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1. Introduction and notation. 

Consider a block design with T treatments allocated to B 

blocks of k plots such that each treatment occurs on r 

plots ( Bk = Tr). By N we denote the TxB incidence 

matrix with elements 

with treatment t 

design is binary). 

I - (rk)-lNN* is 

n tb = the number of plots on block b 

We assume n tb ~ 1 (i.e. that the 

and the TxT information matrix 

assumed to be af rank T-1 (i.e. the 

design is assumed connected). By e we denote the average 

of the T-1 non-zero eigenvalues of this matrix. The 

harmonic mean of the eigenvalues. 
-1 -1 

E = (T-1)(2e. ) 
1 

known as the efficiency. This quantity E 

is 

can be 

interpreted as the inverse proportion between the average 

contrast variance in the design under the usual additive 

(block + treatment) model and the average contrast variance 

in the simpler (hypothetical) model without block effects 

(but with the same error variance). 

It is common statistical practice to select a design of 

maximal efficiency when the design constants B. k. T and r 

are given. Balanced incomplete block designs and certain 

partially balanced designs are known to be optimal in this 

sense. but no general solution to the problem of selecting a 

design of maximal efficiency is known. Hence. the 

availability of good upper bounds for the efficiency is 

important. because closeness to such a bound tells the 

designer of experiments that the design can not be 

significantly improved. The best bound available today seems 

to be that given by Jarrett (1983. theorem 5.3) and 

Fitzpatrick and Jarrett (1987). This bound is based on a 

lower bound for the harmonic mean of the non-zero eigenvalues 

e. in terms of the first three moments of a random variable 
1 

which takes the values e 1 ..... eT- 1 with equal probabilities. 

The first moment is given by the design constants (e = 

(l-l/k)/(l-l/T) ). and for the variance 

the value 

- 2 
(e.-e) 

1 
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v = (1.1) 

is substituted. Here. ~ = r(k-1)/(T-1) is the average of 

the T(T-1)/2 concurrence counts A(t1 ,t2 ) (= the number of 

blocks in which treatments t1 and t2 occur). This is the 

value taken by the variance in case of a regular graph 

design. i.e. a design with any concurrence count equal to 

either [~] or [~]+1; since it is a commonly accepted 

conjecture (though never proved in general) that a design of 

maximal efficiency must be a regular graph design when a 

regular graph design exists. the substitution of this value 

for the variance is reasonable. and even for design constants 

which do not allow for a regular graph design. the bound 

derived by Jarrett and Fitzpatrick seems to be valid. 

Formally. however. the bound is only valid for regular graph 

designs. Having fixed the first and second moment. an upper 

bound for the efficiency can be derived from a lower bound 

for the third moment. which turns out to be related to the 

number of triangles in the variety-concurrence graph. see 

Paterson (1983). Lower bounds for this number of triangles 

can be given by combinatorial arguments. which then establish 

the final step. Bounds for the efficiency derived in this 

way are exact (i.e. equal to the efficiency E) if and only 

if the design is a regular graph design. the information 

matrix has at most two distinct eigenvalues and the number of 

triangles in the variety-concurrence graph equals the lower 

bound substituted for it. 

In the present paper we establish a simpler upper bound for 

the efficiency. based on the first and second moment of the 

eigenvalue distribution. but not the third. This bound is 

exact for regular graph designs with exactly one (multiple) 

eigenvalue ~ 1. Since this condition on the eigenvalue 

distribution is obviously more restrictive than the 

corresponding restriction for the bound due to Fitzpatrick 

and Jarrett. one would expect the simpler second moment 

bound to be less precise than the bound taking three moments 
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into account. However. this heuristic argument ignores the 

final step. which requires a good lower bound for the number 

of triangles in the variety-concurrence graph. This is not 

always so easy. and this is probably the reason why the 

second moment bound frequently turns out to be tighter than 

that of Jarrett and Fitzpatrick. 

2. The second moment bound. 

Theorem 2.1. For any binary design, 

E ~ 
e(1-e} - V (2.1 ) 
(I-e) - V 

where V is given by (1.1). 

Proof. Let var(e) denote the variance in the distribution 

of the eigenvalues. i.e. var(e) 

Simi lar ly . let 

distribution of 

var(A) denote the variance 

the T(T-l)/2 concurrence counts. 

is wellknown that var(e) = (T/(rk)2)var(A). 

bound for var(A) is easily seen to be 

in the 

Then it 

A lower 

var(A) ~ 

(~-[~])([~]+l-~) . with equality if and only if the design is 

a regular graph design. Hence var(e) ~ V. and since the 

right hand side of (2.1) is decreasing as a function of V. 
we are through if we can show that 

E 
e (1-e} - var ( e } 

(1-e) - var ( e ) 

But this follows immediately by application of the following 

lemma to a random variable X. uniformly distributed on the 

T-l eigenvalues e. 
1 

Lemma. Let X be a random variabLe on (0.1]. Then 

E(l/X) (I-EX} var(X} 

(l-EX)EX - var(X) 
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This inequality is closely related to results concerned with 

the moment problem and similar matters, see e.g. Karlin and 

Studden (1966), Lew (1976), Fitzpatrick and Jarrett (1986). 

We have not been able to find exactly this result, but a very 

elementary proof goes as follows. 

obviously have 

For any real a, we 

Expand the product in powers of X, introduce a = 1/a and 

make some rearrangement of terms to obtain the inequality 

E(1/x) 
2 2 

(E(X )-EX)a + 2(1-EX)a + 1 

which then holds for any a. For given EX and E(X2) , 

maximize the right hand side with respect to a to obtain 

the tightest possible bound. This gives the desired result. 

