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ABSTRACf 

We consider the residuals from the general linear model Y = X~ + c 

with Gaussian errors, and the misspecification tests obtained from the 

number of positive residuals and the number of sign changes. We then 

derive the asymptotic distribution of these test statistics and indicate 

asymptotic expressions for the power functions for local linear 

alternatives. We find that the statistics are asymptotically independent 

and Gaussian. The asymptotic mean and variance of the number of sign 

changes is n/4 and n/16, hence has the same value as it would have if the 

residuals were independent. The number of positive residuals has mean 

n/2 and asymptotic variance n/4 - l'X(X'X)-lX'1/2~. 

KEY WORDS: Hajek projektions, General linear model, Residuals. 



1. INTRODUCTION. 

Consider a simple regression model with Gaussian errors 

(1.1) Y. = a + ~t. + a6., i=I, ... ,n 
111 

where 6 1 , ... ,6n are NID(O,I) and the parameters are estimated by ordinary 

least squares. 

A simple diagnostic check on the validity of the model can be 

performed using the statistics 

and 

n A A 
N+ = ~ I{Y. - a - ~ti > O} 

i=I 1 

~1 A A A A 
N = ~ I{Y. - a - ~tl. > 0, Y1.+1 - a - ~tl.+1 < O}. 

+- i=I 1 

The mean of N+ under the model (1.1) is clearly n/2, but the 

variance is more complicated to calculate, since the indicator functions 

in the sum are dependent. 

The purpose of this paper is to find asymptotic expressions for the 

mean and variance of N+ and N+_, to prove that N+ and N+_ are 

asymptotically normally distributed and to find asymptotic expressions 

for the power function for linear local alternatives. 

The test statistic N in a sequence of + and -'s , which is 
+-

essentially half the number of runs, has always been used as a test 
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statistic, see Arbuthnott (1710). Note that N+_ and N_+ differ by at 

most 1, and that the number of runs is N + N + 1. Geary suggested 
+- -+ 

using N + N as a test against autoregression assuming a binomial 
+- -+ 

variation of N ,and Draper and Smith (1966) discuss the distribution of 
+-

N given N under the assumption that the residuals are independent, +- + 

referring to Swed and Eisenhart (1943) for the distribution. Both Draper 

and Smith and Geary warn that one should consider the dependence between 

the residuals, but they claim that the effect can be ignored. 

Gastwirth and Selwyn (1980) find the asymptotic distribution of N+ 

and N under the model Y. = ~ + t. where t. are i.i.d. with density. 
+- 1 1 1 

Their proof exploits the exchangeability in the distribution of the 

residuals. Mikhail and Lester (1981) calculate moments of N for this +-
2 

model and show that the exact distribution is well approximated by a X 

distribution. 

We shall work in the general linear model with Gaussian errors and 

the method used for proving asymptotic normality is a slight variation of 

the projection method of Hajek, see Lehmann (1975) or Hajek (1969). 

2.THE ASYMPTOTIC DISTRIBUTION OF N AND N AND THE LOCAL POWER OF THE + +-

TESTS BASED ON THESE. 

Consider the model 

(2.1) Y = X~ + at 

where X(nxk) is a known design matrix, ~(kx1) is the unknown parameter 
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and c(nx1) is a vector of i.i.d. N(0,1) random variables. 

We define the estimate 

the "hat matrix" or projection 

and finally the residuals 

E = (1 - H)Y. 

Under the model (2.1) the residuals E are distributed as N (0,a2(1-H)). 
n 

Now define 

(2.2) 

and 

(2.3) 

n 
N+ = 2 1{E. > O} 

i=1 1 

N +-

n-1 
= 2 1{E. > 0, E. 1 < O} 

i=1 1 1+ 

We can then prove 
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-1 
THEOREM 1. Assume H .. E O(n ), then under the model (2.1), the 

l.J 

asymptotic distribution of (N ,N ) calculated from the OLS residuals 
+ +-

** ** are the same as that of (N ,N ), where + +-

N** 
n 

- 1 'Hc/(21T) 1/2 (2.4) = 2: l{c. > O} + i=l l. 

