 0, where ~(~KIKEJ(~)) 

is the positive definite form on X(PJ~K),K(O)IKEJ(~)) determined by 

By Theorem 2.1, 0 is in fact positive definite, while for L E ~ 
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by Remark 2.1. Thus, for L E J(~) and x E V, 

0L(PL(x)) = ~(~K(rK(pKL(pL(x)))IKEJ(~),K~L) 

= ~(~K(rK(pK(x)) IKEJ(~),K~L) 

and 

Since {KEJ(~)IK~L} = {KEJ(~)IK~J(L)}U{L}, it follows that 

(3.7) 

Thus from Theorem 3.1(ii) it follows that 0 E ~(V) as claimed. 

Next we shall show that the composition of the mappings (3.5b) and 

(3.5a) is the identity on the product set in (3.5). Since, for every L E 

J(~) and x E V, 

(3.8) 0L(PL(x)) - 0J(L)(PJ(L)(x)) = 0L(PL(x)) - 0J(L)(PJ(L),L(PL(x))) 

= °L((idL-q~(L),L)(PL(x))) 
o 0 = ~L(rL(pL(x))), 

it follows from (3.7) that 

(3.9) 

-1 0 for every y E L. However, for every y E PJ(L),L(O) we have that rL(y) = 

o rL(y) = y, hence ~L = ~L by (3.9). Also, (3.9) implies that the kernels 

of rf and rL coincide, hence rf = rL. 
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Finally, it follows from Theorem 3.1(ii) and (3.8) that 

(3.10) 

hence the composition of the mappings (3.5a) and (3.5b) is the identity 

on ~(V), so the relation (3.5) is 1-1. 0 

-1 -1 
Remark 3.4. When K = O~, then PJ(K),K(O) = K, hence PROJ(K,PJ(K),K(O)) = 

PROJ(K,K) = {idK} , so this term may be excluded from the product on the 

right of (3.5). o 

Remark 3.5. The formula (3.10) is basic for likelihood inference for the 

normal statistical model with parameter space P~(V) - cf. (3.14) and 

Section 5. o 

3.3. The ~-parametrization of P~(V): matrix formulation. 

If D and E are finite index sets then M(DxE) denotes the vector space 

of all real DxE matrices and P(D) the set of real positive definite DxD 

matrices. If (e.liEI) is a basis for V, then both P(V) and P(V*) may be 
1 

identified with P(I) in the usual way. If this basis is adapted to ~, 

then under this identification P~(V) becomes identified with pm(~)(I) -' 

~(I) and P~(V) with P~(~)(I) =: P~(I) (cf. Remarks 2.2 and 3.1). 

Since, for K E J(~), (e i I iEIK) and (e i I iEDK) are bases for K and 

-1 -1 
PJ(K),K(O) respectively, it follows that PROJ(K,PJ(K),K(O)) may be iden-

tified with all DKxIK matrices of the form (RK,IKK) partitioned according 
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to (2.4), where RK E M(DKxIJ(K)) and 1KK is the DKxDK identity matrix, 

-1 
hence may be identified with M(DKxIJ(K))' Also P(PJ(K),K(O)) may be iden-

tified with P(DK). 

For every ~ E P(I) and L E ~, denote the ILxIL submatrix of ~ by ~L and 

-1 -1 
let ~L denote (~L) . Also, for K E J(~), partition 21<: according to 

(2.4) as fOllows 1 : 

(3.11) 

where ~(K> := ~J(K) is IJ(K)xIJ(K), 21<:> is DKxIJ(K), ~ is DKxDK, and 

~(K = ~>. Furthermore, define 

(3.12) 

-1 -1 
and let 21<:. denote (21<:.) . 

Under the identifications in the first paragraph, each ~ E P~(I) cor

responds uniquely to some 0 E P~(V). The matrix wrt (eiliEIK) for (OK)-l 

is simply 21<:' hence the matrix wrt (ei I iEIK) and (e i I iEDK) for r~ is 

-1 0 -1 
(21<:>~(K>' 1KK)· Since the matrix wrt (e i I iEDK) for ('YK) is 21<:.' the 

~-parametrization of P~(V) has the following matrix formulation: 

(3.13) 

1 
If K = O~, recall that J(O~) = {O} and IJ(K) = 0. In this case, 21<: = ~ 

= 21<:.' 
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-1 
The matrices (~>~<K>'~.)' K E J(~). are called the ~-parameters of ~. 

The formula (3.10) now assumes the form 

(3.14) 
-1 t 

tr(~ xx) = 
-1 -1 -1 t I 

~((tr(~.(x[KJ-~K>~<K>x<K»(x[KJ-~K>~<K>x<K» ) KEJ(~)) 

where. for L E ~. xL denotes the IL-subcolumn of the column vector x E ffiI 

and. for K E J(~). xK is partitioned according to (2.4) as 

(3.15) 

where x<K> := xJ(K)· Formula (3.14) is used to obtain the maximum likeli

hood estimate of ~ under the normal model studied in Section 5. 

Formula (3.14) provides a way to reconstruct ~ from its ~-parameters. 

If the ~-parameters are denoted by 

(3.16) 

(compare to (3.13)). it follows directly from (3.14) that 

(3.17) 

where AK is the IxI matrix whose IKxIK submatrix is 
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and whose remaining entries are zeroes. Formulas (3.13) and (3.17) are 

the analogues of (3.5a) and (3.5b), respectively, for the covariance 

matrix 2:. 

In general it is not a simple task to determine 2: directly from (3.17) 

by matrix inversion. In the following extended remark we present a step-

wise algorithm for reconstructing 2: from its :1l-parameters without matrix 

inversion. 

Remark 3.6. Clearly the :1l-parameters of 2: are simple functions of 2:. The 

process of reconstructing 2: from its :1l-parameters is. in general. more 

complex ((3.4) is a very simple case). It is important to describe this 

process since. as will be seen in Section 5. the maximum likelihood esti

mator ~ is obtained by first estimating the :1l-parameters of 2:. then using 

them to obtain ~. 

We now present a step-wise algorithm for this reconstruction process. 

Let n := IJ(:1l) I and 0:1l = K1,···.Kn be a never-decreasing listing of the 

members of the poset J(:1l). i.e., K. } K. whenever i < j; usually we shall 
1 J 

abbreviate Kk to k. Partition 2: according to the ordered decomposition 

(3.18) I = DUD U···U D 1 2 n' 

where Dk = D~. To reconstruct 2: from 
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(A1,(R2,A2),···,(Rn,An)) E 

P(D1)xM(D2xIJ(2))xP(D2)x ••• xM(DnxIJ(n))xP(Dn) 

where J(k) = J(Kk) , one proceeds as follows: 

Step 1: 

Step 2: 22) = R221 , 

222 = A2 + R22(2' 

At this point, the submatrix 21V2 (= 22' here) is completely determined 

(recall that 1V2 abbreviates K1V K2 )· By (3.20), J(3) ~ K1V K2 (= K2 , 

here), hence I J (3) ~ I 1V2 (= 12 , here), so 2(3) is a submatrix of 21V2 

and the next step may be carried out: 

Step 3a: 23) = R32(3)' 

233 = A3 + R32(3' 

It is important to note that after Steps 1, 2, and 3a, the three sub-

matrices 21 , 22' 23 are now determined but the complete submatrix 21V2V3 

may not yet be fully determined. The remaining D3x(I1V2V3~I3) - submatrix 

23} of 21V2V3 is determined from 21V2 by means of the GO (= pairwise Cl) 

requirements imposed by ~ (cf. (3.22)): 
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Step 3b: 

where 2:(3} is the I J(3) x(11V2V3 \.13 ) - submatrix which, by (3.20) and 

(3.21), is in fact a submatrix of 2:1V2 . 

After k-1 such steps. the submatrix 2:1V ••• V(k-1) is fully determined 

and in turn may be used to obtain 2:1V ••• Vk . First note that the never

decreasing nature of K1,···.Kn implies that 

11V ••• Vk = U(Dj lj=l, •••. k) 

1k = U(Dj lj=l .•••. k; Kj~Kk)· 

From these relations and (2.4) it may be deduced that 

(3.20) 

(3.21) 

1J(k) = 1k n 11V ••• V(k-1) ~ 11V ••• V(k-1) 

11V···Vk\.1k = 11V ••• V(k-1)\.1J (k) ~ 11V ••• V(k-1)· 

Thus, if we denote the Dkx(11V ••• Vk \.Ik ) submatrix of 2: by 2:k} and the 

1J(k)x(I1V ••• Vk\.1k) submatrix by 2:(k} , it follows from (3.20) and (3.21) 

that both 2:<k> and 2:(k} are in fact submatrices of 2:1V ••• V(k-1)' so the 

next step may be carried out: 

Step k: 

(3.22) 

~> = Rk2:(k>' 

2:kk = Ak + Rk2:(k' 

2:k} = Rk2:(k} 
-1 

(= ~>2:(k>2:<k})· 
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The relation (3.22) is seen as follows. Since Kk (=: L) and K1Y···Y Kk- 1 

-1 
(=: M) are GO wrt L , it follows from Proposition 3.1(ii), (3.20), and 

-1 
(3.21) that the Dk x(I1y ••• Yk \.Ik ) - submatrix of (LlVe • oVk) is a zero 

matrix, which is equivalent to (3.22). 

