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Summary 

The real zonal polynomials are used to obtain a series expansion for the 

densi ty of the non-null distribution of the maximal invariant 

corresponding to testing that the covariance matrix of a 2m-dimensional 

real normal distribution has complex structure. 
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1. Introduction 

In a paper by Andersson, Br0ns and Jensen (1983) ten fundamental tests 

concerning the structure of covariance matrices in multivariate analysis 

are treated. Each of the ten problems is invariant under a group of 

linear transformations and the maximal invariant statistic is obtained in 

terms of eigenvalues of matrices with certain structures. A series 

expansion for the density of the distribution of the maximal invariant 

under the alternative hypothesis has been obtained for some of the ten 

problems by James (1964) and Constantine (1963) by use of zonal 

polynomials and hypergeometric functions; it concerns the tests for 

independence and the tests for identity of two sets of variates where the 

simul taneous covariance matrix has real or complex structure. The test 

that a 2m x 2m covariance matrix with complex structure has real 

structure , which is also one of the ten problems , has been solved by 

Bertelsen (1987) using methods similar to those of James and Constantine. 

In this paper one of the remaining non-null distribution problems are 

solved in the same way; it concerns the test that a 2m x 2m covariance 

matrix wi th real structure has complex structure; this test was first 

considered by Andersson (1978). 

Andersson and Perlman (1984) study the non-null distribution of the 

maximal invariant and we use their resul ts as a starting point. The 

problem is the evaluation of a certain integral over a matrix group 

isomorphic to the group of non-singular mxm matrices with complex 

elements. The theory of group representations is used to define certain 

polynomials, and it turns out that these polynomials can be expressed in 

a simpel way by the real zonal polynomials. These polynomials are then 

used to obtain a series expansion for the integral. 
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2. The statistical problem 

Let xl' ... ,xN be independent observations from a 2m-dimensional real 

normal distribution with mean 0 and unknown covariance matrix 2: E 

+ 
~ (2m, ill), the set of all positive definite symmetric 2m x 2m matrices. 

Andersson and Perlman (1984) have considered the problem of testing that 

is of complex structure, i.e. that 2: belongs to 

all positive definite matrices of the form 

= [2:(1) 
2: 2:(2) 

-2:(2)] 

2:(1) 

+ 
~ (m,(C) the set of 

(1) 

where 2:(1) and 2:(2) are m x m matrices. The problem may be expressed 

as that of testing 

They reduce the testing problem by invariance to the maximal invariant 

statistics and the non-null distribution of this statistics is obtained 

in terms of an expression containing an integral which is not 

evaluated. To define this integral let GL(m,(C) denote the group of all 

non-Singular 2m x 2m matrices of the form 

= rM( 1) 
M lM(2) 

-M(2)] 
M(l) 

where M(l) and M(2) are m x m matrices. 

(2) 
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Let ~(m,~) denote the group of orthogonal matrices in GL(m,~). 

Finally let ~(m,~) be the set of all 2m x 2m matrices of the form 

[
R(l) 

R = R(2) 
R(2)] 

-R(2) 

where R(l) and R(2) are m x m symmetric matrices. 

For R1 ,R2 c ~(m,~) the integral has the form 

where 

I(R1 ,R2 ) = f ~(M)exp(- ~ tr (RIMR2M'»d~(M) 
GL(m,~) 

(3) 

( 4) 

(5) 

and ~ is a Haar measure on GL(m,~) normalized such that the integral 

of ~(M) over GL(m,~) with respect to ~ is 1. 

In the present paper we obtain an explicit expression for I(R1 ,R2). 

To simplify (4) we consider matrices in ~(m,~) of a special form: for 

real numbers Al' .. ,Am let A denote the matrix of the form 

where A(l) = diag(A1 , -

rA(1) 0] 
lO -A(l) 

A ). For every 
m 

(6) 

R € ~(m,~) there exists a 

such that URU' = A, where A has the form (6) (see 

Andersson and Perlman (1984». Using that ~ is a Haar measure it follows 

that we only have to consider I(A,f), where A and f have the form 

(6). 
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The next step is to express l(A.f) by means of an integral over 

~+(m.~) . where ~+(m.~) denotes the group of 2m x 2m matrices of the form 

[
T(l) -T(2)] 

T(2) T(l) 
(7) 

where T(l) € ~+(m.IR). the group of upper triangular matrices with 

posi tive diagonal elements and T(2) is upper diagonal wi th zero 

diagonal elements. 

