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Abstract 

In the present note we show convergence, under very general assumptions, 

of iterative maximization procedures with cyclic fixing of groups of 

parameters, maximizing over the remaining. Further we show that a 

slightly modified Newton-Raphson procedure applied to the reciprocal 

likelihood function in a one dimensional exponential family, is conver­

gent. 

By combining these two results we obtain a general convergent itera-

tive procedure for maximizing a likelihood function. It applies, for 

example, to a any full, regular k-dimensional exponential family. 

Key words: Iterative proportional scaling, Newton-Raphson algorithm, 

exponential families. 
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1. INTRODUCfION 

A crucial point in any statistical analysis based on the method of maxi­

mum likelihood is concerned with the actual maximization of the likeli­

hood function. In many cases an explicit method is not available and the 

maximization has to be performed using numerical methods, often of itera­

tive character. A common way is to use techniques of Newton-Raphson type 

although one knows very little about its convergence properties. A 

related method is the method of scoring due to Fisher (1958). These 

methods get in general impractical in problems involving several para­

meters, an exception being in the generalised linear models of Nelder & 

Wedderburn (1972), where the method of scoring can be performed as an 

iterative weighted least squares procedure. 

Alternative methods have been developed for particular cases with 

many parameters, often of the type of iterative scaLing, see for example, 

Andersen (1974), Darroch & Ratcliff (1972), and Speed & Kiiveri (1986). 

The convergence of the algorithms has been established in each of these 

cases (loc.cit.). All these algorithms have the flavour of using the 

tempting idea of cyclically keeping some parameters 

maximizing over the remaining. 

fixed while 

In the present note we show that this idea often works, i.e. it gives 

algorithms that are convergent under quite general assumptions. The most 

critical of these assumptions is probably that the existence and unique­

ness of the maximum must have been established by other means. In full, 

regular exponential families this has been done by Barndorff-Nielsen 

(1978) and we therefore first consider such cases. 
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2. EXPONENTIAL FAMILIES 

In this section we shall give a simple algorithm which yields the maximum 

likelihood estimate in any k-dimensional regular exponential family. The 

following lemma will be useful. 

LEMMA 1. Let f have a continuous and positive derivative on an intervaL 

* of the reaL Line and Let f(x ) = o. If 

f is convex for x ~ * x, 

then the Newton-Raphson aLgorithm, modified to stay within the intervaL, 

* converges to x for any starting vaLue in the intervaL. 

Proof. Let first f be defined on R, and let 

g(x) = x - f(x)/f'(x). 

The Newton-Raphson algorithm takes the form 

xn+l = g(xn ), n = 0,1, ... 

for some starting value xO. It is easily seen from the convexity of f 

* that if ever f(x ) > 0, then x ~ is decreasing to x n n+/{. 

* hand, f(x ) < 0 for all n, then x is increasing to x . n n 

If, on the other 

If f is only defined on the interval from a to b, then we modify the 

algorithm as follows: 

[
g(X ) 

= (x n+ b)/2 
n 

if g(x ) < b 

if g(x ) ~ b n 

and the same proof holds. The proof is illustrated in Figure 1. 

[FIGURE 1] 
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Let now ~ be a non-negative measure on Rk, which is not concentrated 

on any affine hyperplane. We define the exponential family generated by 

~ by the densities 

fS(x) = exp(xS)/~(S) , SED, 

where 

D = { S I ~(S) = J exp(xS) ~(dx) < ro }. 

The family is called full since the parameter set is the largest pos­

sible, and regular when D is open. It is one of the fundamental results 

of the theory of regular exponential families, see Barndorff-Nielsen 

(1978), that when the observation x is contained in the interior of the 

convex support of ~, then the maximum likelihood estimate exists and is 

uniquely defined as the solution to the equation 

ES(X) = x. 

This equation can often be solved explicitly, but sometimes one has 

to solve it numerically and the purpose of this paper is to find an 

algorithm for doing so. 

Consider first the case k = 1. 

TIIEOREM 1. For a reguLar one dimensionaL exponentiaL famiLy it hoLds, 

that if the observation is contained in the interior of the convex 

support of ~, then the modified Newton-Raphson aLgorithm appLied to the 

reciprocaL LikeLihood function converges to the maximum LikeLihood 

estimate for any starting vaLue in the intervaL D. 
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Proof. The reciprocal likelihood function can be written as 

K(S) = fexp(S(Y-X))M(dy). 

