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Abstract: For the negative binomial distribution the 

existence and uniqueness of the maximum likelihood 

estimator is proved using convexity results. 

1. Introduction. Anscombe (1950) conjectured that the maximum 

likelihood estimator in the negative binomial distribution exists 

uniquely if and only if the sample variance is greater than the sample 

mean. In an analytic tour de force, this was proved by Simonsen (1976, 

1979). Unfortunately, the result is not widely known, see e.g. Kotz and 

Johnson (1985), p. 173, perhaps because the proof is long and 

complicated. The importance of the result for the further development of 

the statistical models based on the negative binomial distribution made 

us look for an alternative way to prove it. After a considerable effort 

we have found a simple and short proof, which we shall present here. 

Let xl' ... ,xn be i.i.d. random variables, n = 1,2, ... , with a negative 

binomial distribution 

for x = 0,1.2, ... , where 0 < p < 1 and 0 < a < 00 The likelihood function 



is 

L(p,a) 

where 

2 

n 
S=.2x .. 

. 1 J J= 

For S = 0 we have L(p,a) = pan and so in this case the maximum likelihood 

estimator does not exist. In the following it is therefore assumed that S 

) o. For fixed a the maximum likelihood estimator of p is ~(a) = 

an/(an+S) = a/(a+m) , where m = S/n is the sample mean. The profile 

function of the negative log likelihood function becomes 

A f(a) = -logL(p(a) ,a) 

n x.-1 
= n((a+m)log(a+m)-alog(a)-mlog(m)) - .2 

j=1 
J.2 (log(a+k)-log(k+1)). 
k=O 

The difficult point is to show that the likelihood equation Df(a) = 0 

has at most one solution. Anscombe's conjecture is then an easy 

consequence, see sect.3. Simonsen proved that Df is strictly quasi 

concave. Since Df(a) ~ 0 for a ~ 00, it follows that the likelihood 

equation has at most one solution. We shall prove the stronger result 

that the profile function f is strictly convex as a function of ~ = 

a(log(a+m) - log(a))/m. 

2.Transformation to convex functions. It was conjectured by one of the 

authors (Br0ns) and proved by Johansen (1972) that if a family of quasi 
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convex functions defined on ffi is closed under addition. then it could be 

transformed into a family of convex functions by as monotone 

transformation of the domain of definition. It is clear that the family 

of profile functions with a fixed m is closed under addition. The 

uniqueness of the maximum likelihood estimator should therefore be proved 

by a transformation to convex functions. The problem is then first to 

find the transformation and then to prove that the function given by (1) 

below is increasing. 

Theorem. The profile function f is a convex function in the parameter ~ 

= a(log(a+m) - log(a))/m. 

Proof. Differentiating f we get 

n x.-1 1 Df(a) = n(log(a+m) - log(a)) - ~ J~ 
a+k 

j=l k=O 

and 

D2f(a) 1 1 n x.-1 1 = n(- - -) + ~ J~ 
(a+k)2' a+m a j=1 k=O 

The substitution~: ]O,ro[ ~ ]O,l[ is a strictly increasing and strictly 

concave function with 

1 
D~(a) = ID ((log(a+m) - log(a)) -

1 
a+m 

[ 1 1 1 1 2 = (-(- - -) - (-) )dt m t t+m t+m 
a 

= [m/(t(t+m)2)dt > 0 
a 

and 

2 - m/(a(a+m) ) < O. 
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We have 

Df(a) = D~f(a) D~(a) 

and 

2 2 2 2 
D f(a) = D~f(a)(D~(a)) + D~f(a)D ~(a) 

2 2 2 = D~f(a)(D~(a)) + Df(a)D ~(a)/D~(a). 