Also. let a be the normed Haar measure on ~(m.~) and let ~ be 

the right Haar measure on ~+(m.~) given by 

1 ; (t .. )1-2idT 
c . I 1,11 

1= 

where t l .. is a diagonal element of T(l). and 
.11 

m(m-l) m 

c = 2-mrr 2 IT f(N - i + 1). 
i=l 

Then the integral of ~(T) over ~+(m.~) w.r.t. ~ is 1. 

Consider now the lwasawa decomposition. i.e. the one-to-one and onto 

mapping given by 

(U.T) ~ UT (8) 
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By this mapping ~ is the transformed measure of a ® M (see Bourbaki, 

Chap, 7-8 (1963)) . Using this we can write I(A,T) as 

J ~(T) J exp(~ tr(T UTA T' U'))da(U)dM(T) (9) 

~+(m,~) ~(m,~) 

Expanding exp(~ tr(T UTA T' U')) as a power series the integral 

above can be expressed as an infinite sum of terms of the form 

1 
k! J ~(T) J (~tr(T UTA T' U,))kda(U)dM(T) (10) 

~+(m,~) ~(m,~) 

3. The polynomials D
k 

As a function of AI' A the integral (10) is a homogeneous 
m 

symmetric polynomial of degree k. We shall show that is possible to 

obtain an explicit expression for the integral by selecting a sui table 

basis for the homogeneous symmetric polynomials of degree k. Since the 

integral over ~(m,~) contains the term TAT' it will be convenient to 

define these polynomials as functions of a matrix Rc~(m,~) , instead of 

just a matrix of the form (6). 

First let Pm(k) be the set of ordered sequences k = (k1 ,-,km), 

m 
where 

P (k) 
m 

2 k. = k. An element of 
i=l 1 

is also called a partition of k in at most m parts. 
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In the appendix it is shown how it is possible to define . for each 

i{cP m(k) . a polynomial Di{. which is a homogeneous polynomial in the 

different elements of RE.!ili(m.(C) and that these polynomials have the 

following essential properties 

where 

and 

for all U E ~(m.(C) 

J ~(T) Di{(TRT')d~(T) = d(N.k) Di{(R) 

~+(m.(C) 

m 
IT f(N+2k.-i+l) 

i=1 1 
d(N.k) = ~~---

m 
IT f(N-i+l) 

i=1 

J (tr(R1UR2U,))2kda(u) = 2 c(k) Di{(Rl) Di{(R2) 

~(m.(C) kEP (k) 
m 

J (tr(R1U R2U,))2k+lda(U) = 0 

~(m.(C) 

(11) 

(12) 

(13) 

(14) 

(15) 

where R1 .R2E.!ili(m.(C) and a is the normed Haar measure on ~(m.(C). The 

coefficients c(i{) are found in the next section. 

From (12) and (13) it follows (see the appendix) that when T is 

distributed on ~+(m.(C) 

distribution. then 

such that TT' has a complex Wishart (I .m) 
m 
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(16) 

From (11) it follows that Dk(A) is a homogeneous symmetric polynomial 

in AI' .. ,Am . In the appendix it is shown that the term with highest 

2k1 2km 
weight is AI ... Am In the next section we shall see , using the 

properties (11) and (12) that Dk(A) can be expressed by some 

well-known polynomials. It is then clear that (11)-(15) make it 

possible to evaluate the integral (10). 

4. Evaluation of the integral 

Consider 2m x 2m matrices X = [~ -~J, where Y and Z are m x m 

matrices with elements y .. 
IJ 

and z ... 
IJ 

Assume that all the elements 

and are independent standard normal variables and define the 

generating function g by 

g(S,f,A) = Ex exp(S tr(fXAX')) (17) 

for S sufficiently small, f and A having the form (6). 