Notice that this proof is very similar to the proof given by 

Fitzpatrick and Jarrett (1987). In fact, application of 

exactly the same technique to the inequalities 

[1 2 2] E X (X-a) (X-{3) o ,a and {3 arbitrary, 

gives their inequality (2.6). 

3. The dual design and an improved bound for resolvable 

designs. 

The dual design is obtained by interchange of the roles taken 

by blocks and treatments. Thus, the dual design has B 

treatments allocated to T blocks of size r, and its 

d N* inci ence matrix is the transpose of the original 

incidence matrix. Quantities related to the dual design will 

be denoted by an asterix. It is wellknown that the 

efficiency of the dual design is related to the efficiency of 
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the original design by the equation 

(E-1 -1)(T-l) = (3.1) 

which is an easy consequence of the fact that the spectral 

decompositions of and differ only by the 

multiplicity of the eigenvalue 0 Since (3.1) establishes 

* a monotone relationship between E and E ,any upper bound 

for the efficiency has a dual version which comes out by 

application of the same upper bound 

followed by substitution into (3.1). 

to the dual design, 

Very often, the dual 

bound differs from the direct bound. Typically, this happens 

in situations where a regular graph design does not exist. 

In such situations, the bound (2.1) is obviously too 

optimistic. By complicated combinatorial arguments the lower 

bound for var(A) can be improved in these cases, but usually 

such improvements seem to be taken into account when the 

bound is computed from the dual design. 

Resolvable designs are characterized by the property that s 

= TIk = B/r is integer, together with the requirement 

that the blocks can be divided into groups of s (called the 

replicates) such that each treatment appears on exactly one 

block in each group. For some sets of design constants, 

resolvability can only be obtained on the cost of efficiency. 

For the dual design, resolvability implies that some of the 

* concurrence counts A (b1 ,b2 ) (= the number of treatments 

common to blocks b 1 and b2 ) must be zero, namely those 

corresponding to blocks in the same replicate. If, at the 

same time, some of the A* must be greater than 1 in order 

to give the correct average, then the dual design can not be 

a regular graph design. This gives the following lower bound 

for * var(A ). Arguing as in the proof of theorem 2.1, this 

can be used to give an improved bound for 

3.1) an upper bound for the efficiency E 

resolvable designs only. 

* E ,and thus (via 

which is valid for 



6 

Proposition 3.1. For a resoLvabLe design with k > s , 

where 

* var(A ) 

m = 
-* A = 

Pm+1 = 

Pm = 

[k/s] 

k(r-1)/(B-1) 

(~*) - m(1 - (s-1)/(B-1)) 

1 - ((s-1)/(B-1) + p 1) m+ 

Proof. With an obvious notation, referring to as a 

randomly selected concurrence count among the B(B-1)/2 

possible, the resolvability condition implies that 

= P( A* = 0 ) = (s-1)/(B-1) , 

since of the concurrence counts in the dual 

design correspond to pairs of blocks within the same 

replicate. The average of the remaining concurrence counts 

must be 

E( A* I A* > 0 ) -* ~ A /( 1 - (s-1)/(B-1)) 

= k(r-1) B-s 
B-1 / B-1 = k(r-1) 

B-s = k/s . 

When k > s , this implies that the dual design can not be a 

regular graph design, because at least one of these 

concurrence counts must be greater than 1 to give the 

average k/s > 1 . 

is obtained when Po 

The smallest possible value of 

is exactly (s-1)/(B-1) 

* var(A ) 

and all 

remaining concurrence counts are either m = [k/s] or 

m+1 The corresponding point probabilities 

are given by the equations 

P and 
m 
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+ + = 1 

~d p m + p 1(m+1) m m+ 

and the proposition follows after some straightforward 

calculations. 

4. Discussion. 

The bound given by Jarrett (1983) is tighter t~ the bounds 

reported e.g. in Williams and Patterson (1977), Paterson and 

Wild (1986), in the sense that if the same lower bound for 

the number of tri~gles is substituted then the formula (5.2) 

in Jarrett (1983) gives the best result. Two ways of 

constructing lower bounds for the number of tri~gles have 

been considered in this connection. Jarrett (1983) uses a 

bound which seems to be the same as the one reported by 

Williams ~d Patterson (1977); Fitzpatrick and Jarrett 

(1987) reference ~other bound, due to Paterson (1983), based 

on the number of 'intra-block tri~gles'. In this sense, we 

have two versions of the bound due to Jarrett and 

Fitzpatrick. We have computed these together with the second 

moment bound of the present paper in a large number of cases, 

~d quite frequently the second moment bound came out as the 

smallest. We shall not bother the reader with statistical 

facts concerning the frequency of this event. The import~t 

thing is, after all, that the additional computation of this 

new bound makes an improvement. A ready-for-use program, 

which (among other things) computes these upper bounds is 

available from the author (' .EXE'-file for IBM PC or 

compatibles, coprocessor required). 

Example. Jarrett (1983) discusses the case B=54 , k=3, T=27 , 

r=6. He found the upper bound 0.6745 for the efficiency. 

With Paterson's lower bound for the number of triangles, the 

same formula gives 0.6728. The second moment bound (our 

theorem 2.1) is 0.6701. A design of efficiency 0.6667 is 

known to exist. 
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