N** 
n-l 

(2.5) = 2: l{c. > O,c. 1 < O} +- i=l l. l.+ 

These are asymptotically Gaussian with means and variances given up to 

terms of order 1 by 

(2.6) E(N+) = n/2 

(2.7) E(N ) = n/4 +-

(2.8) V(N ) = n/4 -+ 1 'Hl/21T 

(2.9) V(N ) = n/16 +-

(2.10) V(N ,N ) = 0 + +-

If N and N are calculated from the recursive residuals, which are 
+ +-

independent, then the same results hold with H replaced by o. 

Remark. Notice that the variance of N+ is in general less than binomial 

since the indicators are correlated. If the linear model (2.1) contains 

the constant term, i.e. if 1 E sp(X) , then l'H = 1, and V(N+) = 

(1-2/1T)n/4 ~ n/ll, as compared to the binomial variance n/4. 
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Strangely enough the variance of N is the same as it would be if 
+-

the indicator variables were independent. This supports the intuition of 

Geary(1967) who wrote about the dependence "the effect is believed to be 

negligible when T is not small. and is ignored here". Note also that the 

asymptotic variance of N is the same for any linear model (2.1). +-

The next result concerns the power functions ~ and ~ of the two + +-

tests one can derive from N+ and N +-

the linear model of the form 

(2.11) 

We consider a local alternative to 

where fO € sp(X) and f1 ~ sp(X). and let hn tend to zero with a suitably 

chosen power of n. 

The power function of any of the above statistics (N) is given by 

where u 1- a/ 2 is the 1-a/2 quantile of the Gaussian distribution and EO(') 

and VO(') are calculated for En = f O' If N is asymptotically Gaussian we 

want to approximate this power function with an expression of the form 

(2.12) 

We can then state the results on the power function in terms of the value 

of c. 
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THEOREM 2. The power function ~+ of the test based on N+ can be 

approximated as follows: 

If n-1~ ((I-H)t1). ~ a 1 # 0, and if n1/ 2hn ~b1' then ~+ is given by 
i=l 1 

(2.12) for c = a1b1/(~/2 - l'H1/n)1/2. 

n -1 n 3 1/6 
If 2 ((I-H)t1). = 0 and n 2 ((I-H)t1). ~ a2 # 0 and n hn ~ b2 , 

i=l 1 i=l 1 

then ~+ is given by (2.12) for c = a2b~/6(~/2-1'H1/n)1/2. 

_In -1 1/4 
If n 2 ((I-H)f1).((I-H)f1). 1 ~ a3 # 0 and if n h ~ b3 i=l 1 1+ n 

then the power function ~+_ can be approximated by (2.12) with c = 
2 

-2a3b3/~ 

As an example of these results consider the very special case of (2.1) 

given by 

Y. = a + ~t. + ae., i = 1, ... ,n, 
III 

and the local alternative given by 

Y. = ~ + Dt. + h t~ + ae. i = 1, ... ,n 
1 1 nIl 

2 = t. and 
1 

((I - H)t1)1.= t~ - t 2 - (t. - t) ~ t~/( ~ t~) - R 
1 1 1 1.=1 1 - i i=l 
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say. Since 1 € sp(X) , we have 1'(1 - H) = 0 and hence that 

n n 
L ((I - H)f1). = L R. = O. 

i=l 1 i=l 1 

Hence the power function ~+ can be approximated by (2.12) with 

The power function ~ can be approximated by (2.12) with the choice +-

1/2.. 2 _In -1 
c = -2n -h n L R.R. l/v. 

n i=l 1 1+ 

The proofs of these results will be given in the next section. 

3. MATHEMATICAL RESULTS. 

We define the Hajek projections 

n-1 n-1 
=.L {E(N+_/Yi ,Yi +1)-E(N+_)}- .L {E(N+_/Yi ) - E(N+_)} 

1=1 1=2 

and 

n 
N* = L {E(N /Y.) - E(N )} 
+ i=l + 1 + 

c-
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It is easily seen that if N is either N or N+ then 
n +-

and we shall apply the following result from Lehmann(1975) p.349 

LEMMA 1 If N* /Y(N*)1/2 converges in distribution to F and if 
n n 

* 1n V(N )/y(N ) ~ 1, n ~ 00, then also N /y(N ) converges in distribution n n n n 

to F. 