The submatrix L1y ••• Vk is fully determined after Step k; after n steps, 

L1y Y = L is fully determined . ••• n 

[In carrying out this algorithm one must use the convention that if C ~ 

o and D ~ 0, then the product of a Cx0 matrix with an 0xD matrix is the 

CxD zero matrix.] o 

3.4. Examples. 

We now present a series of Examples to illustrate the following basic 

concepts: (i) the distributive lattice ~ of quotient spaces of the obser

vation space V; (ii) identification of V with rnI by means of a ~-adapted 

basis for V determined by the poset J(~) of join-irreducible elements of 

~; (iii) the ~-parametrization of P~(I) and the specific form of (3.14); 

(iv) reconstruction of L € P~(I) from its ~-parameters by means of the 

step-wise algorithm in Remark 3.6. 

In each Example the lattice diagram of ~ appears in an accompanying 

Figure, in which the members of J(~) are circled. In each Figure, the 

minimal element O~ appears at the left while the maximal element appears 

at the right. This apparently contradicts the convention in [A] (1987) 

where, in the lattice diagram for a lattice ~ of subspaces of V, the 

minimal element O~ appears at the right while V appears at the left. 

These two conventions are consistent, however, because of the anti-iso-

morphism (2.9) between ~(V) and ~(V) described in Remark 2.5. 
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These Examples also will be used in Section 4 to illustrate the notion 

of a ~-preserving mapping, in Section 5 to provide specific examples of 

normal statistical models determined by pairwise Cl wrt ~, and in Section 

6 where the problem of testing one model against another is treated. 

Example 3.1. First consider the simple case where ~ = {L,V} ~ ~(V) (see 

Figure 3.1). 

L 0-- 0 V 

Figure 3.1 

Since L and V trivially are GO wrt every D E P(V), ~(V) = P(V) and P~(V) 

= P(V*). In order to choose a basis (e. liEl) adapted to ~, note that J(~) 
1 

= {L,V} and J(L) = {O}, J(V) = L. Thus the ~-parametrization (3.13) of 

P~(l) = P(I) becomes 

(3.23) 

(3.23a) 

where L = Ly (cf. (3.11)), while the formula (3.14) becomes 

(3.24) 

The algorithm in Remark 3.6 for reconstructing L from its ~-parameters 



Step 1: 

Step 2: 

(compare to (3.4)). 
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2:L = AL 

Lv> = Ry2:L 

2:VV = Ay + Ry2:<y 

o 

Example 3.2. If ~ = {K1,···.Kn=y} ~ ~(Y) is an ascending chain, i.e .. K1 

< ••• < K then a well-known generalization of the preceding example is 
n' 

obtained (see Figure 3.2). 

K n-1 

Figure 3.2 

K=y 
n 

Here again ~(Y) = P(Y) and P~(Y) = P(Y*). but the ~-parametrizations are 

changed. To choose a ~-adapted basis. note that J(~) = {K1.···.Kn} and 

J(K1) = {O}. J(Kk ) = Kk- 1 . k = 2.··· .n. Then the ~-parametrization of 

P~(I) = P(I) becomes 

(3.25) P(I) <-> P(D1)xM(D2xI1)xP(D2)x ••• xM(DnxIn_1)xP(Dn) 

-1 -1 
2: -7 (2:1 , 2:2>2:1 . 2:2 _, 2:n>2:n_1 . 2:n J 

while (3.14) becomes 

(3.26) 



35 

where K1 . K2 , •••. Kn are abbreviated as 1,2.···, n whenever they occur as 

subscripts. By Remark 3.6. 2 is reconstructed from the ~-parameters (AI' 

Step 1: 

Step 2: 

Step n: 

21 = Al 

22) = R221 

222 = A2 + R22<2 

2n) = Rn2n_1 

2 = A + R 2< . nn n n n o 

Example 3.3. Now consider the lattice ~ = {{O}=LAM.L.M.V=LVM} (see Figure 

3.3) . 

L 

~o~ 
{O} ~,,/ V 

M 

Figure 3.3 

Here the GO (= pairwise Cl) requirement imposed on 2 by ~ is nontrivial. 

so P~(V) C P(V). In this case. note that J(~) = {{O},L,M} and J({O}) = 

J(L) = J(M) = {O} and thereby choose a ~-adapted basis (e.liEI) for V. 
1 

Then the ~-parametrization (3.13) of P~(I) takes the form 



(3.27) 

while (3.14) becomes 

(3.28) 
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P~(I) ~ P(DL)xP(DM) 

2: ..., (2:L , 2:M), 

Since {O},L,M is a never-decreasing listing of J(~), 2: may be reconstruc-

ted from the nontrivial ~-parameters (AL' AM) as follows: 

Step 1: 

Step 2: 

Step 3: 

(vacuous) 

2:L = AL 

2:M = AM 

~} = O. 

Thus P~(I) consists of all block-diagonal 2: of the form 

(3.29) 

where 2: is partitioned according to the decomposition 

(3.30) 

In this example (as in Examples 3.1 and 3.2) P~(I) = ~(I) and both are 

linear, i.e., closed under nonnegative linear combinations. o 



37 

Example 3.4. If ~ = {{O}=LAM.L,M,LVM.Y} (see Figure 3.4) 

L 
,P. LVM 

{O} <>~O Y 

M 

Figure 3.4 

then again P~(Y) C P(Y). Here note that J(~) = {{O}.L.M.Y} and J({O}) = 

J(L) = J(M) = {O}, J(Y) = LVM. and thereby choose a ~-adapted basis. The 

~-parametrization of P~(I) assumes the form 

(3.31) P~(I) ~ P(DL)xP(DM)xM(DyxILVM)xP(Dy) 
-1 

~ ~ (~L' ~. ~)~LVM' ~y.) 

and (3.14) takes the form 

Now {O}.L.M.y is a never-decreasing listing of J(~). so ~ may be recon-

structed from the nontrivial ~-parameters (AL' AM' Ry . Ay) as follows: 

Step 1.2.3: 

Step 4: 

Repeat Steps 1,2.3 in Example 3.3. 

~y) = RyDiag(AL·AM) 

~ = Ay + Ry~<y. 

Thus P~(I) consists of all ~ € P(I) of the form 
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(3.32) 

where ~ is partioned according to the decomposition 

(3.33) 

The precision matrices A = ~-1 € P~(I) are characterized by the condi-

-1 . -1-1 
tion that ~LVM = Dlag(~L '~M ). Thus, unlike the preceding example, here 

P~(I) is linear while ~(I) is not. 0 

Example 3.5. Suppose that ~ = {LAM,L,M,V=LVM} where LAM > 0 (see Figure 

3.5) . 

L 

{O} < LAM <> V 

M 

Figure 3.5 

Note now that J(~) = {LAM,L,M}, and J(LAM) = {O}, J(L) = J(M) = LAM and 

thereby choose a ~-adapted basis. The ~-parametrization of P~(I) is given 

by 

(3.34) P~(I) ~ P(DLAM) xM(DLxILAM) xP(DL) xM(DMxILAM) xP(DM) 

-1 -1 
~ ~ (~LAM' ~L>~LAM' ~L.' ~M>~LAM' ~M·)' 
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and (3.14) takes the form 

(3.35) 

Since LAM,L,M is a never-decreasing listing of J(~), ~ may be reconstruc-

ted from the ~-parameters (ALAM , RL, AL, RM, AM) as follows: 

Step 1: 

Step 2: 

Step 3: 

(3.36) 

~LAM = ALAM 

~L> = RL~LAM 

~LL = AL + RL~<L 

~> = RM~LAM 

~MM = AM + RM~<M 

~M} = RM~<L 
-1 

= ~M>~LAM~<L 

(note that ~<M} = ~<L)' Thus, in this example P~(I) consists of all ~ E 

P(I) of the form 

(3.37) 

such that ~} satisfies (3.36) and where ~ is partitioned according to 

the decomposition 
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(3.38) 

It is easily seen that ~(I) consists of all A E P(I) having the simple 

form 

(3.39) 

Thus. in this example ~(I) is linear while P~(I) is not. o 

Example 3.6. Consider ~ = {LAM.L.M.LVM.Y} where LAM > {O} (see Figure 

3.6) . 