It is well known that K is convex, and that k(S) = K'(S) is increasing 

since 

k'(S) = f(y-x)2exP(S(y-X))M(dy) > O. 

A 
Let S be the unique zero of k. We also find that 

k" 'CS) = f(y-x)4exp(S(y-X))M(dy) > 0 

which shows that k" is strictly increasing. There is no loss of gene-

A 
rality in assuming that k"(S) 2 0, since otherwise one could just consi-

A 
der the parameter -So Hence k" is positive for S 2 S which shows that k 

A 
is convex for S 2 S. Now Lemma 1 implies that the algorithm converges. 

Remark. If we let T and v denote the mean and variance 

we get that each iterative step looks like 

Comparing with the more usual procedure of performing the iteration on 

the logarithm of the likelihood function which gives 

Sn+l = Sn + (X-T(Sn))/v(Sn) , 

we see that the difference comes from the term (X-T(S ))2 which gives 
n 

A 
extra stability when S is far from S, and which has no influence when S 

n n 
A 

comes close to S. 
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Example 1. As an illustration of this result, consider the case where Y 

is gamma distributed with known scale-parameter AO and unknown shape-

parameter ~ i.e. it has density 

Here x = logx is the observation of the canonical statistic and the 

iterative procedure above is convergent if the observation y is positive 

and is given by 

x+ I ogAo - >/J (f3 -,--) __ 
n- 2' 

>/J'(f3 )+ (x+logAo - >/J(f3 )) 
n n 

where >/J(f3) = T'(f3)/T(f3) is the digammafunction, see Abramowitz & Stegun 

(1965) . 

Note that we are not directly concerned with computational feasibili-

ty of the various procedures, merely with showing their convergence. In 

the multidimensional case, when k ~ 2, we rely on the following: 

THEOREM 2. If the observation from a regular k-dimensional exponential 

family is contained in the interior of the convex support of M, then the 

maximum likelihood estimate can be calculated by successively maximizing 

over each parameter keeping the others fixed. 

Proof. The theorem follows from the main result in the next section 

about iterative partial maximization. Note that when keeping all 

parameter values fixed except one, we get a one dimensional exponential 

family, where the modified Newton-Raphson algorithm can be applied to the 

reciprocal likelihood function. 
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In the case of iterative proportional scaling (IPS) as used in log-linear 

models for contingency tables, see e.g. Andersen (1974), and its 

generalisations to covariance selection models, Speed & Kiiveri (1986), 

and other models, Darroch & Ratcliff (1972), each partial maximization 

step can typically be performed explicitly. Theorem 2 establishes the 

(wellknown) convergence of the quoted algorithms but, in general, each 

partial maximization might involve iteration. 

ExampLe 2 Continuing Example 1 we shall here assume that we have obser-

ved m independent gamma distributed random variables Y1 , ... , Y having 
m 

common but unknown, scale parameter and different unknown 

shape-parameters ~1, ... ~m. This is an exponential family with m+1 

parameters and for any fixed m of them, it is a one-dimensional 

exponential family. Let Yo = ~i Yi and let YO be the observation of YO· 

From Theorem 2 we find that we can obtain the maximum likelihood estimate 

by 

1. Choose a starting value AO 

A A 
2. Find estimates ~1, .. . ,~m iteratively as described in Example 1 

3. Calculate an updated value on the scale-parameter A as 

A A. 
l.-

A = ~i ~ /yo 

A 
4. Repeat from point 2, now with A as the "known" scale-parameter. 

3. ITERATIVE PARTIAL MAXIMIZATION 

We now consider the general case of a problem with parameter space 8 

being a topological Hausdorff space. Let L denote a continuous function. 

We are going to construct an iterative procedure for m~imizing L under 
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the assumptions below, where So E S is a starting value, such that 

DO = { S E si L(S) ~ L(SO) } is compact. 

As the second assumption we shall take 

A 
L is uniquely maximized over DO for S = S. 

(AI) 

(PL2) 

Suppose that we have given parameter functions ~i : DO ~ Si ' i = 

1, ... ,k and let Mi(S), SE DO be the corresponding sections: 

M.(S) = { ~ E DOl ~.(~) = ~.(S)}, i = 1, .. . ,k. 
L L L 

Assume further that for i = 1, . .. ,k and S E DO 

L is maximized uniquely by T.(S) on the section M.(S) and 
L L 

that Ti(S) is continuous on DO' (A3) 

In some specific cases one can choose ~i such that each partial 

maximization can be performed explicitly. 