We shall derive the asymptotic distribution of the statistics under 

the model (2.1). Since the distribution of the residuals E does not 

depend on ~ and a we let ~ = 0 and a = 1 in the calculations. The proof 

depends on an expansion of the Gaussian distribution which we give as 

LEMMA 2 Consider an n-dimensional Gaussian variable Z with mean f and 

-a variance matrix I-H, where we assume that as n ~ 00 we have f t O(n ) for 

-1 
some a ~ 1 and H t O(n ). Then 

P{ Z. < 0, i=l, ... ,p} = 
1 

(3.1) 
P 1/2 P -1-2 
IT ~(-f./(l-H .. ) )(1- L H .. /~ + O(fn ) + O(n )). 

i=l 1 11 i~j 1J 
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Further 

(3.2) ~(-f./(1-H .. )1/2) = 1/2 -f./(2rr)1/2 + f~/6(2rr)1/2 - f.H .. /2(2rr) 1/2 
1 11 1 1 1 11 

+ O(f4 .f3n-1.fn-2) 

Proof. Let V. = (z. - f.)/(1-H .. )1/2 denote the standardised variable 
1 1 1 11 

1/2 and let K .. = H . ./((1-H .. )(1-H .. )) ,ijl!j and K .. = 0 for i=j. Further 
1J 1J 11 JJ 1J 

1/2 
let D. = - f./(l-H .. ) . then 

1 1 11 

P{ Z. < 0 . i=l ..... p} = P{ V. < D. i = 1 ..... p} 
111 

and V is distributed as N (0.1 - K) where K .. = o. P 11 

where 

and 

Now for B = { V. < D .. i=l ..... p} we get 
1 1 

P(B) = l(B)/l(RP ) 

-1 
l(B) = f ~ (x)exp{-1/2x'[(1-K) - IJx}dx. 

B p 

~ (x) = (2rr)-p/2 exp{ -1/2x·x}. 
p 
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Now use the expansion 

to find 

(I - K) -1 2 =I+K+K + ... 

exp{-1/2x'[(I-K)-I_IJx} = 1 - U2x'Kx +O(n-2 ) 

Integrating with respect to ~ (x) we get 
p 

-2 O(n ), 

and 

P -2 
= 1 - 1/2 L: K .. f2x.x .~2(x. ,x .)dx.dx. + O(n ) = 1 + 

i#j IJ R 1 J 1 J 1 J 

p p P ~i ~j 
I(B) = IT ~(~.) - 1/2 L: K .. IT ~(~k) fx~(x)dx fx~(x)dx + 

i=1 1 i#j IJ k#i,j -00 -00 

p P ~(~i)~(~j) -2 
= IT ~(~.){1 -1/2 L: K .. ~(~. )~(~.) + O(n )} 

i=1 1 i#j IJ 1 J 

Now the result (3.1) follows from 

1/2 
~(~.)/~(~.) = 2/(2~) + O(E) 

1 1 

and the result (3.2) follows from a Taylor's expansion of ~ around O. 
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We shall often need this result in the following simple form 

COROLLARY 1. If Z is distributed as N (O.l-H) then 
n 

(3.3) P(Z. < ° . i=l, ...• p) = 2-P (1 - ~ H . . hr + O(n-2 )) 
1 i#j 1J 

If Z is distributed as N (f.l) and f € O(n-1) then 
n 

(3.4) 

Note that probabilities like P(ZI > 0. Z2 < 0) can be found by changing 

the sign in (3.3) and (3.4) of the relevant terms in f and H. 

Next we shall give a proof of the expressions for the mean and 

variance of the variables N and N i.e. (2.6) to (2.10). The relation 
+- + 

E(N+) = nl2 is obvious, and if we introduce the notation U. = I{E. > O} 
1 1 

= l-U., we can calculate 
1 

n n n n 
V(N) = V( 2: U.) = 2: V(U.) + 2: 2: V(U.,U.) 