L 

~VM 
{O} < LAM </--0 Y 

M 

Figure 3.6 

Choose a ~-adapted basis by noting that J(~) = {LAM.L.M.Y} and J(LAM) = 

{O}. J(L) = J(M) = LAM. J(Y) = LVM. The ~-parametrization of P~(I) is 

given by 

(3.40) P~(I) ~ 

P(DLAM)xM(DLxILAM)xP(DL)xM(DMxILAM)xP(DM)xM(DyxILVM)xP(Dy) 
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while (3.14) becomes 

(3.41 ) 

Since LAM.L.M.Y is a never-decreasing listing of J(~). ~ can be recon-

Steps 1.2.3: Repeat Steps 1.2 and 3 in Example 2.5. obtaining ~LVM. 

Step 4: ~> = RY~LVM 

~VV = Ay + Ry~<y 

Thus P~(I) consists of all ~ E P(I) of the form 

(3.42) 

parti tioned according to I = ILVMU Dy . where ~LVM is given by (3.37). 

(3.36) and (3.38). The precision matrices A = ~-1 E ~(I) are characteri

-1 
zed by the condition that ~LVM have the form (3.39). Thus neither P~(I) 

or ~(I) are linear. o 
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Example 3.7. Let ~ be the lattice in Figure 3.7: 

L L' 

LAM <>.<>. V 

M M' 

Figure 3.7. 

Choose a ~-adapted basis by noting that J(~) = {LAM, L, M, L', M'} and 

J(LAM) = {O}, J(L) = J(M) = LAM, J(L') = J(M') = LVM = L'A M'. The ~-para 

metrization of P~(I) is given by 

(3.43) P~(I) ~ 

P(DLAM)xM(DLxILAM)xP(DL)xM(DMxILt\M)xP(DM) 

xM(DL,xILVM)xP(DL,)xM(DM,xILVM)xP(DM') 

from which the specific form of (3.14) is easily determined. The matrix ~ 

can be reconstructed from its ~-parameters (ALAM , RL, AL, RM, AM' RL " 

AL " RM" AM') as follows: 

Steps 1,2,3: Repeat Steps 1,2,3 in Example 2.5, obtaining ~LVM = 

Steps 4,5: Repeat Steps 2,3 in Example 2.5 with L,M replaced by L' ,M'. 

Thus P~(I) consists of all ~ € P(I) of the form (3.37) with L,M replaced 

by L' ,M', parti tioned according to 
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(3.44) 

where furthermore. LL'A M' = LLVM is given by (3.37). The precision ma

trix A = L-1 has the form (3.39) with L,M replaced by L' ,M' and satisfies 

-1 
the condition that LLVM has the form (3.39). Here again neither P~(I) nor 

~(I) are linear. o 

Example 3.8. Let ~ be the lattice in Figure 3.8: 

Figure 3.8. 

Here J(~) = {LAM,L,M,L" ,M'} and J(LAM) = {O}, J(L) = J(M) = LAM, J(L") = 

L, J(M') = LVM = L'A M'. Thereby choose a ~-adapted basis and obtain the 

~-parametrization of P~(I) relative to such a basis: 

(3.45) P~(I) ~ 

P(DLAM) xM(DLxILAM ) xP(DL) xM(DMxILAM) xP(DM) 

xM(DL"xIL)xP(DL,,)xM(DM' xILVM)xP(DM') 

from which the specific form of (3.14) is determined. The matrix L can be 

reconstructed from its ~-parameters (ALAM' RL, AL, RM' AM' RL, .. AL, .. RM" 

AM') as follows: 



44 

Steps 1,2,3: Repeat Steps 1,2,3 in Example 2.5, obtaining ~LVM = 

Step 4: ~L"> = RL"~L 

~L"L" = AL" + RL"~<L" 

(3.46) 

t 
where ~{M = LM}' obtaining ~L" 

Step 5: 

(3.47) 

~,> = RM'~LVM 

~'M' = AM' + RM'~<M' 

t 
where ~{L" = ~L"}' Thus P:1l(I) consists of all ~ E per) of the form 

~LI\M ~<L ~<M 
~<L" 

~L> ~LL ~{M ~<M' 
a ••••••• 

(3.48) ~ = ~> ~M} ~MM ~{L" 

~,> : ~M'} : ~'M' 

partitioned according to the decomposition 
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(3.49) 

where 1f}' 2:L,,} , 1f'} satisfy (3.36), (3.46), (3.47), respectively. The 

precision matrix 11 = 2:-1 satisfies the following three conditions: its 

DM, x DL" and DL"x DM, blocks are zero matrices, the DL"x DM and DMx DL" 

blocks of 2:~~ are zero matrices, and 2:~0M has the form (3.39). Neither 

P~(I) nor ~(I) are linear. 0 

Example 3.9. Now consider the lattice ~ in Figure 3.9a: 

L" 

LAM 

M" 

Figure 3.9a. 

Although this lattice properly contains the lattices in Examples 3.7 and 

3.8 as sublattices, the set P~(I) that it determines is much simpler than 

those in Examples 3.7 and 3.8. The reader may verify that P~(I) is iden

tical to P~(I), where ~ is the sublattice in Figure 3.9b: 

LAM = L"A M" 

M" 

Figure 3.9b 

The lattice ~ 
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(compare to Example 3.5). Likewise, P:1l' (I) = P.AI' (I) and P:1l,,(I) = P.AI,,(I)' 

where :1l' and .AI' are the sublattices in Figures 3.10a and 3.10b re spec-

tively: 

L" L" 

<0 '" , V ~~ V 

M' M' 

Figure 3.10a Figure 3.1Ob 

The lattice :1l' The lattice .AI' 

and where :1l" and .AI" are the sublattices in Figures 3.11a and 3.11b re-

spectively: 

L" L" 

LAM LAM = L"A M 

Figure 3.11a Figure 3. 11 b 

The lattice :1l" The lattice .AI" 

o 

Remark 3.7. It follows from the duality between the rings ~ and~' (cf. 

Remark 3.2) that for each finite distributive lattice :1l ~ :1l(V) there 

exists an anti-isomorphic lattice :1l' ~ :1l(V) such that P:1l,(I) = P:1l(I) and 

~'(I) = P:1l(I). For example, if :1l is the lattice in Figure 3.4, then:1l' 

has the same form as the lattice in Figure 3.5, and conversely. o 
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§4. MAPPINGS THAT PRESERVE A DISTRIBUTIVE LATTICE 'j{ OF QUOTIENT SPACES. 

4.1. The 'j{-preserving mappings: invariant formulation. 

If as in Example 3.2. 'j{ = {Kl <···<Kn= V} is an ascending chain of quo-

-1 -1 
tients in V, then the corresponding kernels PI (0) J ••• J Pn (0) = {O} 

form a descending chain of subspaces in V. It is well known that a linear 

mapping f:V ~ V preserves each p~I(O) if and only if the matrix of f wrt 
1 

a basis adapted to 'j{ is lower block triangular. We call such a mapping 

'j{-preserving. Furthermore, the group GL'j{(V) of all nonsingular 'j{-preserv

ing mappings acts transitively on i'l(V) = P(V) under the usual action 

(cf. (4.1) and (4.11». This group plays an important role in multivari-

ate statistical analysis (cf. Eaton (1983), Andersson, Marden, and Perl-

man (1988». 

For a general distributive lattice 'j{ ~ 'j{(V) , we define a linear mapping 

f:V ~ V to be 'j{-preserving if f(p~I(O» ~ p~I(O) for every K € 'j{. The set 

of all matrices (wrt to a 'j{-adapted basis) for all 'j{-preserving mappings 

is a natural generalization of the class of (lower) block-triangular 

matrices (cf. (4.4) and Remark 4.3). It is shown in Proposition 4.1 that 

the group GL'j{(V) of nonsingular 'j{-preserving mappings acts transitively 

and properly on ~(V) under the action (4.1), an important fact for the 

analysis of the testing problem in Section 6. 

The class End'j{(V) of all 'j{-preserving mappings of V to V is a subalge

bra of the algebra End(V) of all linear mappings of V to V and GL'j{(V) is 

a subgroup of the general linear group GL(V) of V. Trivially End{V}(V) = 

End(V) and GL{V}(V) = GL(V). 
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Remark 4.1. If V = ffiI where I is a finite set, then we identify the alge

bra End(ffiI) with the matrix algebra M(I) := M(IxI) and the group GL(V) 

* with M (I), the group of all nonsingular IxI matrices in the usual way. 

If ~ is a ring of subsets of I such that I E ~ (cf. Example 1.1) then 

under this identification, En~(~)(ffiI) becomes a subalgebra ~(I) of MCI) 

and GL~(~)(ffiI) becomes a subgroup ~(I) of M*(I). D 

4.2. Transitive action: invariant formulation. 

Proposition 4.1. The action 

(4.1) GL~(V)xP~(V) ~ ~(V) 

(f,6) ~ 60 (f-1xf-1) 

is well-defined, transitive, continuous, and proper. 