Finally assume that we have enough sections, or more precisely that 

A 
sup L(~) = L(S), i = 1, .. . ,k implies S = S, 

~ E Mi(S) 

or equivalently 

A 
T.(S) = S , i = 1, .. . ,k implies S = S. 

L 

A 

(A4) 

In other words that the point of global maximum S is uniquely determined 

A 
by the condition that it is the partial maximum along each section M.(S). 

L 

Before we give the proof of the main result we shall show what the 

conditions mean in the case where L is the likelihood function in a 

regular k-dimensional exponential family. 

In this case it is known, see Barndorff-Nielsen (1978) that if the 

minimal sufficient statistic is in the interior of the convex support 

then the maximum likelihood estimate is uniquely defined (A2) and, 

moreover {SIL(S) ~ L(SO)} is compact (AI) for any So E D. 
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For a subset of Rk it is often convenient to use the mappings 

to define the sections, and the condition (A3) states that for fixed 

values of all variables but one, the maximum likelihood estimator should 

exist and depend continuously on S. 

Finally the assumption in condition (A4) implies in this case that 

the derivative with respect to S. is zero at the point S, but the 
L 

condition is then that the maximum likelihood estimate is uniquely 

defined by the condition that the derivative vanishes. 

These conditions, (A3) and (A4), are also satisfied for a 

k-dimensional exponential family, which shows that Theorem 2 is proved. 

If the parameter set 8 is any closed subset of the parameter set, DO 

will also be compact and (AI) is automatically fulfilled. But in this 

case (A2),(A3) and (A4) need to be established separately. 

We shall then prove the main result: 

THEOREM 3. Under the assumptions above the aLgorithm 

Sn+l = T10 ... O Tk (Sn) 
A 

converges to S. 

(2.1) 

Proof. Since DO is assumed compact (AI), Sn has a convergent subse-

* quence (S ) with limit S , say. 
~ 

Define 

* A 
We need to show that S = S. 
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Since Land S are assumed continuous (A3) and L(S ) is increasing we have 
n 

L(S(S*)) = lim L(S(S )) ~ lim L(S ) = L(S*). 
k. ~ (]() ~ k. ~ (]() ~+ 1 

But we also have from (A3) that 

and we must everywhere have equality. Reading the chain of equalities 

from right to left and recalling the uniqueness of the partially maximi-

* T. (S ) we get 
L 

zing values 

* * S = Tk.(S ) = 

* A 
whereby (A4) implies S = S. 

We shall call the algorithm (2.1) the IPM algorithm, for Iterative 

PartiaL Maximization. 

In log-linear models it is occasionally an advantage to allow zero-

probabilities by considering the standard models extended by weak li-

mits. In such extended families the parameter space is not topologically 

identical to an open subset of Rk.. Still a minor modification - just 

avoiding division by zero - of the usual IPS-algorithm is convergent, as 

was shown by Jensen (1978), see also Lauritzen (1982). This follows from 

the above general result and the proof above is indeed a small 

modification of the proof given in the latter of these references. 

For the case involving curved exponential families we have as our 

final example the following: 

ExampLe 3 Consider Xl'" .,Xn independent k.-dimensional Gaussian vari-

abIes with mean zero and 

var(X.) = A.O, i = 1, ... ,n. 
L L 

n 
Assume for identification that IT A. = 1. 

i=l L 
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It was shown by Eriksen (1987) and Jensen & Johansen (1987) that the 

maximum likelihood estimate is uniquely defined in this curved exponen-

tial family. 

For fixed A we get a regular exponential family with explicit maximum 

likelihood estimation 

_In * 
D(A) = n ~ X.X. lA. 

i=1 1- 1- 1-
(3.1) 

and for fixed D, we get a curved exponential family with explicit 

estimation 

* -1 A. = X.D X./c 
1- 1- 1-

n n *-1 
where c = IT X.D X .. 

i=1 1- 1-

(3.2) 

The convergence of the algorithm defined by iteration of (3.1) and 

(3.2) is now established by Theorem 3. 
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Fig 1. Convergence of the Newton-Raphson aLgorithm. If the aLgorithm 

starts at xo. then xn is decreasing. * If it starts at Xo then it jumps to 

* * the other side of x and then decreases to x . 
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