+ . 1 1 . 1 1 . 1 .~. 1 J 
1= 1= 1= Jr1 

We now have V(U.) = 1/4 and by (3.3) E(U.U.) = 1/4(1 - 2H .. /~) + O(n-2 ) 
1 1 J 1J 

-2 and hence V(U.,U.) = -H .. /2~ + O(n ). Summing over i and j we get 
1 J 1J 

(2.8). The expectation of N is similar. but the variance is more 
+-

complicated: 



n-l _ 
V(N+_) = V( L U.Uo+1) = 

i=l 1 1 

12 

n-l n-2 
L V(U.U. 1) + 2 L V(U.U. l'U.+1U·+2) 

i=l 1 1+ i=l 1 1+ 1 1 
n-l 

+2 L L V(U.U.+1,U.U.+1) 
i=l j#i-l,i,i+l 1 1 J J 

For the first two terms we evaluate from (3.3) 

= - 1/16 + O(n-1). 

Thus these two terms contribute n/16 to the variance. The last term 

vanishes as we shall now show using (3.3): 

V(U.U. l'U.U. 1) = E(U.U. lU.U. 1) - E(U.U. 1)E(U.U. 1) 1 1+ J J+ 1 1+ J J+ 1 1+ J J+ 

= 1/16[1 - 2(-H .. 1 + H .. - H .. 1 - H. 1 . + H. 1 . 1 - H .. l)/lT] 1,1+ 1J 1,J+ l+,J 1+ ,J+ J,J+ 

-1/16(1 + 2H .. 1/lT)(1 + 2H . . +l/lT) 1,1+ J,J 

= -(H .. - H. . 1 - H. 1 . + H. 1 . 1)/8lT 1J 1,J+ l+,J 1+ ,J+ 
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Summing over i and j gives 0(1). The last relation V(N+,N+_) = 0 is 

proved similarly. 

* * Next we have to find a simple expression for statistics Nand N+, +-

and for that we need the following 

LEMMA 3. 

(3.5) 

(3.6) 

-1 For n ~ 00 we find up to terms of order Open ) 

E(N Iy.) - E(N+) + 1 

E(N Iy.) - E(N ) +- 1 +-

-l/2n 
= l{Y. > O} - 1/2 - (21T) L: H . . Y. 

1 . 1 J1 1 
J= 

= 0 

(3.7) E(N+_IYi ,Yi +1) - E(N+_) = 

l{Yi > 0, Yi +1 > O} - 1/4 +1/2(-1{Yi > O} + 1{Yi +1 < O}) 

Proof. To prove (3.5) note that 

n 
E(N Iy.) = P(E. > oly.) + L: P(E. > 0 I Y.). 

+ 1 1 1 j~i J 1 

Since V(E) = V(E,Y) = I-H we have 

E(E.ly.) = (1-H . . )Y., V(E.IY.) = (1-H1. 1.)H1. 1. 1 1 11 1 1 1 

such that 

1/2 
P(E. > Oly.) = <1>{(l-H .. )Y'/[(l-H .. )H .. ] } ~ l{Y. > O} 

1 1 11 1 11 11 1 
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whereas 

E(E.ly.) = -H .. Y., V(E.ly.) 
J 1 J1 1 J 1 

such that 

2 = l-H .. - H .. 
JJ 1J 

I 2 1/2 -1/2 -2 P(E. ) ° Y.) = <P{-H .. Y'/[I-H .. - H .. J } = 1/2 - (211") HJ. 1.Y1. + Open ) 
J 1 . J1 1 JJ 1J 

Summing over j gives the relation (3.5). Similarly we find 

E(N+ IY.) = P(E. ) O,E. 1 < OIY.) + P(E. 1 ) O,E. < OIY.) 
- 1 1 1+ 1 1- 1 1 

n-l 
+ ~ P(E.) O,E. 1< ° Iy.)· 
'J.' • 1 J J+ 1 Jr1 ,1-

Now we find from (3.3) and (3.4) using the notation U. = I{E. ) O} = l-U. 
III 

E(U.u.+1 IY.) - E(U.U. 1) = 1/2[1 {Y1' ) O} - 1/2J + Op(n-1) 
1 1 1 1 1+ 

E(U. lu.IY.) - E(U. lU,) = 1/2[1 {Y1' < O} - 1/2J + Op(n-1) 
1- 1 1 1- 1 

which cancel, and 

E(U U Iy) E(U U ) (2"",)-1/2(H.. H )Y /2 0 ( -2) . '+1 . - . '+1 -7 If - • l' . + P n J J 1 J J J1 J+ ,1 1 
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summing over j we get 

Finally we want to evaluate E(N IY.,Y. 1) , and for that we need the 
+- 1 1+ 

expressions 

-1 
Now add these terms over j # i-l,i,i+l and we get a term of the order n 

which proves (3.7). 