~ -1 I Proof: If f E GL~(V) and 6 E P (V), then the subspaces {PK (0) K~} are 

-1 -1 -1 -1 mutually geometrically orthogonal (GO) wrt 6o(f xf ), hence 6o(f xf ) 

E ~(V) by Remark 2.6. Thus (4.1) is well-defined. Next let (e: liEI) and 
1 

(e':liEI) be two bases for V adapted to~. If f E GL(V) is such that fee:) 
1 1 

= et' i E I, then f E GL~(V). Furthermore, it follows from Theorem 3.2 

that for any 6 E ~(V) there exists a basis (e.liEI) adapted to ~ such 
1 

that the matrix for 6 wrt (e.liEI) is the IxI identity matrix. It follows 
1 

readily from these two facts that the action (4.1) is transitive. 

Since GL~(V) is a closed subgroup of the locally compact group GL(V) it 

is locally compact in the relative topology. Furthermore, P~(V) is a 
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closed subset of the locally compact space P(V), hence is also locally 

compact. Thus the action (4.1) is the restriction of the classical action 

(4.2) GL(V)xP(V) ~ P(V) 

(f.a) ~ aO(f- 1x f- 1 ) 

to the closed subset GL~(V)xP~(V). Since it is well known that the action 

(4.2) is continuous and proper (cf. [A] (1982», the action (4.1) inhe-

rits these properties. 

Remark 4.2. By Proposition 4.1, the action 

(4.3) GL~(V)xP~(V) ~ P~(V) 

t t (f,a) ~ ao(f xf ). 

o 

induced on P~(V) by (4.1) is also transitive, continuous, and proper. 0 

4.3. The ~-preserving mappings: matrix formulation. 

If a basis (e.liEI) is choosen for V, then End(V) and GL(V) are iden-
1 

* tified with M(I) and M (I), respectively. in the usual way. If this basis 

is adapted~, then under this identification En~(V) and GL~(V) are iden

tified with ~(~)(I) =: ~(I) and ~(~)(I) =: ~(I). resp. (cf. Remarks 

2.2 and 4.1). 

For any A E M(I) and K E ~ let AK denote the IKxIK submatrix of A. For 

L,M E J(~) let ALM denote the DLxDM submatrix of A, let AL) denote the 

DLxIJ(L) submatrix of A, and let A(L) = AJ(L)' 
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Proposition 4.2. The matrix algebra ~(I) is characterized as follows: 

(4.4) ~(I) = {AEM(I) IVL,MEJ(~): ALM # 0 => M ~ L}. 

Proof: First note that for every L E ~, 

(4.5) 
-1 

x E PL (0) <=> (VK E J(~): K ~ L => x[KJ = 0) 

(cf. (3.15». For fixed M E J(~) let c denote an arbitrary column vector 

. !RI . f . 0 f K E J(~) K M Th f L E J(~) ln satls ylng C[KJ = or ~,#. en or every ~ 

-1 -1 
with M i L, one has that C E PL (0), hence Ac E PL (0) for every A E 

~(I). In particular, by (4.5), 

hence ALM = 0 since c[MJ is arbitrary. 

Conversely, if A E M(I) satisfies condition (4.4), then for every L E 

-1 
~, every x E PL (0), and every K E J(~) such that K ~ L, 

The second equality follows from (4.4), while the third equality holds 

since M ~ K ~ L and M E J(~) imply that x[MJ = 0, by (4.5).Thus again by 

-1 
(4.5), Ax E PL (0), hence A E ~(I). o 
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Remark 4.3. Let O~ = K1,K2,···,KIJ(~)1 be a never-decreasing listing of 

the members of the poset J(~) as in Remark 3.6. If every A € M(I) is par-

titioned according to the ordered decomposition 

(4.6) 

then it is seen from (4.4) that ~(I) becomes a subalgebra of the algebra 

of lower block triangular matrices in the usual sense. 

I Remark 4.4. For A € ~(I), x € ffi , L € ~, and K € J(~). 

(4.7) 

(4.8) 

Remark 4.5. The linear mapping 

(4.9) ~(I) ~ X(M(DKxIJ(K))xM(DK) IK€J(~)) 

A ~ ((AK) ,AKK) IK€J(~)) 

o 

o 

is bijective, since for every K € J(~), those entries in the DKx(I\DK) 

submatrix of A that do not lie in AK) must be zero. Under the correspond

ence (4.9) the subset ~(I) corresponds to the subset 

( 4.10) o 
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4.4. Transitive action: matrix formulation. 

In matrix formulation the action (4.1) assumes the form 

(4.11) 

while (4.3) becomes 

(4.12) 

~(I)XP~(I) ~ ~(I) 

(A,A) ~ (A-1)tAA-1, 

~(I)xP~(I) ~ P~(I) 
t (A,};) ~ A2A . 

Remark 4.6. Since both ~(I) and P~(I) contains the IxI identity matrix, 

it follows from the transitivity of the actions (4.11) and (4.12) that 

( 4.13) 

( 4.14) 

~(I) = {AtA€P(I) IA€~(I)} 

P~(I) = {AAt€P(I)IA€~(I)}. o 

If ~ = {V} then ~(I) = M*(I) and ~(I) = P~(I) = P(I), so both actions 

* (4.11) and (4.12) reduce to the well-known transitive action of M (I) on 

P(I). If ~ is a chain as in Examples 3.1 or 3.2, then again P~(I) = P~(I) 

= P(I), but now ~(I) is a group of nonsingular lower block-triangular 

matrices in the usual sense, and the actions (4.11) and (4.12) are the 

well-known transitive actions of ~(I) on P(I). 

Now consider the lattices ~ in Examples 3.3-3.9, respectively. By 

(4.4), in these seven examples the corresponding matrix algebras ~(I) 

consist of all IxI matrices of the following forms: 



( 4. 15a) 

(4. 15b) 

(4. 15c) 

(4.15d) 

( 4.15e) 

( 4.15f) 

A = 

A = 
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AL 0 : 0 

A = 0 AM: 0 
................ a 

Ay) :AVV 

ALAM 0 0 0 

AL ) ALL 0 0 

AM) 0 AMM: 0 
...... a ...................... . 

Ay) :AVV 

ALAM 0 0 0 

AL ) ALL 0 0 

AM) 0 AMM: 0 

0 

0 

0 
................................................ 

AL ,) :AL'L' 0 

AM') 0 AM,M' 

ALJ\M 0 0 0 

AL ) ALL 0 0 

A = AM) 0 AMM: 0 

o 
o 
o 

.............................................. " 
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ALAM 0 0 0 0 

AL> ALL 0 0 0 

( 4. 15g) A AM> 0 AMM : 0 0 
= .......................................................... 

AL,,> 0 :AL"L" 0 
..... D a ........................... 

AM" ,LAM: 0 :AM" M: 0 AM"M" . ,. 

(Note that (AM",LAM : AM",M) = AM"> in (4.15g).) The reader may verify 

directly from (4.15a)-(4.15g) that (4.13) and (4.14) hold in these seven 

examples. 

The action induced by (4.12) on the Jl-parametrization of, PJl(I) in 

(3.13) is the following: 

(4.16) ~(I)X(X(M(DKXIJ(K))XP(DK) IKEJ(Jl))) 

~ X(M(DKxIJ(K))xP(DK) IKEJ(Jl)) 

(A , ((2K)2~~>' ~.) IKEJ(Jl))) 

-1 -1 -1 t I 
~ ((~~>2<K>A<K> + AK>A<K> , AKK~.AKK) KEJ(Jl))) 

This fact is needed in Section 6, and also for the proof of the following 

lemma. 

Lemma 4.1. For 2 E PJl(I) , 

(4.17) det(2) = IT(det(2K.)IKEJ(Jl)). 

Proof: By (4.14), there exists A E ~(I) such that AAt = 2. It follows 

t 
from (4.16) that AKKAKK = ~.' K E J(Jl). Thus by Remark 4.3, 



det(L:) 
t = det(AA ) 
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= rr(det(AKKA~)IKEJ(~)) 

= rr(det(~.)IKEJ(~)). 

§5. LIKELIHOOD INFERENCE FOR A NORMAL MODEL DETERMINED BY PAIRWISE 

CONDITIONAL INDEPENDENCE. 

o 

Although it is always desirable to describe and analyze a statistical 

model in an invariant (coordinate-free) way, the analysis in this section 

is presented in matrix formulation so that the reader may see its rela-

tion to classical multivariate analysis more easily. Nevertheless, it is 

important to note that the models and their analysis may be described in 

an invariant manner. 

The multivariate normal distribution on V with mean 0 and covariance a 

* E P(V ) is denoted by N(a). For a distributive lattice ~ !;;; ~(V). the 

normal statistical model NV(~) determined by pairwise conditional inde

pendence (Cl) with respect to ~ is defined to be 

(5.1) 

If x E V represents an observation from the model (5.1), thus the model 

states that for every L,M E ~, XL is Cl of xM given xLAM ' which is writ

ten as follows: 

(5.2) 
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The model .Ny(j{) is a curved exponential family; it is linear if and 

only if pj{(y) is a linear set, i.e., closed under positive linear combi

nations. In the linear case the ML estimator ~ based on N i.i.d. observa-

tions from .Ny(j{) is a minimal sufficient statistic, but is not neces

sarily sufficient in the general case. 