Hence 

2 
and so D~f(a) > 0 if and only if 

2 2 D f(a)D~(a) > Df(a)D ~(a), 

If we put 

(1) 2 2 
h(a) = D f(a)/D ~(a) 

and notice that both Df(a) and D~(a) tend to zero for a ~ 00 the 

inequality becomes 

which is true if h(a) is strictly increasing 

We have 

2 1 1 
h(a) -

a(a+m) (n(- - -) m a+m a 

= n((a+m) 2 - (a+m) g(a)) 

where 

x.-l 
(2) g(a) 

1 n 
- 2: J-.;- a 

L, --2.".... 

Rearranging we get 

mn . 1 
J= k=O (a+k) 

in a. 

n x.-l 
1 2) + 2: J2: 

j=l k=O (a+k) 



h(a) 

which shows that 

(3) h(a) 

1 n 
- :z; 

m . 1 J= 
1 n 

:z; 
m . 1 J= 

1 n 
~- :z; 

m . 1 J= 

5 

x.-1 
J:z; 

k=O 
x.-1 

J:z; 

k=O 

x.-1 

2 
((a+m) _ a(a+m) ) 

(a+k)2 
2 (a+m)(2ka+k -ma) 

(a+k) (a+k) 

J:z; (2k-m) 
k=O 

1 n 
= - :z; (x.(x.-1)-x.m) 

m . 1 J J J 

2 = n(s -m)/m 
J= 

2 1 n 2 
for a ~ 00, where s = - :z; (x.-m) is the sample variance. 

n . 1 J J= 

To prove that h is strictly increasing it therefore suffices to show 

2 that h is strictly concave, but h(a) = n«a+m) - (a+m) g(a» is strictly 

concave if and only if (a+m)2g(a) is strictly convex. 

2 The set G of functions g:]O,oo[ ~ ]O,oo[ such that (a+m) g(a) is strictly 

convex is evidently a convex cone, and so by (2) we only have to show 

that the functions 

i-1 
a 

gi (a) = k~O ---=­
(a+k)2' 

belong to G for i = 1,2, ... 

For any j = 0,1, ... ,i-1 

j j 1 j k 
:z; a -:z; -- - :z; ---==----::-

k=O (a+k)2 - k=O a+k k=1 (a+k)2 

j 1 j k-1+1 k 1 
= k~O a+k - k~1(a+k-1 - a+k)(l - a+k) 

j 1 j 1 . j k 
~ ~ + _J_ + ~ 

= k~O a+k - k~1 a+k-1 a+j k~1 (a+k)2(a+k-l) 

j+1 j k 

= a+j + k~1 (a+k)2(a+k-1)· 
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Hence 

2 i-I a 
(a+m) k~O 2 

(a+k) 

2 j+l j (a+m)2 k 
= (a+m) a+j + k~1 2 

(a+k) (a+k-l) 

i-I 
+}; (a+m)2 

k=J+l a a+k . 

If we now choose the integer j such that j = 0 for m < 1, m-I < j ~ m 

for 1 ~ m < i-I, and j = i-I for i-I ~ m, it is clear that the three 

terms are all convex functions. First 

(a+m)2/(a+j) = a+j + 2(m-j) + (m_j)2/(a+j)2 

is convex, secondly 

2 2 (a+m) /((a+k) (a+k-l)) 

is even logaritmic convex for 1 ~ k ~ m, and finally 

2 2 2 2 a (a+m) /(a+k) = a + 2(m-k) +(m-k)(m-3k)/(a+k) - k(m-k) /(a+k) 

is convex for k > m, because then the second derivative 

is positive. 

4 (2(m-k)(m-3k)a + 4mk(k-m))/(a+k) 

3. Proof of Anscombe's conjecture. Since D~f(a) = Df(a)/D~(a) is 

strictly increasing, the likelihood equation Df(a) = 0 has at most one 

solution. 
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It is clear that lim D~f(a) ~ 0, and, since both Df(a) and D~(a) tend 
a~ 

to 0 for a ~ 00. we have by (3) 

lim D~f(a) = lim Df(a)ID~(a) = lim D2f(a)1D2~(a), 
a~ a~ a~ 

2 = lim h(a) = n(s -m)/m. 
a~ 

Hence a solution exists if and only if s2 > m. 
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