We can now turn to the proof of Theorem 1 on the asymptotic 

normality of the statistics and the representations (2.4) and (2.5). 

The results of Lemma 3 give the representation 
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and 

* * It is a simple exercise to show that the approximations to N+_ and N+ 

have variances and covariances that behave asymptotically like those of 

N andN. +- + 
* * One should really evaluate the variances of N and N but + +-

that requires a somewhat more detailed analysis and shall not be given 

here. Now we can apply Lemma 2, and it remains to find the limiting 

* * distribution of the approximations to Nand N. The relevant limit 
+- + 

theorem for sums of m-dependent random variables can be found in Anderson 

(1971) p. 427. 

We shall now investigate the power of the tests based upon N+ and 

N+_ against misspecified linear models. That is, we shall assume that Y 

is distributed as N (E ,a2I), see (2.11), such that Eis distributed as n n 

N ((I-H)E ,a2 (I-H)). We shall investigate the power function as 0 = 
n n n 

(I-H)fn = hn(I - H)E 1 ~ 0 at a suitable rate. 

It is no problem, although rather tedious, to go through the proof 

of Theorem 1 and check that in fact, under the sequence of models given 

by 0 ~o, we can show that the statistics N and N are asymptotically 
n + +-

normally distributed, and that Vf (N)/VO(N) ~ 1, for any of the 
n 

statistics. For any of the statistics considered we approximate as 

follows: 
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~ 1 - ~{ul_a/2(VO(N)lVf (N))1/2 + (EO(N) - Ef (N))lVf (N)1/2} 
n n n 

which has the form (2.12) for c = (EO(N) - Ef (N))1V0 (N)1/2 
n 

Thus we shall concentrate on the calculation of the difference in the 

expectations under the two models. To ease the notation we shall drop 

the subscript n on f and a. Consider first the statistic N+. We find 

n 

Ef(N+) - EO(N+) =i:l{P(Ei > 0 ) -1/2} 

and by Lemma 2 

P(E. > 0) -1/2 = ~(a./(1_H .. )1/2) -1/2 = 
1 1 11 

. ~- 3 ~- ~- 4 3 -1 -2 
a./v~~ -a./6v~~- a.H . . /2v~~ + O(a.,a.n ,a.n ). 

1 1 1 11 1 1 1 

_in 
If n 2 ((I-H)f1). ~ a 1 ~ 0, then the dominating term is 

i=l 1 
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. 1/2 1/2 For this to balance wIth VO(N+) € O(n ), one must choose hn € 

0(n-1/ 2 ) and then (2.12) follows with the proper choice of c. 

n n 
If L O. = 0 and n-1L o~ ~ a2 # ° then the dominating term is 

i=1 1 i=1 1 

For this to balance with n1/ 2 we get h € 0(n-1/ 6 ) which shows the next 
n 

result. Finally we find for N the evaluations 
+-

n-l 
Ef(N+_) - EO(N+_) =i:l(P(Ei > 0, Ei+l < 0)-1/4) 

and from Lemma 2 

2H. . 1/1T) 
1.1+ 

P(E. > 0, E. 1 < 0) - 1/4 = 
1 1+ 

1/2 1/2 
[<1>(0,/(1 - H .. ) )<1>((-0'+1/(1 - H. 1 . 1) ) - 1/4J(1 + 

1 11 1 1+ .1+ 

where the leading terms are 

(0. - o. 1)/2v2rr - 0.0. 1/21T. 
1 1+ 1 1+ 

The first cancels when summed over i and the second gives the 

required result for N . 
+-
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