If (e.li€I) is a basis for Y adapted to j{, then Y may be identified 
1 

with ffiI and the model (5.1) may be expressed in matrix formulation as 

(5.3) 

where N(2) denotes the normal distribution on ffiI with covariance matrix 

5.1. Maximum likelihood estimation. 

Consider N independent and identically distributed (i. i .d.) observa-

tions xl' ... ,xN from the model (5.3) and set 

(5.4) y .- (xl'· .. ,XN) € M(Ix{l, ... ,N}) _. M(IxN). 

For L € j{ let YL denote the IL x N submatrix of y, while for K € J(j{) 

partition YK according to (2.4) as follows: 

By (3.14) and (4.17), the likelihood function for this statistical model 

is given by the mapping 
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(5.5) P~(I)xM(IxN) ~ m 

(~.Y) ~ (det(~))-N/2exp(-tr(~-lyyt)/2) 

-N/2 -1 -1 t I = rr((det(~.)) xexp(tr(~.(Y[KJ-~>~<K>Y<K»(···) )/2) KEJ(~)). 

Note that the factor corresponding to K E J(~) is the density for the 

conditional distribution of Y[KJ given Y<K>· 

It now follows readily from (3.13) and well-known results for the mul-

tivariate normal linear regression model that the maximum likelihood (ML) 

estimator ~(y) E P~(I) for ~ E P~(I) is unique if it exists, and it 

exists for a.e. y E M(IxN) if and only if 

(5.6) N ~ max{ IIJ(K) 1+ IDK I IKEJ(~)} 

= max{ I lK I IKEJ(~)}. 

(Note that dim(K) = IlKI. K E ~.) In this case the ~-parameters of ~ are 

determined from the usual formulas for regression estimators: 

(5.7) KEJ(~), 

where S(y) = yyt is the empirical covariance matrix. The explicit expres

sion for ~ itself may be obtained from its ~-parameters in (5.7) by means 

of the reconstruction algorithm given in Remark 3.6. 

If V E J(~) then the condition (5.6) reduces to N ~ Ill, so in this 

case S is posi tive definite a. e., hence ~ fortiori SKo exists and is 

positive definite for every K E J(~). If, on the other hand. V ~ J(~). 

then condition (5.6) does not guarantee that S is positive definite, but 

it still guarantees that SKo exists and is positive definite a.e. 
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By Lemma 4.1, when (5.6) is satisfied the maximum value of the likeli-

hood function (5.5) is given by 

(5.8) 

where c = NN/2x exp(-NIII/2). This fact is used in Section 6 to express 

the likelihood ratio statistic for testing one model against another. 

5.2. Examples of pairwise conditional independence models. 

For each lattice ~ in Examples 3.1-3.9, consider the normal statistical 

model NI(~)' When ~ is a chain as in Examples 3.1 and 3.2, P~(I) = P(I) 

and NI(~) is the unrestricted covariance model irrregardless of the 

length of the chain. (The ~-parametrization of P~(I) does depend on this 

length, however.) Condi tion (5.6) for existence of the ML estimator ~ 

reduces to the familar condition N ~ Ill, while (5.7) reduces to N~ = S. 

For the lattice ~ in Example 3.3, partition the observation x E !RI 

according to (3.30) as x = (x~,x~)t. The model NI(~) states simply that 

xL 11 xM . According to (5.6), the ML estimator ~ exists if and only if N 

~ max{/ILI, IIMI} (whereas S is positive definite if and only if N ~ 11/) 

and is given by N~ = Diag(SL,SM)' 

For the lattice ~ in Example 3.4, partition x E !RI according to (3.33) 

t t t t 11 as x = (xL,xM,xCV]) . Then the model NI(~) again states that xL xM 

Condition (5.6) for the existence of the ML estimator takes the form N ~ 

11 I, while from (5.7), 

J\ 

N~. = 



59 

Finally, we may reconstruct ~ from its ~-parameters by following Steps 

1-4 in Example 3.4 to obtain 

N~LVM = Diag(SL,SM) 

N~> = Sy>S~~Diag(SL'SM) 
N~VV = Sye + Sy>(Diag(SL,SM»-ls<y (# SVV)· 

In Example 3.5, x E ffiI is partitioned according to (3.38) as 

t t t t II I (XLAM'XCL]'XCM]) . The model NI(~) states that xCL] xCM] xLAM . Condi-

tion (5.6) becomes N ~ max{IILI, IIMI}, while (5.7) becomes 

(5.9a) N~LAM = SLAM 

(5.9b) 
./'\._1 

N~L. = SL· 2L>2LAM = SL>SLAM' 

(5.9c) 
/' -1 

2M>2LAM = SM>SLAM' N~M. = SM·· 

By Steps 1-4 in Example 3.5, ~ is given by (5.9a) and 

(5. lOa) 

(5. lOb) 

(5. Wc) 

N~L> = SL>' N~LL = SLL 

N~M> = SM>' N~MM = SMM 

N~M} = SM>S~~~<L (#SM})· 

I E I 3 6 E mI . .. d (t t t t)t d h n xamp e . , X m IS partltlone as XLAM'XCL]'XCM]'XCY] an t e 

model NI(~) states that xCLJ II xCM] IxLAM · Condition (5.6) reduces to N ~ 

Ill, while (5.7) is given by (5.9a.b,c) and 
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From Steps 1-4 in Example 3.6, ~ is given by (5.9a), (5.10a,b,c). and 

where, from (5.9a) and (5.10a,b,c), 

(5.11) 

I E 1 3 7 € !RI . .. d (t t t t t) t 
n xamp e . , x IS partltlone as xLAM,x[L],x[M],x[L,],x[M'] 

and the model NI(~) states that 

(Note that xL'A M' = xLVM = (xLAM,x[L],x[M])·) Condition (5.6) becomes N 

~ max{/IL , I, IIM' I}, while (5.7) is given by (5.9a,b,c) and (5.9b,c) with 

L,M replaced by L' ,M' (note that SL'AM' = SLVM). From Steps 1-5 in Examp

le 3.7, ~ is given by (5.9a), (5.10a,b,c), and 

(5.12a) 

(5.12b) 

(5.12c) 
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where N~LVM is given by (5.11). 

I t t t t t t 
In Example 3.8, x E ffi is partitioned as (xLAM'X[L]'X[M] ,x[L,,]'x[M I]) 

It may be seen from the form (3.48) of 2 E P~(I) that the model NI(~) is 

determined by the following three conditions: 

(i) x[L] lL x[M] IXLAM 

(ii) x[M] lL x[L"] 1 (XLAM'X[L]) 

(iii) x[L"] lL x[M '] I (XLAM'X[L] 'X[M])' 

Condi tion (5.6) becomes N ~ max{ I IL" I, 1 IM' I}. while (5.7) is given by 

(5.9a,b,c), 

N~L". = SL". 

N~M'. = SM'.' 

From Steps 1-5 in Example 3.8, ~ is given by (5.9a) and (5.l0a,b,c), by 

by (5.l2a,b), and by 
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Finally. for the lattice ~ in Example 3.9. x is partitioned as 

t t t t t t 
(xL/\M,x[L]'x[M]'X[L,,]'x[M"]) . If one proceeds as above. one finds that 

the model NI(~) is determined by the single condition that 

This reflects the fact that this model is of the same form as that in 

Example 3.5 (see the discussion in Example 3.9). 