It is seen that 
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tr(fXAX ') 
m m 2 2 

= 2: 2: 2'Y.A.(y .. - ZiJ.) 
i=1 j=1 1 J IJ 

(18) 

and using this we get that 

g(S.LA) (19) 

From Takemura (1984.page 37-39) we get that 

g(S.f.A) (20) 

where 

Ck are the real zonal polynomials normalised such that 

k . 
(AI + ... + A) = 2: Ck(~) 

m ktP (k) 
m 

(21) 

and 

2kk! IT (2k.- 2k.-i+j) 
-- i<j 1 J 

o (i{) = (22) m 
IT (2k.+m-i)! 

i=1 1 
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We get another expression for g by expanding (17) in a sum of terms of 

the form 

(23) 

Now Ex = ErEu. where U has the uniform distribution on ~(m.~) and 

T is distributed on :'T+(m.~) such that W = TT' has the complex 

Wishart (1 .m) distribution. By (14) - (16) we get that g(z.r.A) is a 
m 

sum of terms of the form 

-1 2k --
(2k)! S _ 2 d(m.k) c(k) Dk(~) ~(~). (24) 

k€Pm(k) 

Since the term of highest weight in both Dk(~ and Ck(~2) is of the 

2k1 2km 
form a-A1 ... Am it follows by comparing (20) with (24) that Dk(~) 

and Ck(~2) are proportional. 

Again by comparing (20) with (24) 

c(k) 1 
(26) - 2 - -' 

a(k) 6(k)d(m.k) 

We are now able to give a series expansion for l(LA) given by (4) 

Using (12)-(15) on (10) we get 
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Theorem Let l(T.A) be given by (4) then 

(J() 

l(r.A) 
1 1 - 2 2 = 2 2 2k _ 2 q(k) ~(~ ) ~(:!. ) 

k=O (k!) 2 kEP (k) m 

(27) 

where the polynomials, ~. are the real zonal polynomials normalized by 

(21) and 

m m 
IT T(N+2k.-i+l) IT T(m-i+1) 

i=l 1 i=l 
q(k) = .::.......:=--------=--...:=------

m 
IT T(N-i +1) 

i=l 
IT (2k.-2k.-i+j) 

i <j 1 J 

(28) 

o 

Some manipulation with the coefficients q(k) (see the appendix) show 

that 

(29) 

where 2F1 is the hypergeometric function as defined in James (1964), 

page 477 . 

5. Appendix. 

Definition of the polynomials Df . 
( 

Let V(k) be the real vector space of homogeneous polynomials feR) of 

degree k in the m(m + 1) different elements of R E ~(m,~). 
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For each M E GL(m,IC) a transformation D(L) of ~(m,IC) (as a 

vector space) is defined by 

D(M)(R) = MRM' (30) 

The transformation D(L) defines a representation, D, of GL(m, IC) 

on ~(m,IC). If we let GL(m,IC) denote the group of non-singular mxm 

matrices with elements from IC then (30) also defines a representation 

of GL(m,1C) (using the group isomorphism GL(m,IC) -+ GL(m,IC) see 

Andersson and Perlman (1984)). It is easy to see by considering the trace 

of D(L) that D is equivalent to the semi-rational representation 

of GL(m,IC), where M2 is the irreducible integral 

representation of GL(m,IC) corresponding to the partition (2,0) of 2 

(see Boerner (1955)). 

For each M € GL(m,IC) a transformation T(M) of V(k) is defined 

by 

f -+ T(M)f (T(M)f)(R) = f(M-1RM-1 '). (31) 

These transformations define a representation ,T, of GL(m,IC) on 

V(k), and again T can be considered as a representation of GL(m,IC) 

on V(k). 

For k E P (k) we let 2k = (2k1 ,-,2k ) E P (2k). 
m m m 

It follows from Thrall (1942, Lemma I page 377 and Theorem III page 

378) that T decomposes into the irreducible representations of GL(m,IC) 
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of the form M2p (M) 0 M2q(M). each of which is contained exactly once, 

and p € P (p). q € P (q) 
m m wi th P + q = k. Let V(p,q) be the 

invariant irreducible subspace of V(k) acts. 

In particular we have that 

Lemma 2 By the representation T defined by (31) V(k) decomposes into 

a direct sum of irreducible invariant subspaces. none of which is 

equivalent. 