Remark 5.1. Recall the definition of the normal model NI(~) for a distri

butive lattice ~: for every pair L,M € ~, xL n xM IXLI\M' It may be seen 

from the above examples that many of these conditions are redundant and 

may be omitted, for example whenever L ~ M. More generally, if L ~ L', M 

~ M', and L /\ M = L'/\ M', the Cl of xL' and xM' implies the Cl of xL and 

XM' hence the latter condition may be omitted. The important question of 

characterizing a minimal set of Cl conditions that determines NI(~) is 

currently under investigation. For a given lattice ~, however, such mini-

mal determining sets are not unique. In Example 3.8, for example. the 

following four sets of Cl conditions are (equivalent) minimal determining 

sets for NI(~): 

(i) xL n xM IXL/\M; (ii) xLVM n xL" IxL; (iii) xL' n xM' /xLVM ; 

(i) xL n xM IXL/\M; Cii) xL" n xM' IxL; 

(i) xM n xL"lxL/\M; (ii) xL' n xM' IxLVM ; 

(i) xM n xL"lxL/\M; (ii) xL" n xM' IxL · o 
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Remark 5.2. For I = {1,2,3,4}. consider the statistical model consisting 

I of all normal distributions on ffi such that xl is independent of x2 and 

x3 is independent of x4 . It is readily seen that this model is not of the 

form NI(~) for any ~. The same is true for the normal model determined by 

the two conditions that xl and x2 are Cl given (x3 ,x4 ) and x3 and x4 are 

Cl given (x1 ,x2). 0 

Remark 5.3. The general model NI(~) is defined by the pairwise Cl re

quirement (5.2) for every pair L,M € ~. This requirement does not neces-

sary imply, however, that for every subset ~ ~~, (xKIK~) are mutually 

Cl given xA(KIK~). For the lattice ~ in Example 3.9, this may be seen by 

considering the subset ~ = {L",LVM,M"}. o 

Remark 5.4. An alternative statistical interpretation of the Cl model 

NI(~) may be obtained from (4.14): x = (x[K]IK€J(~)) € ffiI is an observa

tion from the normal model NI(~) if and only if x can be represented in 

the form x = Az for some (generalized block-triangular) matrix A € ~(I), 

where z = (z[K]IK€J(~)) € ffiI is an unobservable stochastic variate such 

that z ~ N(2=identity matrix). From (4.4), this representation is equiva-

lent to the system of equations 

(5.13) 

where H(L) = {M€J(~) IM~L). This shows that the Cl model NI(~) can be 

interpreted as a multivariate linear recursive model (cf. Wermuth (1980), 

Kiiveri, Speed, and Carlin (1984)) with lattice constraints. 
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Conversely, suppose that J is a finite index set and let (H(L)/LEJ) be 

a family of subsets of J that satisfies the following two conditions: 

(i) 

(ii) 

L E H(L) 

m E H(L) => H(m) ~ H(L). 

For each L E J let DL and EL be finite index sets such that IDLI ~ IELI 

and let I = U(DLILEJ). I' = U(ELILEJ). Consider the normal statistical 

model defined by the system of equations 

(5.14) 

where x[LJ E M(DLx{l}) is observable, z[mJ E M(Emx{l}) is unobservable. Z 

- (z[mJlmEJ) ~ N(2=identity matrix) on mI ', ALm E M(DLxEm). and rank(ALL ) 

= IDLI. Let ~ be the ring of subsets of J generated by {H(L) IL€J} and for 

H € ~ define IH = U(DLIL€H); then trivially ~ := {IHIH€~} is a ring of 

subsets of I. If we set ~ = ~(~) (cf. Example 2.1). then it may be seen 

that the model determined by the system (5.14) has the form (5.13). i.e., 

it is the model NI(~). 0 

5.3. Invariance of the model. 

It follows from the well-known transformation property of the multiva-

riate normal distribution that the i.i.d. model determined by NI(~) is 

invariant under the transitive action (4.12) of ~(I) on the parameter 

space P~(I) and the action 
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~(I)xM(IxN) ~M(IxN) 

(A,y) ~ Ay 

of ~(I) on the observation (sample) space M(IxN). The ML estimator is 

thus equivariant. 

§6. TESTING ONE PAIRWISE CONDITIONAL INDEPENDENCE MODEL AGAINST ANOTHER. 

If ~ and ~ are two distributive sublattices of ~(V) such that ~ C ~, 

then P~(V) ~ P~(V) and one can consider the statistical problem of test

ing NV(~) against the (possibly) larger model NV(~) on the basis of N 

i. i. d. observations. In this section the central distribution of the 

likelihood ratio (LR) statistic is derived by means of the invariance of 

this testing problem under the actions of GL~(V). 

In Section 6.1 the testing problem and the LR statistic Q are given in 

matrix formulation. The invariance of the testing problem is described in 

Section 6.2 and used to derive the central moments of Q. This derivation 

is based on Theorem 6.1, which establishes the mutual independence of the 

maximal invariant statistic ~ and the ML estimators ~.' K € J(~). Spe

cific examples of the general testing problem are presented in Section 

6.3. Theorem 6.1 is proved in Section 6.4 by means of invariance argu-

ments. 

A warning about the notation is needed here. Since J(~) # J(~), quanti

ties such as J(K) , DK, .2KK ' .2K>, ~. depend not only on the quotient 

space K but also on the lattice of which K is considered a member. Thus, 
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for example, J:il(K) and J..M(K) need not be the same. To alleviate this 

difficulty without introducing :il and ..M as subscripts, the letter K shall 

denote a quotient that is to be considerec:t as a member of J{, while M 

shall denote a quotient that is to be considered a member of ..M. 

For notational convenience, we sometimes use the following abbrevia-

tions: IK/ "- IlK'. (K E :il), IK·I := /DKI (K E J(:il)); also IMI := IIMI (M 

E ..M). IM-I '- /DMI (M E J(..M)). 

6.1. Matrix formulation of the testing problem. 

It is important to note that if (e.liEI) is a basis for V adapted to :il. 
1 

then it must also be adapted to ..M (recall Remark 2.2). To see this, let 

~:..M ~:il be the embedding of ..M into :il and let ~ = J(~):J(:il) ~ J(..M) be the 

associated poset homomorphism (cf. [AJ (1987). Proposition 1.2 (ii)). 

Then for M E J(..M) we may define DM := U(DKIKEJ(:il), ~(K)=M). Since ~ is 

surjective ([AJ (1987), Proposition 1.3(i)), I = U(DMIMEJ(..M)). Since ~ is 

a poset homomorphism, it follows that (e.liEI) is also adapted to ..M. 
1 

Once such basis is chosen. the above testing problem may be stated in 

matrix formulation as follows: based on N i.i.d. observations x 1,···,xN E 

I 
ffi from the model NI(..M). test 

(6.1) 

The existence of the ML estimator ~ (=: ~..M) under H implies the exist

ence of the ML estimator ~ (=: ~:il) under HO (recall (5.6)). To see this 

simply note that 
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The equality follows from the fact that ~ is surjective, while the in-

equali ty follows from the relation ~(K) Z K for K € J(:1l), which is a 

consequence of the definition of '" (= J(<pn (c£. [A] (1987). equation 

(l.4)). Thus, from (5.8) and (5.7), the LR statistic Q for testing HO 

against H is given by 

(6.2) Q2/N _ det(~) 
- detd) 

IT(det(~.)IMEJ(~)) IT(det(SM.)IMEJ(~)) 

= IT(det(~K.)IKEJ(:1l)) = IT(det(SKo)/KEJ(:1l)) 

For computational purposes, note that 

(6.3) 

t K E J(:1l), where S(y) = yy and y = (x1 ,···,xN) E M(IxN), with an identi-

cal formula for det(SM.(y)), M E J(~). 

6.2. Central distribution of the likelihood ratio statistic. 

The testing problem (6.1) is invariant under the action (5.15) of the 

group ~(I) on the sample space M(IxN) and the action 

(6.4) ~(I)xP~(I) ~ P~(I) 

(A,};) ~ A2:At 
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on the parameter space. Let 

(6.5) ~:M(IxN) ~M(IxN)~(I) 

denote the orbit projection (= maximal invariant) onto the orbit space 

under the action (5.15). Since the LR statistic is invariant under (5.15) 

Q depends on y € M(IxN) only through ~(y). The central distribution of Q 

is readily derived from this fact and Theorem 6.1. whose proof is defer-

red to Section 6.4. (Since the restriction of (6.4) to P~(I) is transi

tive (cf. (4.12», under HO the distribution of Q does not depen on ~ € 

P~(I).) 

Theorem 6.1. Under HO' the statistics ~ and ~K.' K € J(~). are mutually 

independent. The statistic ~e has the Wishart distribution on P(DK) with 

N-/IJ(K)I degrees of freedom and expected value ~o. 0 

It follows from Theorem 6.1 that Q and ~.' K € J(~), are mutually 

independent. Therefore for every ~ € p~(r) (~ P~(I» and a l 0, 

hence from (4.17) (cf. (6.2», 

rr(E((det(~M.»a)IM€J(~» 

= rr(E((det(~o»)a)IK€J(~»' 
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However, it follows from the Wishart distribution Of~. that 

/K I [rCCN-IJ(K) /-i+1)/2+a) ] 
(2N)a • (det(~ J )ax IT i=l, ••• , IKo I 

. . r((N-IJ(K)/-i+1)/2) . 

/ '" a 
for K € J(~), with an analogous formula for E((det(~.)) ), M € J(~). 

Since 

(6.6) 2:( IK·IIK€J(~)) = I I I = 2:( /MoIIM€J(.Al)) 

and 

for 2: € P~(I), one obtains that 

(6.7) 

[ [
re (N-IJ(M) 1-i+1)/2+a) ]] 

IT IT i=1,o.o, IM·I MEJ(~) 
r((N-IJ(M)I-i+1)/2) E(Q2a/N) = _________________ _ 

[ [
r((N-IJ(K)I-j+1)/2+a) ]] 

IT IT· j=1, ••• ,IKol KEJ(~) 
r((N-IJ(K)/-j+1)/2) 

The Box approximation for the central distribution of -2logQ may be 

obtained as in Ariaerson (1984) p.311-316. In Anderson's notation we have 

a = b = Ir I and 
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f = -2L(L{{-/J{M)/-i+1)/2/i=1,···, /Mo /) IM€J{~)) 

+2~{L{(-IJ(K) /-j+1)/2Ij=1,···. /Ko I)IK€J{~)) 

= L{/Mo /xIJ{M)/+/Mo I{/Mo 1-1)/2IM€J{~)) 

- ~(IK· /x/J(K)I+/Ko I{/Ko /-1)/2IK€J{~)) 

= L(/Mo /xIJ{M)/+IMo 1(IMo 1+1)/2IM€J{~)) 
I 

- ~(IK· /x/J(K)/+/Ko l{/Ko 1+1)/2IK€J(~)) 

where the final equality is obtained using (6.6). From (3.13), one recog-

nizes f to be simply the usual difference between the number of free 

parameters under H and the number of free parameters under HO. 

6.3. Examples of testing problems. 

Let ~1'··~'~8'~9'~10'~11 denote the lattices appearing in Figures 

3.1,··· ,3.8,3.9a,3.10a,3.11a. respectively. In this subsection we shall 

consider examples of the testing problem (6.1) with (~,~) = (~.,~.) for 
1 J 

various pairs (i,j). In each example the LR statistic Q in (6.2) and the 

parameter f in (6.8) will be rewritten in forms that reflect the sta-

tistical interpretation of the testing problem, i. e., that reflect the 

conditional independence (Cl) condition being tested. 

For this purpose we must introduce the following notation: for any ~ € 

P(I) and any K,L € ~ such that L ~ K. let 

denote the partitioning of ~ according to the decomposition 
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and define 

(When K E J(~) and M E J(~), 2KoJ(K) = 2K. and ~MoJ(M) = ~Mo') The well

known formula 

may be appl ied 2/N in (6.2) to obtain the expressions for Q that appear 

below. 

First, consider the testing problems of the form 

(6.9) 

for ~ = ~3'··· '~8' (Note that P~(I) = P(I) for ~ = ~1 and ~ = ~2') In 

each of these problems the following form of the LR statistic Q directly 

reflects the statistical interpretation of the model NI(~) given in Sec

tion 5.2. : 
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~21N = 

det(S(LVM) o (LAM» x det(SYe(LVM» 
det(SLo(LAM»det(SMo(LAM» det(SL ' o (LVM»det(SM ' o (LVM» 

det(SL'oL) x det(SYoCLVM» 
x det(SCLVM) oL)det(SL"oL) det(SL I. (LVM) )det(SM'. (LVM» 

_ det(S(LVM) 0 (LAM» 
- det(SLoCLAM»det(SMo(LAM» 
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_ det(SL'o(LAM)) det(SYo(LVM)) 

- det(SMo(LAM))det(SL"o(LAM)) x det(SL' o (LVM))det(SW o (LVM)) 

f8 = /DLlxIDM/ + IDMlxIDL,,1 + IDL,,/xIDw I 

= IDL I x /DM I + IDL" I ( IDM 1+ IDM' I) 
= IDMI( /DL/+/DL"I) + IDL"Ix IDM' I; 

Remark 6.1. The three equivalent expressions for Q~JN given above corres

pond to the first three minimal determining sets of er conditions for 

.Nr('Jl) given in Remark 5.1. The expression for Q~JN suggested by the 

fourth set is 

but this is not equal to Q~JN. Thus the fourth determining set is in some 

sense unsatisfactory for describing .Nr('Jl). o 

Next we consider five testing problems of the form (6.1) with ('Jl,~) = 

('Jl.,'Jl.). From (6.2) and (6.8) one may obtain the following expressions: 
1 J 
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(::fl,.Al) (::flS ,::fl7 ) : 21N 21N det(SL' cL) 
= QS,7 = (QS/~) = det(S(LVM) oL)det(SL"eL)' 

f S, 7 = f S - f 7 = I DM I x I DL .. I ; 

(::fl,.Al) (::flg,::flS) : 
21N det(SM' oM) 

= 
Qg,S = det(S(LVM)"M)det(SM"oM)' 

fg,S = IDL I xDM" I; 

(::fl,.Al) (::fl11 ' ::fl6 ) : 
21N det(SL' oL) 

= 
Ql1,6 = det(S(LVM)"L)det(SL"oL)' 

2/N 2/N 
QS,l1 = ~,6' 

These five testing problems involve the five adjacent pairs of lattices 

in the diagram 

C::fl7 C 
::fl6 ::flS C ::flg " 

C::fl C 
11 

The LR statistic Q and the parameter f for non-adjacent pairs may be 

obtained from those for adjacent pairs in the usual way, for example: 
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Remark 6.2. It is thus seen that in each example, the LR statistic can be 

represented as a product of LR statistics for testing Cl of two blocks of 

variates. We conjecture that this is true in general, i.e., that the LR 

statistic Q in (6.2) for the general testing problem (6.1) may be written 

as such a product, and that furthermore, the factors are mutually inde-

pendent under HO. Of course it must be realized that the above examples 

involve only very simple lattices. More complex distributive lattices, 

e.g. non-planar lattices, may lead to statistical models and tests with 

more complex structure. o 

Remark 6.3. Each of the testing problems treated by Das Gupta (1977), 

Banerjee and Giri (1980), and Marden (1981) is a special case of the 

general testing problems (6.1) or (6.9). o 

6.4. Proof of Theorem 6.1. 

Let Q C M(IxN) be the open subset 

(6.10) Q = {yEM(IxN)/ rank(y) = min{/I/,N}}. 

Since M(IxN),Q is a Lebesgue-null set, we may replace the sample space 

M(IxN) by Q. Also, since rank(Ay) = rank(y) for A E ~(I) and y E M(IxN), 

* it follows that ~(I) acts on Q by restriction of (5.15). Furthermore, 

since Q is locally compact, Lemma 6.2 at the end of this subsection im-

plies that this restriction is a proper action (whereas (5.15) itself is 

not proper). Thus, in order to prove Theorem 6.1 we may apply the method 

of [A] (1982) to study the transformation of the normal distributions in 

the model HO under the mapping 



(6.11) 

76 

Q ~ Q~(I) x (X(P(DK)IKEJ(~))) 

y ~ (~(y) , (~.(y)IKEJ(~))). 

The group ~(I) is the semidirect product of its two closed subgroups.~ 

and '!J, where 

~ = {A E ~(I)I AK) = 0, K E J(~)} 

'!J = {T E ~(I)I TKK = lKK' K E J(~)}. 

Therefore we may apply the method of [A] (1982), Section 5, with K = 

~(I), H = ~, G = '!J, and X = Q to see that rr can be represented as rr = 

rr~orr'!J' where ~'!J:Q ~ Q/'!J and rr~;Q/'!J ~ (Q/'!J)/~ ~ Q~(I). (The action of '!J 

on Q is the restriction of (5.15) to '!JxQ, and the induced action of ~ on 

Q/'!J is defined as in equation (21) of [A] (1982).) 

Since the mapping (6.11) is invariant under the action of '!J on Q (cf. 

(4.16)), it has a unique factorization through ~'!J' Therefore we may first 

transform the normal distributions in the model HO from Q to Q/'!J by rr'!J' 

To do this, we need the following explicit representation: 

Lemma 6.1. A representation of rr'!J:Q ~ Q/'!J is given by 

(6.13) 
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Proof: To show that Q/~ in (6.12) is a cross-section of n and that ~~ in 

(6.13) is a maximal invariant function, it suffices to show that for each 

yEn, 

(6.14) {TYITE~} n (Q/~) = {~~(y)}. 

To show the inclusion ~ in (6.14), suppose that Ty E Q/~. Then from 

(6.12), (4.7), and (4.8), 

for each K E J(~), hence 

(6.15) 

K E J(~), i.e., Ty = ~~(y). To show the opposite inclusion d, it is easy 

to verify that ~~(y) E (Q/~) for every y E Q; to show that ~~(y) E 

{TYITE~}, simply note that ~~(y) = Ty where 
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K € J(~). Finally, the mapping ~~:n ~ n/~ defined in (6.12) and (6.13) is 

clearly continuous, so this representation is also topological and the 

result follows. 0 

We may now apply formula (16) of [A] (1982) to transform the normal 

distributions in ~he model HO by the mapping ~~ (6.13). In the notation 

of [A] (1982), G = ~, X = n, A is the restriction of Lebesgue measure on 

M(IxN) to the open subset n, ~ = ~~, ~ is a Haar measure on ~, AG = A~ = 
1, and P = peA, where p is the density given by 

For 2 E P~(I), the density q of ~~(P) with respect to the quotient mea

sure A/~ on n/~ is thus given by 

(6.16) -N/2 -1 t = (det(2)) f~exp{-tr(2 (Ty)(Ty) )/2}d~(T) 

where 

K € J(~), T € ~. 
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Since d~(T) = rr(dAK(TK»)IK€J(~)), whereAK is the Lebesgue measure on 

M(DKxI J(K)) (cf. (4.9)' the last integral in (6.16) can be calculated 

using Fubini I s Theorem and the translation invariance of "K' K € J(~). 