T with M restricted to be orthogonal defines a representation of 

liU(m.lC) on V(P.q): by this representation V(P.q) decomposes into a 

direct sum of irreducible invariant subspaces V(p.q.i). i = 1.-.n(p.q). 

By comparing with the form of the similar representations corresponding 

to testing equality of two covariance matrices of complex form it follows 

that if and only if p = q then exactly one of the subspaces V(p.q.i). 

say V(p.p.1) has the following property: it is one-dimensional and the 

corresponding representation of liU(m.lC) is the identity representation. 

Since we are only interested in spaces with this properrty we will now 

only consider the spaces V(2k). We remark that f € V(k.k.1) implies 

that 

f(URU') = feR) for all U € liU(m.lC) 

i.e. that f is liU(m.IC)-invariant. We then have 
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Lemma 3 To each k E P (k) 
m 

there exists a unique one dimensional 

subspace V(k,k,l) invariant under ~(m,C) which is contained in one of 

the subspaces given by the decomposition of V(2k) in Lemma 2. There are 

no other one dimensional subspaces invariant under ~(m,C) with this 

property. 

By Lemma 1 a ~(m,C)-invariant polynomial, f, is given by its values 

on matrices, A, of the form (6). Such a polynomial f of A is a 

homogeneous symmetric polynomial of degree 2k in A1 ,-,Am. 

Using a method similar to that of Constantine (1963 page 1271-1273) 

it can be shown that a polynomial, f, which generates V(k,k,l) has 

the form 

Definition 

f(A) 

D
k 

2kl 2km 
= d(k) Al ... Am + terms of lower weight. 

is the polynomial which generates V(k,k,l) 

that the coefficient to the term with highest weight is 1. 

normed such 

Proof (12)-(16) Consider the transformation, E, from V(2k) to V(2k) 

given by 

Ef(R) = ~ J ~(M)f(MRM')d~(M) 
GL(m,C) 

(32) 
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Since V(k.k) is invariant under T(M) for each M it follows that 

Ef E V(k.k) when f E V(k.k). Using the invariance of ~ it is seen 

that Ef is 6U(m,IC)-invariant. In particular we get that ED
k 

is 

proportional to Dk • and note that since D
k 

is 6U(m.IC)-invariant. we 

have by the Iwasawa-decomposition that EDk(R) is given by the left side 

of (12). 

To evaluate d(N.k) we first remark that for T E ~+(m.lC) and A 

of the form (6) the term of highest weight in Dk(TAT') becomes 

2 2kl -2k2 2 2 2k2-2k3 2 2km 
where geT) = (t1 . 11 ) (t1.11t1.22) ... (IT11 ) (proceed as 

in Constantine (1963). page 1273). 

By comparing the coefficients of the terms of highest weight on both 

sides of (12) we get 

f ~(T)g(T)d~(T) = d(N.k) 

~+(m.lC) 

and a direct calculations gives (13). 

Now assume that T is distributed on ~+(m.lC) such that W = TT' has a 

complex Wishart (I .m) distribution. i.e. distribution with density 
m 

-1 1 
a(m) exp(- 2 tr(W))dW 



where a(m) 
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m(m-l) 
2 = 7T 

m 
ITf(m+ 1- i). 

i=1 

The mapping T ~ TT' has the Jacobian 

and (16) follows using this and (12)-(13). An application of Schurs 

lemma (see Naimark and Stern (1982), page 26+58) and the fact that 

J T(U)da(U) = 0 

OU(m,([;) 

when T is an irreducible representation different from the identi ty 

representation of OU(m,([;). give (14) and (15). 

Proof of (29). Use the identities 

Ck(I, ... ,I) = 22kk! 

m 1 1 
IT f(~--(i-l)+k.) 

i=1 2 2 1 

m 1 1 
IT f(~--(i-l» 

i=1 2 2 

IT (2k.-2k.-i+j) 
i<j 1 J 

m 
IT (2k. +m-i) ! 

i=1 1 

(34) 

(35) 

where a € IN, and [a] , 
k 

~J is defined as in (James 1964, page 477 
k 

and 487) 
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