The order of integration should be determined by a never-increasing list-

ing K1,K2,···,KIJ(~)1 of the elements in J(~) (cf. Remark 3.6). After 

some calculation we obtain 

= rr((det(~.))-(N-IJ(K) 1)/2exp{-tr(~:sK.(Y))/2}1 KEJ(~)) 

t 
where S(y) = yy . 

-/Ko//2/ xrr((detS<K)(Y)) K€J(~)), 

By Lemma 6.1 wherein D/~ is representated as a subset of D, the induced 

action of the subgroup cl on D/~ is simply the restriction of the action 

(5.15) to clx(D/~). The next step is to represent the transformed measure 

rr~(P) = q.(A/~) as rr~(P) = q1"V, where v is an invariant measure under 

this action of cl on D/~. 

It follows from a statement on p. 961 of [A] (1982) that the quotient 

measure A/~ is relatively invariant under the action of cl on D/~ wi th 

-1 
multiplier ~ given by ~(A) = (mod~A) ~O(A), A € cl, where ~O is the mul-

tiplier for A as a relatively invariant measure under the action of ~(I) 
-1 

on D and where the automorphisms ~A:~ ~~ are defined by ~A(T) = ATA . T 

E~. Since A = Diag(AKK/K€J(~)) it is clear that 
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(~A(T))K> = AKKTK>A<K>' 
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K E J(:1l) , hence 

mod~A = lIe /det(AKK) ,/J(K) '/det(A<K» ,IKo', KEJ(:1l)). 

But also 

so that 

)((A) = lIe /det(AKK) ,N-/J(K) "det(A<K» ,IK-" KEJ(:1l)). 

If we define n:Q/~~JO.ro[ by 

n(rr~(y)) = lI((det(~.(y)))(N-/J(K)/)/2(det(s<K>(Y))) /Ko 1/2/ KEJ(:1l)), 

it follows that n(Az) = )((A)n(z), z E Q/~, A E ril. Thus the measure v := 

n-1 .(tJ{3) is invariant under the action of ril on Q/~. From (6.17), the 

density q1 = nq of rr~(P) with respect to v is therefore given by 

rdet(~ (y))] (N-/J(K) / )/2 1 . 
lI(t det(~~.) x exp{-Ntr(~~.~.(Y))/2}/KEJ(:1l)), 

where it should be recalled that ~ E P:1l(I). 

The final step in the proof of Theorem 6.1 is to obtain the transforma-

tion of the measure rr~(P) = Ql°v under the mapping 
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Q/'!J -7 (Q/'!J)/&1 x (X(P(DK) /K€J(:1l))} 

~'!J(y) -7 (~&1(~'!J(Y))'(~K.(y)IK€J(~))). 

Since the action of &1 on Q/'!J is the restriction to the closed subset 

, * &1x (Q/'!J) of the proper action of ~(I) on Q, it is a proper action. Thus 

we may apply Lemma 3 of Andersson. Br0lls and Jensen (1983) to see that 

there exists a unique measure K on (Q/'!J)/&1 such that the invariant mea-

sure v is transformed into the product measure K®VO under. the mapping 

(6.18), where Vo is an invariant measure on X(P(DK) IK€J(~)) under the 

proper and transitive action 

(6.19) &1 x (X(P(DK) IK€J(~))) ~ X(P(DK) /K€J(~)) 

(A . (AKIK€J(~))) ~ (AKKAKA~IK€J(~)). 

(Lemma 3 of Andersson, Br0lls, and Jensen (1983) is applied with G = ~, X 

= Q/'!J, Y = X(P(DK)/K€J(~)), t = (~'!J(y) ~ (~.(Y)/K€J(~))). ~ = ~~, and v 

= v.) 

Since ql(z) depends on z '- ~'!J(Y) only through (~.(y)IK€J(~)), the 

probability measure Ql°v is therefore transformed under (6.18) into the 

probability measure rO(K®vO)' where 

(6.20) 

r:(Q/'!J)/~ x (X(P(DK)/K€J(~))) -7 ffi+ 

(w.(AK/K€J(~))) -7 

fdetCAK) J (N-/J(K) 1)/2 1 

IT(ldetC1K.) x exp{-NtrC~.AK)/2}/K€JC~)). 
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,----------
Because r does not depend on w, under HO it follows that w = w~ow~ is 

independent of (~. /KEJ(~)), w has distribution K, and (~. IKEJ(~)) has 

distribution sovO' where s((AKIKEJ(~)) is given by the product (6.20). 

Furthermore, since Vo = ®(vKIKEJ(~)) where vK is an invariant measure on 

P(DK) under the usual action of M*(DK), it follows that under HO' ~.' K 

E J(~), are mutually independent and ~. has the Wishart distribution on 

P(DK) with N-/J(K)/ degrees of freedom and expected value ~.' This con-

cludes the proof of Theorem 6.1. 

The folloWing lemma, which was cited at the beginning of this subsec-

tion, is also of interest in its own right for the study of group actions 

in statistics. (see also Bourbaki (1971), Chapitre Ill, §4, Proposition 5 

(ii)). 

Lemma 6.2. Suppose that G and G' are locally compact groups that act 

continuously on the locally compact spaces X and X', respectively. Let 

~:G ~ G' be a continuous group homomorphism and t:X ~ X' be a continuous 

mapping such that t(gx) = ~(g)t(x), x E X, g E G. If ~ is proper and if 

the action of G' on X' is proper, then the action of G on X is also pro-

per. 

Proof: Consider the diagram 

GxX ~ XxX 

Q' 

G'x X' ~ X'x X', 

where {}(g,x)=(gx,x) and {}'(g',x')=(g'x',x'). We must show that {}-l(C) is 
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compact whenever C ~ XxX is compact - Let PG' denote the projection of 

G'xX' onto G'. Since the diagram commutes, i.e .. S'o(<px..p)=(..px..p)oS, it 

follows that 

S- \C) ~ S-l (( ..px..p) -1 (( ..px..pHC))) = (<px..p) -1 (S' -1 (( ..px..pHC))) 

-1 -1 -1 
~ (<px..p) (PG'(S' ((..px..pHC)))xX) = <p (C')xX 

where C' = PG,(S,-l((..px..p)(C))). Since trivially S-l(C) ~ GXP2(C), where 

P2 denotes the projection of XxX on the second component, we have that 

-1 -1 
S (C) ~ <p (C') xP2(C), 

But C' is compact since 

because <p is proper. Thus 

of GxX, hence is compact. 

S' is proper and therefore <p-1(C') is compact 

-1 
S (C) is a closed subset of a compact subset 

o 

With the identifications G = G' = ~(I), X = n, X' = P~(I), <p = the 

identity mapping on ~(I), and..p = ~, Lemma 6.2 may be applied as indica

ted at the beginning of this subsection. 

§7. CONCLUDING REMARKS. 

A more detailed investigation of the structure of the normal condition-

al independence (Cl) models .NV(~) and the associated testing problems 

will be presented in a subsequent study_ Among the questions under in-

vestigation is that of characterizing the minimal determining sets of cr 
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conditions for NV(~) (cf. Remark 5.1). A second question is whether every 

testing problem of the general form (6.1) can be decomposed into a pro-

duct of simpler testing problems (cf. Remark 6.2). The answer to this 

question will be of use for a decision-theoretic study of the LR test and 

other invariant tests for the problem (6.1). 

The normal statistical models NV(~) may be generalized in several ways. 

One natural and possibly fruitful extension is suggested by an examina-

tion of the ~-parametrization (3.13) of p~(r) once a ~-adapted basis for 

V has been chosen. A large class of "second-order" submodels of NI(~) may 

be obtained by replacing each P(DK) in (3.13) by P~I(DK}' where each ~. = 

~ is a distributive sublattice of ~(ffiDK). Third-order and higher-order 

submodels may be obtained by iterating this process. This construction 

yields a very rich and varied class of normal conditional models and 

associated testing problems which, despite their apparent complexi ty, 

admit a relatively standard explicit likelihood analysis. 

Al ternatively, one might replace each term M(DKxI J(K}} xP(DK) in the 

~-parametrization (3.13) by a sui table covariance selection model re-

quirement (cf. Dempster (1972), Wermuth (1976, 1980», thus generalizing 

the multivariate graphical chain models of Lauritzen and Wermuth (1987) 

to "mul tivariate graphical lattice models". 

Another question currently under investigation is the relation of the 

lattice models NV(~) and their extensions to the normal models for cr 

determined by recursive causal graphs and decomposable graphs (cf. Wer-

muth (1980, 1985), Kiiveri, Speed, and Carlin (1984), Lauriten (1985, 

1989), Lauritzen and Wermuth (1987». 
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